QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#667689#9492. 树上简单求和hos_lyric#5 1916ms24152kbC++1414.6kb2024-10-23 02:38:322024-10-23 02:38:32

Judging History

你现在查看的是最新测评结果

  • [2024-10-23 02:38:32]
  • 评测
  • 测评结果:5
  • 用时:1916ms
  • 内存:24152kb
  • [2024-10-23 02:38:32]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")


// T: monoid representing information of an interval.
//   T()  should return the identity.
//   T(S s)  should represent a single element of the array.
//   T::push(T &l, T &r)  should push the lazy update.
//   T::pull(const T &l, const T &r)  should pull two intervals.
template <class T> struct SegmentTreeRange {
  int logN, n;
  vector<T> ts;
  SegmentTreeRange() : logN(0), n(0) {}
  explicit SegmentTreeRange(int n_) {
    for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
    ts.resize(n << 1);
  }
  template <class S> explicit SegmentTreeRange(const vector<S> &ss) {
    const int n_ = ss.size();
    for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
    ts.resize(n << 1);
    for (int i = 0; i < n_; ++i) at(i) = T(ss[i]);
    build();
  }
  T &at(int i) {
    return ts[n + i];
  }
  void build() {
    for (int u = n; --u; ) pull(u);
  }

  inline void push(int u) {
    ts[u].push(ts[u << 1], ts[u << 1 | 1]);
  }
  inline void pull(int u) {
    ts[u].pull(ts[u << 1], ts[u << 1 | 1]);
  }

  // Applies T::f(args...) to [a, b).
  template <class F, class... Args>
  void ch(int a, int b, F f, Args &&... args) {
    assert(0 <= a); assert(a <= b); assert(b <= n);
    if (a == b) return;
    a += n; b += n;
    for (int h = logN; h; --h) {
      const int aa = a >> h, bb = b >> h;
      if (aa == bb) {
        if ((aa << h) != a || (bb << h) != b) push(aa);
      } else {
        if ((aa << h) != a) push(aa);
        if ((bb << h) != b) push(bb);
      }
    }
    for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
      if (aa & 1) (ts[aa++].*f)(args...);
      if (bb & 1) (ts[--bb].*f)(args...);
    }
    for (int h = 1; h <= logN; ++h) {
      const int aa = a >> h, bb = b >> h;
      if (aa == bb) {
        if ((aa << h) != a || (bb << h) != b) pull(aa);
      } else {
        if ((aa << h) != a) pull(aa);
        if ((bb << h) != b) pull(bb);
      }
    }
  }

  // Calculates the product for [a, b).
  T get(int a, int b) {
    assert(0 <= a); assert(a <= b); assert(b <= n);
    if (a == b) return T();
    a += n; b += n;
    for (int h = logN; h; --h) {
      const int aa = a >> h, bb = b >> h;
      if (aa == bb) {
        if ((aa << h) != a || (bb << h) != b) push(aa);
      } else {
        if ((aa << h) != a) push(aa);
        if ((bb << h) != b) push(bb);
      }
    }
    T prodL, prodR, t;
    for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
      if (aa & 1) { t.pull(prodL, ts[aa++]); prodL = t; }
      if (bb & 1) { t.pull(ts[--bb], prodR); prodR = t; }
    }
    t.pull(prodL, prodR);
    return t;
  }

  // Calculates T::f(args...) of a monoid type for [a, b).
  //   op(-, -)  should calculate the product.
  //   e()  should return the identity.
  template <class Op, class E, class F, class... Args>
#if __cplusplus >= 201402L
  auto
#else
  decltype((std::declval<T>().*F())())
#endif
  get(int a, int b, Op op, E e, F f, Args &&... args) {
    assert(0 <= a); assert(a <= b); assert(b <= n);
    if (a == b) return e();
    a += n; b += n;
    for (int h = logN; h; --h) {
      const int aa = a >> h, bb = b >> h;
      if (aa == bb) {
        if ((aa << h) != a || (bb << h) != b) push(aa);
      } else {
        if ((aa << h) != a) push(aa);
        if ((bb << h) != b) push(bb);
      }
    }
    auto prodL = e(), prodR = e();
    for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
      if (aa & 1) prodL = op(prodL, (ts[aa++].*f)(args...));
      if (bb & 1) prodR = op((ts[--bb].*f)(args...), prodR);
    }
    return op(prodL, prodR);
  }

  // Find min b s.t. T::f(args...) returns true,
  // when called for the partition of [a, b) from left to right.
  //   Returns n + 1 if there is no such b.
  template <class F, class... Args>
  int findRight(int a, F f, Args &&... args) {
    assert(0 <= a); assert(a <= n);
    if ((T().*f)(args...)) return a;
    if (a == n) return n + 1;
    a += n;
    for (int h = logN; h; --h) push(a >> h);
    for (; ; a >>= 1) if (a & 1) {
      if ((ts[a].*f)(args...)) {
        for (; a < n; ) {
          push(a);
          if (!(ts[a <<= 1].*f)(args...)) ++a;
        }
        return a - n + 1;
      }
      ++a;
      if (!(a & (a - 1))) return n + 1;
    }
  }

  // Find max a s.t. T::f(args...) returns true,
  // when called for the partition of [a, b) from right to left.
  //   Returns -1 if there is no such a.
  template <class F, class... Args>
  int findLeft(int b, F f, Args &&... args) {
    assert(0 <= b); assert(b <= n);
    if ((T().*f)(args...)) return b;
    if (b == 0) return -1;
    b += n;
    for (int h = logN; h; --h) push((b - 1) >> h);
    for (; ; b >>= 1) if ((b & 1) || b == 2) {
      if ((ts[b - 1].*f)(args...)) {
        for (; b <= n; ) {
          push(b - 1);
          if (!(ts[(b <<= 1) - 1].*f)(args...)) --b;
        }
        return b - n - 1;
      }
      --b;
      if (!(b & (b - 1))) return -1;
    }
  }
};

////////////////////////////////////////////////////////////////////////////////


////////////////////////////////////////////////////////////////////////////////

//   update range  a[i] <- a[i] + b
//   get  sum a[l, r)

template <class T> struct NodeSum {
  int sz;
  T sum;
  T lz;
  NodeSum() : sz(0), sum(0), lz(0) {}
  NodeSum(const T &val) : sz(1), sum(val), lz(0) {}
  void push(NodeSum &l, NodeSum &r) {
    l.add(lz);
    r.add(lz);
    lz = 0;
  }
  void pull(const NodeSum &l, const NodeSum &r) {
    sz = l.sz + r.sz;
    sum = l.sum + r.sum;
  }
  void add(const T &val) {
    sum += val * sz;
    lz += val;
  }
  T getSum() const {
    return sum;
  }
  bool accSum(T &acc, const T &tar) const {
    if (acc + sum >= tar) return true;
    acc += sum;
    return false;
  }
};
template <class T> T getSum(SegmentTreeRange<NodeSum<T>> &seg, int a, int b) {
  return seg.get(a, b,
                 [&](const T &l, const T &r) -> T { return l + r; },
                 [&]() -> T { return 0; },
                 &NodeSum<T>::getSum);
}

// (sum of [a, b]) >= target
template <class T> int findRight(SegmentTreeRange<NodeSum<T>> &seg, int a, const T &tar) {
  T acc = 0;
  return seg.findRight(a, &NodeSum<T>::accSum, acc, tar);
}
template <class T> int findLeft(SegmentTreeRange<NodeSum<T>> &seg, int b, const T &tar) {
  T acc = 0;
  return seg.findLeft(b, &NodeSum<T>::accSum, acc, tar);
}

////////////////////////////////////////////////////////////////////////////////


struct Hld {
  int n, rt;
  // needs to be tree
  // vertex lists
  // modified in build(rt) (parent removed, heavy child first)
  vector<vector<int>> graph;
  vector<int> sz, par, dep;
  int zeit;
  vector<int> dis, fin, sid;
  // head vertex (minimum depth) in heavy path
  vector<int> head;

  Hld() : n(0), rt(-1), zeit(0) {}
  explicit Hld(int n_) : n(n_), rt(-1), graph(n), zeit(0) {}
  void ae(int u, int v) {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    graph[u].push_back(v);
    graph[v].push_back(u);
  }

  void dfsSz(int u) {
    sz[u] = 1;
    for (const int v : graph[u]) {
      auto it = std::find(graph[v].begin(), graph[v].end(), u);
      if (it != graph[v].end()) graph[v].erase(it);
      par[v] = u;
      dep[v] = dep[u] + 1;
      dfsSz(v);
      sz[u] += sz[v];
    }
  }
  void dfsHld(int u) {
    dis[u] = zeit++;
    const int deg = graph[u].size();
    if (deg > 0) {
      int vm = graph[u][0];
      int jm = 0;
      for (int j = 1; j < deg; ++j) {
        const int v = graph[u][j];
        if (sz[vm] < sz[v]) {
          vm = v;
          jm = j;
        }
      }
      swap(graph[u][0], graph[u][jm]);
      head[vm] = head[u];
      dfsHld(vm);
      for (int j = 1; j < deg; ++j) {
        const int v = graph[u][j];
        head[v] = v;
        dfsHld(v);
      }
    }
    fin[u] = zeit;
  }
  void build(int rt_) {
    assert(0 <= rt_); assert(rt_ < n);
    rt = rt_;
    sz.assign(n, 0);
    par.assign(n, -1);
    dep.assign(n, -1);
    dep[rt] = 0;
    dfsSz(rt);
    zeit = 0;
    dis.assign(n, -1);
    fin.assign(n, -1);
    head.assign(n, -1);
    head[rt] = rt;
    dfsHld(rt);
    assert(zeit == n);
    sid.assign(n, -1);
    for (int u = 0; u < n; ++u) sid[dis[u]] = u;
  }

  friend ostream &operator<<(ostream &os, const Hld &hld) {
    const int maxDep = *max_element(hld.dep.begin(), hld.dep.end());
    vector<string> ss(2 * maxDep + 1);
    int pos = 0, maxPos = 0;
    for (int j = 0; j < hld.n; ++j) {
      const int u = hld.sid[j];
      const int d = hld.dep[u];
      if (hld.head[u] == u) {
        if (j != 0) {
          pos = maxPos + 1;
          ss[2 * d - 1].resize(pos, '-');
          ss[2 * d - 1] += '+';
        }
      } else {
        ss[2 * d - 1].resize(pos, ' ');
        ss[2 * d - 1] += '|';
      }
      ss[2 * d].resize(pos, ' ');
      ss[2 * d] += std::to_string(u);
      if (maxPos < static_cast<int>(ss[2 * d].size())) {
        maxPos = ss[2 * d].size();
      }
    }
    for (int d = 0; d <= 2 * maxDep; ++d) os << ss[d] << '\n';
    return os;
  }

  bool contains(int u, int v) const {
    return (dis[u] <= dis[v] && dis[v] < fin[u]);
  }
  int lca(int u, int v) const {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    for (; head[u] != head[v]; ) (dis[u] > dis[v]) ? (u = par[head[u]]) : (v = par[head[v]]);
    return (dis[u] > dis[v]) ? v : u;
  }
  int jumpUp(int u, int d) const {
    assert(0 <= u); assert(u < n);
    assert(d >= 0);
    if (dep[u] < d) return -1;
    const int tar = dep[u] - d;
    for (u = head[u]; ; u = head[par[u]]) {
      if (dep[u] <= tar) return sid[dis[u] + (tar - dep[u])];
    }
  }
  int jump(int u, int v, int d) const {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    assert(d >= 0);
    const int l = lca(u, v);
    const int du = dep[u] - dep[l], dv = dep[v] - dep[l];
    if (d <= du) {
      return jumpUp(u, d);
    } else if (d <= du + dv) {
      return jumpUp(v, du + dv - d);
    } else {
      return -1;
    }
  }
  // [u, v) or [u, v]
  template <class F> void doPathUp(int u, int v, bool inclusive, F f) const {
    assert(contains(v, u));
    for (; head[u] != head[v]; u = par[head[u]]) f(dis[head[u]], dis[u] + 1);
    if (inclusive) {
      f(dis[v], dis[u] + 1);
    } else {
      if (v != u) f(dis[v] + 1, dis[u] + 1);
    }
  }
  // not path order, include lca(u, v) or not
  template <class F> void doPath(int u, int v, bool inclusive, F f) const {
    const int l = lca(u, v);
    doPathUp(u, l, false, f);
    doPathUp(v, l, inclusive, f);
  }

  // (vs, ps): compressed tree
  // vs: DFS order (sorted by dis)
  // vs[ps[x]]: the parent of vs[x]
  // ids[vs[x]] = x, not set for non-tree vertex
  vector<int> ids;
  pair<vector<int>, vector<int>> compress(vector<int> us) {
    // O(n) first time
    ids.resize(n, -1);
    std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
      return (dis[u] < dis[v]);
    });
    us.erase(std::unique(us.begin(), us.end()), us.end());
    int usLen = us.size();
    assert(usLen >= 1);
    for (int x = 1; x < usLen; ++x) us.push_back(lca(us[x - 1], us[x]));
    std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
      return (dis[u] < dis[v]);
    });
    us.erase(std::unique(us.begin(), us.end()), us.end());
    usLen = us.size();
    for (int x = 0; x < usLen; ++x) ids[us[x]] = x;
    vector<int> ps(usLen, -1);
    for (int x = 1; x < usLen; ++x) ps[x] = ids[lca(us[x - 1], us[x])];
    return make_pair(us, ps);
  }
};

////////////////////////////////////////////////////////////////////////////////


using Mint = unsigned long long;

int N, Q;
vector<Mint> C;
vector<int> A[2], B[2];
vector<int> X, Y;
vector<Mint> K;

Hld hld[2];


namespace subA {
vector<Mint> run() {
  SegmentTreeRange<NodeSum<Mint>> seg(N);
  for (int u = 0; u < N; ++u) seg.at(hld[0].dis[u]) = C[u];
  seg.build();
  auto get = [&](int u) -> Mint {
    return getSum(seg, hld[0].dis[u], hld[0].dis[u] + 1);
  };
  vector<Mint> ans(Q, 0);
  for (int q = 0; q < Q; ++q) {
    hld[0].doPath(X[q], Y[q], true, [&](int l, int r) -> void {
      seg.ch(l, r, &NodeSum<Mint>::add, K[q]);
    });
    {
      int x = X[q], y = Y[q];
      for (; hld[1].dep[x] > hld[1].dep[y]; x = hld[1].par[x]) ans[q] += get(x);
      for (; hld[1].dep[x] < hld[1].dep[y]; y = hld[1].par[y]) ans[q] += get(y);
      for (; x != y; x = hld[1].par[x], y = hld[1].par[y]) ans[q] += get(x) + get(y);
      ans[q] += get(x);
    }
  }
  return ans;
}
}  // subA


int main() {
  for (; ~scanf("%d%d", &N, &Q); ) {
    C.resize(N);
    for (int u = 0; u < N; ++u) {
      scanf("%llu", &C[u]);
    }
    for (int h = 0; h < 2; ++h) {
      A[h].resize(N - 1);
      B[h].resize(N - 1);
      for (int i = 0; i < N - 1; ++i) {
        scanf("%d%d", &A[h][i], &B[h][i]);
        --A[h][i];
        --B[h][i];
      }
    }
    X.resize(Q);
    Y.resize(Q);
    K.resize(Q);
    for (int q = 0; q < Q; ++q) {
      scanf("%d%d%llu", &X[q], &Y[q], &K[q]);
      --X[q];
      --Y[q];
    }
    
    for (int h = 0; h < 2; ++h) {
      hld[h] = Hld(N);
      for (int i = 0; i < N - 1; ++i) {
        hld[h].ae(A[h][i], B[h][i]);
      }
      hld[h].build(0);
    }
    
    const auto ans = subA::run();
    for (int q = 0; q < Q; ++q) {
      printf("%llu\n", ans[q]);
    }
  }
  return 0;
}

详细

Subtask #1:

score: 5
Accepted

Test #1:

score: 5
Accepted
time: 16ms
memory: 4432kb

input:

3000 3000
7236742292501328495 17973811477309806363 16075782662531676171 17971236571771878676 11392080645527132110 3685563455925680459 9773593720088356683 8313828403245053795 7736401634567449043 1634817828009987181 6951124933529719486 12775126714635387213 15460977209223753216 397573676785925632 31372...

output:

12105153858659381124
18367442707572066757
11668241962484097878
11288238120352358472
1742468310074622166
9942835997686093671
3305677510569607477
17741602000425004088
14984128302052618266
1075081718074605786
6509217537832509095
16750513627843273113
8569443169249732820
14475184194298579044
156111071108...

result:

ok 3000 lines

Test #2:

score: 5
Accepted
time: 23ms
memory: 4452kb

input:

3000 3000
1612333876155866602 8538417838700679227 6080765231437578796 17905224638340228394 12270907925903144224 17944105326358594564 17302041033966840611 1006351124625222126 496336153231744288 9393087977687876980 9553975238547373621 9361882717200384390 15051881329169144319 9757999873162420435 882725...

output:

11133131376095771981
7909873024850695144
16250639243139481926
14562550655578101207
8274205996508264973
178549413271904466
2368406276743327913
7464009386554813982
9439464815411774627
1471756740732097060
15201641099137019227
6774030298556871576
18156105511913219667
1553508745644446823
4225137078364117...

result:

ok 3000 lines

Test #3:

score: 5
Accepted
time: 103ms
memory: 4648kb

input:

3000 3000
9709246061666095435 1861649101703072889 10620139893353930613 17635186539135419482 710209455559527146 6075101384669982511 1120305006358459674 9703156967435388252 1397046737759839382 5259056712870179169 8253156305433022999 710199693203327302 15130650033641744675 10720111924616886955 15543351...

output:

7834604406305153073
5037061270969117785
16481572776620825702
15177894197606565804
3120320619896892806
18008650876379132344
7417108723176816402
13515164814425439399
3299769942258542105
15897528270699011770
11642805469843844638
16764682282380318054
4824039114054405772
4859834102876213962
1234210473247...

result:

ok 3000 lines

Test #4:

score: 5
Accepted
time: 6ms
memory: 4952kb

input:

3000 3000
16538965545220923528 18062192327708400751 10422465150728338588 3471522151129113073 1236650672072793692 1942240200040301168 13090729759591037952 15335798523677372669 9912100622761466753 11177948788405690381 3710859061697501523 4984944638666762977 17278589713462878008 6371292801024547050 868...

output:

8182453933067329108
13535217473847106938
17067385337010269798
3806121648880466130
11322569288575153037
11079197311131660121
9670138330007803226
6554062218199796758
965954569567598779
18055887214749050688
6142620503089407421
8690117812667761187
9547139298346295115
8890987597519353054
1755036654049586...

result:

ok 3000 lines

Test #5:

score: 5
Accepted
time: 101ms
memory: 4664kb

input:

3000 3000
17759588706587888497 10550000524636484378 11601004513528075994 7150322911283804521 4459707248078569712 10692395730842402625 8940418793863522991 12967068928670540447 9954278250450015940 13702413838608801301 10598390500439869870 15110245227553613794 490862872212325709 15164980555660957366 94...

output:

9743736929788175512
16812303667256960040
14694223512340829897
550204232580650311
1175342872438242313
17622261358285047637
7413682703975031220
12643066512274062227
1868985217436232595
5471830334855681322
8070132260376389587
3970361922096052085
218281824643752746
991917103472727104
2960248244218479023...

result:

ok 3000 lines

Subtask #2:

score: 0
Time Limit Exceeded

Dependency #1:

100%
Accepted

Test #6:

score: 12
Accepted
time: 0ms
memory: 3788kb

input:

5 7
0 3 2 6 4
1 2
2 4
1 5
5 3
3 4
4 2
2 5
5 1
5 3 0
3 2 5
4 4 4
4 4 3
5 2 0
3 4 3
5 5 6

output:

15
21
10
13
17
26
18

result:

ok 7 lines

Test #7:

score: 12
Accepted
time: 1916ms
memory: 24152kb

input:

70000 70000
3805295436278888199 9842309351516174725 1566744796319231180 2206519284152256579 2715928675931950447 6346821976624501261 16020972671480798719 14702021753902144915 17127828773798978442 15779168055669690475 4964561323934614661 9395102787554964450 6377076753365184543 15167378195767668817 288...

output:

5971729064136092190
6457394048987305727
13604212649915736394
8639973959364892219
437861319070967556
16133076880026962355
5384937395694479961
4591478439775690843
16071919565966962790
15485626634068969082
10235993901046758372
3449528613427081475
8064280362779764074
12784984512326434905
424951714880051...

result:

ok 70000 lines

Test #8:

score: 0
Time Limit Exceeded

input:

70000 70000
17769190865915081913 3772925482507158804 10559962993069063712 16307277356502651642 12014171661057147061 1923543107882042577 13408785599350410314 17786178374951015816 2038922879833426794 2540043772647346461 15419977514837351390 5175974305273838292 16815288359165841441 6295059675346852046 ...

output:


result:


Subtask #3:

score: 0
Skipped

Dependency #2:

0%

Subtask #4:

score: 0
Time Limit Exceeded

Test #21:

score: 0
Time Limit Exceeded

input:

200000 200000
622783158027686223 2242697872372232537 8481648430436878777 10092474834140799044 15403999682625301609 12614289513474949582 9180944589267018841 7823784919308285798 8257785171198951273 5134508521895120821 8041682272181381093 3835432206618893170 2653803171409877650 5589823419153460372 1007...

output:


result:


Subtask #5:

score: 0
Time Limit Exceeded

Test #27:

score: 0
Time Limit Exceeded

input:

200000 200000
1958469220619413759 14991498002015735322 6054491201406941902 18206143187746582567 15082377615826460430 2936248617457291604 10073577150351675920 16534472678586906457 2207599132486246393 10301540360769075442 1492580560381080472 551692353431379140 13238280352539145808 8462626987240986565 ...

output:


result:


Subtask #6:

score: 0
Time Limit Exceeded

Test #34:

score: 0
Time Limit Exceeded

input:

200000 200000
6794776813641982926 1561596256197101737 10910039723053043515 7892247858295192798 12233819960547881004 17695389034783066733 9173201689566865598 17626618141377486739 7358781671024283919 6787559733384974662 3884392438269280436 14872846228351316833 9037842441501571648 14299818404271084016 ...

output:


result:


Subtask #7:

score: 0
Skipped

Dependency #1:

100%
Accepted

Dependency #2:

0%