QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#66595#5169. 夹娃娃myee3 1321ms2988kbC++1429.5kb2022-12-09 09:26:272022-12-09 09:26:29

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2022-12-09 09:26:29]
  • 评测
  • 测评结果:3
  • 用时:1321ms
  • 内存:2988kb
  • [2022-12-09 09:26:27]
  • 提交

answer

// 那就是希望。
// 即便需要取模,也是光明。

#include <algorithm>
#include <stdio.h>
#include <vector>
typedef long long llt;
typedef unsigned uint;typedef unsigned long long ullt;
typedef bool bol;typedef char chr;typedef void voi;
typedef double dbl;
template<typename T>bol _max(T&a,T b){return(a<b)?a=b,true:false;}
template<typename T>bol _min(T&a,T b){return(b<a)?a=b,true:false;}
template<typename T>T lowbit(T n){return n&-n;}
template<typename T>T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<typename T>T lcm(T a,T b){return(a!=0||b!=0)?a/gcd(a,b)*b:(T)0;}
template<typename T>T exgcd(T a,T b,T&x,T&y){if(b!=0){T ans=exgcd(b,a%b,y,x);y-=a/b*x;return ans;}else return y=0,x=1,a;}
template<typename T>T power(T base,T index,T mod)
{
    T ans=1%mod;
    while(index)
    {
        if(index&1)ans=ans*base%mod;
        base=base*base%mod,index>>=1;
    }
    return ans;
}
namespace ConstMod
{
    template<const ullt p>
    class mod_ullt
    {
        private:
            ullt v;
            inline ullt chg(ullt w){return(w<p)?w:w-p;}
            inline mod_ullt _chg(ullt w){mod_ullt ans;ans.v=(w<p)?w:w-p;return ans;}
        public:
            mod_ullt():v(0){}
            mod_ullt(ullt v):v(v%p){}
            bol empty(){return!v;}
            inline ullt val(){return v;}
            friend bol operator<(mod_ullt a,mod_ullt b){return a.v<b.v;}
            friend bol operator>(mod_ullt a,mod_ullt b){return a.v>b.v;}
            friend bol operator<=(mod_ullt a,mod_ullt b){return a.v<=b.v;}
            friend bol operator>=(mod_ullt a,mod_ullt b){return a.v>=b.v;}
            friend bol operator==(mod_ullt a,mod_ullt b){return a.v==b.v;}
            friend bol operator!=(mod_ullt a,mod_ullt b){return a.v!=b.v;}
            inline friend mod_ullt operator+(mod_ullt a,mod_ullt b){return a._chg(a.v+b.v);}
            inline friend mod_ullt operator-(mod_ullt a,mod_ullt b){return a._chg(a.v+a.chg(p-b.v));}
            inline friend mod_ullt operator*(mod_ullt a,mod_ullt b){return a.v*b.v;}
            friend mod_ullt operator/(mod_ullt a,mod_ullt b){return b._power(p-2)*a.v;}
            friend mod_ullt operator^(mod_ullt a,ullt b){return a._power(b);}
            inline mod_ullt operator-(){return _chg(p-v);}
            mod_ullt sqrt()
            {
                if(power(v,(p-1)>>1,p)!=1)return 0;
                mod_ullt b=1;do b++;while(b._power((p-1)>>1)==1);
                ullt t=p-1,s=0,k=1;while(!(t&1))s++,t>>=1;
                mod_ullt x=_power((t+1)>>1),e=_power(t);
                while(k<s)
                {
                    if(e._power(1llu<<(s-k-1))!=1)x*=b._power((1llu<<(k-1))*t);
                    e=_power(p-2)*x*x,k++;
                }
                return _min(x,-x),x;
            }
            mod_ullt inv(){return _power(p-2);}
            mod_ullt _power(ullt index){mod_ullt ans(1),w(v);while(index){if(index&1)ans*=w;w*=w,index>>=1;}return ans;}
            voi read(){v=0;chr c;do c=getchar();while(c>'9'||c<'0');do v=(c-'0'+v*10)%p,c=getchar();while(c>='0'&&c<='9');v%=p;}
            voi print()
            {
                static chr C[20];uint tp=0;
                ullt w=v;do C[tp++]=w%10+'0',w/=10;while(w);
                while(tp--)putchar(C[tp]);
            }
            voi println(){print(),putchar('\n');}
            mod_ullt operator++(int){mod_ullt ans=*this;return v=chg(v+1),ans;}
        public:
            inline ullt&operator()(){return v;}
            inline mod_ullt&operator+=(mod_ullt b){return*this=_chg(v+b.v);}
            inline mod_ullt&operator-=(mod_ullt b){return*this=_chg(v+chg(p-b.v));}
            inline mod_ullt&operator*=(mod_ullt b){return*this=v*b.v;}
            mod_ullt&operator^=(ullt b){return*this=_power(b);}
            mod_ullt&operator/=(mod_ullt b){return*this=b._power(p-2)*v;}
            mod_ullt&operator++(){return v=chg(v+1),*this;}
    };
}
namespace NTT_POLY
{
    template<const ullt p,const ullt g>
    class poly_NTT
    {
        public:
            typedef ConstMod::mod_ullt<p>modint;
            typedef std::vector<modint>modvec;
        private:
            modvec V;
        public:
            class NTT
            {
                private:
                    uint n;uint*T;modint*G;
                public:
                    NTT():n(0),T(NULL),G(NULL){}
                    NTT(uint len)
                    {
                        n=1;while(n<len)n<<=1;
                        T=new uint[n],G=new modint[n],T[0]=0,G[0]=1;
                        for(uint i=1;i<n;i++)T[i]=((i&1)?n|T[i>>1]:T[i>>1])>>1;
                        modint w=power(g,(p-1)/n,p),*End=G+n;
                        for(modint*_G=G+1;_G<End;_G++)*_G=_G[-1]*w;
                    }
                    ~NTT(){if(T!=NULL)delete[]T,delete[]G,T=NULL,G=NULL;}
                    inline uint size(){return n;}
                    voi bzr(uint len)
                    {
                        n=1;while(n<len)n<<=1;
                        if(T!=NULL)delete[]T,delete[]G;
                        T=new uint[n],G=new modint[n],T[0]=0,G[0]=1;
                        for(uint i=1;i<n;i++)T[i]=((i&1)?n|T[i>>1]:T[i>>1])>>1;
                        modint w=power(g,(p-1)/n,p),*End=G+n;
                        for(modint*_G=G+1;_G<End;_G++)*_G=_G[-1]*w;
                    }
                    voi ntt(modvec&x,bol op)
                    {
                        if(x.size()<n)x.resize(n);
                        for(uint i=0;i<n;i++)if(T[i]<i)std::swap(x[i],x[T[i]]);
                        for(uint i=1;i<n;i<<=1)for(uint j=0;j<n;j+=i<<1)
                        {
                            modint*w=G;
                            for(uint k=0;k<i;k++,w+=n/(2*i))
                            {
                                modint t=x[i+j+k]*(*w);
                                x[i+j+k]=x[j+k]-t,x[j+k]+=t;
                            }
                        }
                        if(op)
                        {
                            for(uint i=1;i*2<n;i++)std::swap(x[i],x[n-i]);
                            modint t=modint(n).inv();for(uint i=0;i<n;i++)x[i]*=t;
                        }
                    }
                    inline modint Omega(uint n){return G[n%size()];}
                    NTT&operator=(NTT b)
                    {
                        if(T!=NULL)delete[]T,delete[]G,T=NULL,G=NULL;
                        if(b.T==NULL)return*this;
                        T=new uint[n],G=new modint[n=b.n];
                        for(uint i=0;i<n;i++)T[i]=b.T[i],G[i]=b.G[i];
                        return*this;
                    }
            };
            class DIFDIT
            {
                private:
                    uint n;modint*G;
                public:
                    DIFDIT():n(0),G(NULL){}
                    DIFDIT(uint len)
                    {
                        n=1;while(n<len)n<<=1;
                        G=new modint[n],G[0]=1;
                        modint w=power(g,(p-1)/n,p),*End=G+n;
                        for(modint*_G=G+1;_G<End;_G++)*_G=_G[-1]*w;
                    }
                    ~DIFDIT(){if(G!=NULL)delete[]G,G=NULL;}
                    inline uint size(){return n;}
                    voi bzr(uint len)
                    {
                        n=1;while(n<len)n<<=1;
                        if(G!=NULL)delete[]G;
                        G=new modint[n],G[0]=1;
                        modint w=power(g,(p-1)/n,p),*End=G+n;
                        for(modint*_G=G+1;_G<End;_G++)*_G=_G[-1]*w;
                    }
                    voi dif(modvec&x)
                    {
                        if(x.size()<n)x.resize(n);
                        for(uint i=n>>1;i;i>>=1)for(uint j=0;j<n;j+=i<<1) 
                        {
                            modint*w=G;
                            for(uint k=0;k<i;k++,w+=n/(2*i))
                            {
                                modint u=x[j+k],t=x[i+j+k];
                                x[j+k]=u+t,x[i+j+k]=(u-t)*(*w);
                            }
                        }
                    }
                    voi dit(modvec&x)
                    {
                        if(x.size()<n)x.resize(n);
                        for(uint i=1;i<n;i<<=1)for(uint j=0;j<n;j+=i<<1)
                        {
                            modint*w=G;
                            for(uint k=0;k<i;k++,w+=n/(2*i))
                            {
                                modint t=x[i+j+k]*(*w);
                                x[i+j+k]=x[j+k]-t,x[j+k]+=t;
                            }
                        }
                        for(uint i=1;i*2<n;i++)std::swap(x[i],x[n-i]);
                        modint t=modint(n).inv();for(uint i=0;i<n;i++)x[i]*=t;
                    } 
                    DIFDIT&operator=(DIFDIT b)
                    {
                        if(G!=NULL)delete[]G,G=NULL;
                        if(b.G==NULL)return*this;
                        G=new modint[n=b.n];
                        for(uint i=0;i<n;i++)G[i]=b.G[i];
                        return*this;
                    }
            };
        public:
            poly_NTT(){}
            poly_NTT(uint n){V.resize(n);}
            poly_NTT(modvec V):V(V){}
            inline voi bzr(){V.clear();}
            inline voi push(modint v){V.push_back(v);}
            inline voi pop(){V.pop_back();}
            inline voi cut_zero(){while(!V.empty()&&V.back().empty())V.pop_back();}
            inline voi chg_siz(uint n){V.resize(n);}
            inline voi chg_deg(uint n){V.resize(n+1);}
            inline bol empty(){return cut_zero(),V.empty();}
            inline uint size(){return V.size();}
            inline uint deg(){return V.size()-1;}
            inline modint val(uint n){return(n<size())?V[n]:0;}
            inline modvec GET(){return V;}
            poly_NTT reverse()
            {
                poly_NTT ans;for(uint i=size()-1;~i;i--)ans.push(V[i]);
                return ans;
            }
            friend poly_NTT operator+(poly_NTT a,poly_NTT b)
            {
                if(a.size()<b.size())a.chg_siz(b.size());
                for(uint i=0;i<b.size();i++)a[i]+=b[i];
                a.cut_zero();return a;
            }
            friend poly_NTT operator+(poly_NTT a,modint v)
            {
                if(!a.size())a.chg_siz(1);
                a[0]+=v;return a;
            }
            friend poly_NTT operator+(modint v,poly_NTT a)
            {
                if(!a.size())a.chg_siz(1);
                a[0]+=v;return a;
            }
            friend poly_NTT operator-(poly_NTT a){return a*modint(p-1);}
            friend poly_NTT operator-(poly_NTT a,poly_NTT b)
            {
                if(a.size()<b.size())a.chg_siz(b.size());
                for(uint i=0;i<b.size();i++)a[i]-=b[i];
                a.cut_zero();return a;
            }
            friend poly_NTT operator-(poly_NTT a,modint v)
            {
                if(!a.size())a.chg_siz(1);
                a[0]-=v;return a;
            }
            friend poly_NTT operator-(modint v,poly_NTT a)
            {
                if(!a.size())a.chg_siz(1);
                a[0]-=v;return-a;
            }
            friend poly_NTT operator*(poly_NTT a,poly_NTT b)
            {
                modvec&A=a.V,&B=b.V;DIFDIT s(A.size()+B.size());
                s.dif(A),s.dif(B);for(uint i=0;i<s.size();i++)A[i]*=B[i];
                s.dit(A),a.cut_zero();return a;
            }
            friend poly_NTT operator*(poly_NTT A,modint b)
            {
                for(auto&s:A.V)s*=b;
                return A;
            }
            friend poly_NTT operator*(modint b,poly_NTT A)
            {
                for(auto&s:A.V)s*=b;
                return A;
            }
            friend poly_NTT operator<<(poly_NTT a,uint k)
            {
                poly_NTT ans;ans.chg_siz(k);for(auto v:a.V)ans.push(v);
                return ans;
            }
            friend poly_NTT operator>>(poly_NTT a,uint k)
            {
                poly_NTT ans;for(uint i=k;i<a.size();i++)ans.push(a[i]);
                return ans;
            }
            friend poly_NTT sub_mul(poly_NTT a,poly_NTT b)
            {
                uint len=(a=a.reverse()).size();
                modvec&A=a.V,&B=b.V;
                DIFDIT s(len+B.size());
                s.dif(A),s.dif(B);for(uint i=0;i<s.size();i++)A[i]*=B[i];
                s.dit(A),a.chg_siz(len),a=a.reverse();return a;
            }
            poly_NTT inv(){return inv(size());}
            poly_NTT inv(uint prec)
            {
                modvec ans;DIFDIT s;ans.push_back(V[0].inv());
                for(uint tp=1;tp<prec;tp<<=1)
                {
                    modvec f(tp<<1),t=ans;
                    for(uint i=0;i<(tp<<1);++i)f[i]=val(i);
                    s.bzr(tp<<1),s.dif(f),s.dif(t);
                    for(uint i=0;i<(tp<<1);++i)f[i]=1-f[i]*t[i];
                    s.dit(f);
                    for(uint i=0;i<tp;++i)f[i]=f[i+tp],f[i+tp]=0;
                    s.dif(f);
                    for(uint i=(tp<<1)-1;~i;--i)f[i]*=t[i];
                    s.dit(f),ans.resize(tp<<1);
                    for(uint i=0;i<tp;++i)ans[i+tp]=f[i];
                }
                ans.resize(prec);return ans;
            }
            poly_NTT sqrt(){return sqrt(size());}
            poly_NTT sqrt(uint prec)
            {
                modvec ans,Inv;ans.push_back(val(0).sqrt()),Inv.push_back(ans[0].inv());
                DIFDIT s;
                modint w=modint(2).inv();
                for(uint tp=1;tp<prec;tp<<=1)
                {
                    s.bzr(tp<<2);
                    modvec f(tp<<1);for(uint i=0;i<(tp<<1);i++)f[i]=val(i);
                    s.dif(Inv);s.dif(ans);
                    for(uint i=0;i<(tp<<2);i++)Inv[i]*=2-Inv[i]*ans[i];
                    s.dit(Inv),Inv.resize(tp);s.dif(Inv);
                    for(uint i=0;i<(tp<<2);i++)Inv[i]*=2-Inv[i]*ans[i];
                    s.dit(Inv),Inv.resize(tp<<1);
                    modvec user=Inv;s.dif(Inv),s.dif(f);
                    for(uint i=0;i<(tp<<2);i++)ans[i]=(ans[i]+Inv[i]*f[i])*w;
                    s.dit(ans),Inv=user,ans.resize(tp<<1);
                }
                ans.resize(prec);return ans;
            }
            poly_NTT diff()
            {
                poly_NTT ans;for(uint i=1;i<size();i++)ans.push(i*V[i]);
                return ans;
            }
            poly_NTT inte()
            {
                if(!size())return*this;
                poly_NTT ans(size()+1);ans[1]=1;
                for(uint i=2;i<=size();i++)ans[i]=-ans[p%i]*(p/i);
                for(uint i=1;i<=size();i++)ans[i]*=V[i-1];
                return ans;
            }
            poly_NTT ln(){return ln(size());}
            poly_NTT ln(uint prec)
            {
                poly_NTT a=this->diff()*this->inv(prec);a.chg_siz(prec),a=a.inte(),a.chg_siz(prec);return a;
            }
            poly_NTT exp(){return exp(size());}
            poly_NTT exp(uint prec)
            {
                poly_NTT ans;modvec Inv;ans.push(1),Inv.push_back(1);
                for(uint tp=1;tp<prec;tp<<=1)
                {
                    modvec f,ff=ans.diff().V;
                    for(uint i=0;i<(tp<<1);i++)f.push_back(val(i));
                    f[0]=1;DIFDIT s(tp<<2);s.dif(ans.V),s.dif(Inv);
                    for(uint i=0;i<(tp<<2);i++)Inv[i]*=2-Inv[i]*ans[i];
                    s.dit(Inv),Inv.resize(tp);s.dif(Inv);
                    for(uint i=0;i<(tp<<2);i++)Inv[i]*=2-Inv[i]*ans[i];
                    s.dit(Inv),Inv.resize(tp<<1);s.dif(Inv);s.dif(ff);
                    for(uint i=0;i<(tp<<2);i++)ff[i]*=Inv[i];
                    s.dit(ff);f=(f-poly_NTT(ff).inte()).V;s.dif(f);
                    for(uint i=0;i<(tp<<2);i++)ans[i]*=f[i];
                    s.dit(Inv),s.dit(ans.V),ans.chg_siz(tp<<1);
                }
                ans.chg_siz(prec);return ans;
            }
            friend poly_NTT operator/(poly_NTT a,poly_NTT b)
            {
                a.cut_zero(),b.cut_zero();if(a.size()<b.size())return poly_NTT();
                poly_NTT ans=a.reverse()*b.reverse().inv(a.size()-b.size()+1);
                ans.chg_siz(a.size()-b.size()+1);return ans.reverse();
            }
            friend poly_NTT operator%(poly_NTT a,poly_NTT b){return a-a/b*b;}
        public:
            inline modint&operator[](uint n){return V[n];};
            poly_NTT&operator+=(poly_NTT b)
            {
                if(size()<b.size())chg_siz(b.size());
                for(uint i=0;i<b.size();i++)V[i]+=b[i];
                cut_zero();return*this;
            }
            inline poly_NTT&operator+=(modint v)
            {
                if(!size())chg_siz(1);
                V[0]+=v;return*this;
            }
            poly_NTT&operator-=(poly_NTT b)
            {
                if(size()<b.size())chg_siz(b.size());
                for(uint i=0;i<b.size();i++)V[i]-=b[i];
                cut_zero();return*this;
            }
            inline poly_NTT&operator-=(modint v)
            {
                if(!size())chg_siz(1);
                V[0]-=v;return*this;
            }
            poly_NTT&operator*=(poly_NTT b)
            {
                modvec&A=V,&B=b.V;
                DIFDIT s(A.size()+B.size());
                s.dif(A),s.dif(B);
                for(uint i=0;i<s.size();i++)A[i]*=B[i];
                s.dit(A),cut_zero();return*this;
            }
            poly_NTT&operator*=(modint v)
            {
                for(auto&t:V)t*=v;
                return*this;
            }
            poly_NTT&operator/=(poly_NTT b){return*this=*this/b;}
            poly_NTT&operator%=(poly_NTT b){return*this=*this%b;}
            poly_NTT&operator<<=(uint v){return*this=*this<<v;}
            poly_NTT&operator>>=(uint v){return*this=*this>>v;}
    };
    template<const ullt p,const ullt g>
    class poly_eval
    {
        public:
            typedef ConstMod::mod_ullt<p>modint;
            typedef std::vector<modint>modvec;
            typedef poly_NTT<p,g>poly;
        private:
            std::vector<poly>G,User;modvec X;
            voi mult_eval_dfs1(uint u,uint l,uint r)
            {
                if(l+1==r){G[u].push(1),G[u].push(-X[l]);return;}
                uint mid=(l+r)/2;mult_eval_dfs1(u<<1,l,mid),mult_eval_dfs1(u<<1|1,mid,r),G[u]=G[u<<1]*G[u<<1|1];
            }
            voi mult_eval_dfs2(uint u,uint l,uint r)
            {
                User.back().chg_siz(r-l);
                if(l+1==r){X[l]=User.back().val(0);return;}
                uint mid=(l+r)/2;
                User.push_back(sub_mul(User.back(),G[u<<1|1])),mult_eval_dfs2(u<<1,l,mid);
                User.back()=sub_mul(User[User.size()-2],G[u<<1]),mult_eval_dfs2(u<<1|1,mid,r);
                User.pop_back();
            }
        public:
            voi operator()(poly P,modvec&X)
            {
                if(X.empty())return;
                G.resize(X.size()<<2),User.clear(),this->X=X;
                mult_eval_dfs1(1,0,X.size());
                User.push_back(sub_mul(P,G[1].inv(std::max<uint>(P.size(),X.size())+1)));
                mult_eval_dfs2(1,0,X.size());
                G.clear(),User.clear(),X=this->X,this->X.clear();
            }
    };
    template<const ullt p,const ullt g>
    class poly_inter
    {
        public:
            typedef ConstMod::mod_ullt<p>modint;
            typedef std::vector<modint>modvec;
            typedef poly_NTT<p,g>poly;
            typedef poly_eval<p,g>eval;
        private:
            std::vector<poly>Lim,F,G;modvec X,H;
            voi dfs(uint l,uint r)
            {
                if(l+1==r)
                {
                    F.push_back(poly()),F.back().push(H[l]),G.push_back(poly()),G.back().push(-X[l]),G.back().push(1);return;
                }
                uint mid=(l+r)>>1;dfs(l,mid),dfs(mid,r);
                F[F.size()-2]=F[F.size()-2]*G.back()+F.back()*G[G.size()-2],F.pop_back(),G[G.size()-2]*=G.back(),G.pop_back();
            }
        public:
            poly operator()(modvec X,modvec Y)
            {
                uint n=std::min(X.size(),Y.size());if(!n)return poly();
                X.resize(n),Y.resize(n),this->X=X;poly P;Lim.clear();
                for(uint i=0;i<n;i++)
                {
                    P.bzr(),P.push(-X[i]),P.push(1);
                    uint w=lowbit(i+1);while(w>>=1)P*=Lim.back(),Lim.pop_back();
                    Lim.push_back(P);
                }
                P=Lim.back(),Lim.pop_back();while(Lim.size())P*=Lim.back(),Lim.pop_back();
                eval()(P.diff(),X),H.resize(n);for(uint i=0;i<n;i++)H[i]=Y[i]/X[i];
                F.clear(),G.clear(),dfs(0,n);
                poly ans=F.back();F.clear(),G.clear(),this->X.clear(),H.clear();return ans;
            }
    };
    template<const ullt p,const ullt g>
    class poly_cpd
    {
        public:
            typedef ConstMod::mod_ullt<p>modint;
            typedef std::vector<modint>modvec;
            typedef poly_NTT<p,g>poly;
            modvec Turn(std::vector<llt>QAQ)
            {
                modvec ans;
                for(uint i=0;i<QAQ.size();i++)ans.push_back((QAQ[i]%(llt)p+p)%p);
                return ans;
            }
            modint point_eval(poly P,modint x)
            {
                modint ans;
                for(uint i=P.deg();~i;i--)ans=ans*x+P[i];
                return ans;
            }
            poly z_npow(poly P,uint n)
            {
                if(P.empty())return P;
                poly ans(P.deg()*n+1);
                for(uint i=0;i<P.size();i++)ans[i*n]+=P[i];
                return ans;
            }
            poly z_npow(poly P,uint n,uint prec)
            {
                poly ans(prec);
                for(uint i=0;i<P.size()&&i*n<prec;i++)ans[i*n]+=P[i];
                return ans;
            }
            poly z_mul_k(poly P,modint k)
            {
                modint t(1);
                for(uint i=0;i<P.size();i++)P[i]*=t,t*=k;
                return P;
            }
            poly z_add_v(poly P,modint v)
            {
                uint n=P.size();if(!n)return P;
                modvec A(n),B(n);
                A[0]=1;for(uint i=1;i<n;i++)A[i]=A[i-1]*i;
                B[n-1]=A[n-1].inv();for(uint i=n-1;i;i--)B[i-1]=B[i]*i;
                poly User(n);modint w(1);
                for(uint i=0;i<n;i++)P[i]*=A[i],User[i]=w*B[i],w*=v;
                P=sub_mul(P,User),P.chg_siz(n);
                for(uint i=0;i<n;i++)P[i]*=B[i];
                return P;
            }
            poly chg_siz(poly P,uint siz){P.chg_siz(siz);return P;}
            poly PolyaInv(poly P,uint prec){return(modint(1)-P).inv(prec);}
            poly PolyaExp(poly P,uint prec)
            {
                modvec inv(prec);
                inv[1]=1;for(uint i=2;i<prec;i++)inv[i]=(p/i)*-inv[p%i];
                poly ans(prec);
                for(uint i=1;i<prec;i++)for(uint j=1;i*j<prec&&j<P.size();j++)ans[i*j]+=P[j]*inv[i];
                return ans.exp(prec);
            }
            poly PolyaInv(poly P){return PolyaInv(P,P.size());}
            poly PolyaExp(poly P){return PolyaExp(P,P.size());}
            voi println(poly P,uint n)
            {
                for(uint i=0;i<n;i++){
                    if(i)putchar(' ');
                    P.val(i).print();
                }
                putchar('\n');
            }
            voi println(poly P){println(P,P.size());}
    };
    template<const ullt p,const ullt g>
    class poly_nums
    {
        public:
            typedef ConstMod::mod_ullt<p>modint;
            typedef std::vector<modint>modvec;
            typedef poly_NTT<p,g>poly;
            typedef poly_cpd<p,g>cpd;
            modvec PowSum(uint n,uint m)
            {
                modvec P(n+2),Q(n+2);
                P[0]=1;for(uint i=1;i<=n+1;i++)P[i]=P[i-1]*i;
                Q[n+1]=P[n+1].inv();for(uint i=n+1;i;i--)Q[i-1]=Q[i]*i;
                poly A(n+1);for(uint i=0;i<=n;i++)A[i]=Q[i+1];
                A=A.inv();
                poly B(n+1);modint v(1);for(uint i=0;i<=n;i++)B[i]=v*Q[i],v*=m;
                B=(B*A-A)>>1;B.chg_siz(n);
                for(uint i=0;i<n;i++)B[i]*=P[i];
                return B.GET();
            }
            modvec S1R(uint n)
            {
                if(!n)return modvec({modint(1)});
                if(n&1)return(S1R(n-1)*poly(modvec({n-1,1}))).GET();
                poly P=S1R(n>>1);P*=cpd().z_add_v(P,n>>1);return P.GET();
            }
            modvec S1C(uint n,uint prec)
            {
                if(n>=prec)return modvec(prec);
                modvec P(prec+1),Q(prec+1);
                P[0]=1;for(uint i=1;i<=prec;i++)P[i]=P[i-1]*i;
                Q[prec]=P[prec].inv();for(uint i=prec;i;i--)Q[i-1]=Q[i]*i;
                poly ans;
                for(uint i=1;i<=prec-n;i++)ans.push(Q[i]*P[i-1]);
                ans=(ans.ln(prec-n)*modint(n)).exp(prec-n)<<n;
                modint v=1;
                for(uint i=1;i<=n;i++)v*=i;
                ans=ans*v.inv();
                for(uint i=n;i<prec;i++)ans[i]*=P[i];
                return ans.GET();
            }
            modvec S2R(uint n)
            {
                modvec P(n+1),Q(n+1);
                P[0]=1;for(uint i=1;i<=n;i++)P[i]=P[i-1]*i;
                Q[n]=P[n].inv();for(uint i=n;i;i--)Q[i-1]=Q[i]*i;
                poly A(n+1),B(n+1);
                A[0]=!n;if(n)A[1]=1;
                std::vector<uint>Prime;
                std::vector<bol>Gone(n+1);
                for(uint i=2;i<=n;i++)
                {
                    if(!Gone[i]){Prime.push_back(i);modint v=modint(i)._power(n);for(ullt j=i;j<=n;j*=i)A[j]=v*A[j/i],Gone[j]=true;}
                    for(auto w:Prime)if(i*w<=n&&i%w){for(ullt j=w;i*j<=n;j*=w)A[i*j]=A[i]*A[j],Gone[i*j]=true;}else break;
                }
                for(uint i=0;i<=n;i++)A[i]*=Q[i],B[i]=(i&1?p-1:1)*Q[i];
                A*=B,A.chg_deg(n);
                return A.GET();
            }
            modvec S2C(uint n,uint prec)
            {
                if(n>=prec)return modvec(prec);
                modvec P(prec+1),Q(prec+1);
                P[0]=1;for(uint i=1;i<=prec;i++)P[i]=P[i-1]*i;
                Q[prec]=P[prec].inv();for(uint i=prec;i;i--)Q[i-1]=Q[i]*i;
                poly ans=PowSum(prec-n,n+1);
                ans[0]=0;for(uint i=1;i<prec-n;i++)ans[i]*=Q[i]*P[i-1];
                ans=ans.exp(prec-n)<<n;
                return ans.GET();
            }
    };
}
namespace FWT_MODINT
{
    template<const ullt p>
    class FWT_Mod
    {
        public:
            typedef ConstMod::mod_ullt<p>modint;
            typedef std::vector<modint>modvec;
        private:
            uint n;
        public:
            FWT_Mod():n(0){}
            voi bzr(uint len){n=1;while(n<len)n<<=1;}
            uint size(){return n;}
            voi OR(modvec&x,bol op)
            {
                if(x.size()<n)x.resize(n);
                for(uint i=1;i<n;i<<=1)for(uint j=0;j<n;j+=i<<1)for(uint k=0;k<i;k++)
                    op?x[i+j+k]-=x[j+k]:x[i+j+k]+=x[j+k];
            }
            voi AND(modvec&x,bol op)
            {
                if(x.size()<n)x.resize(n);
                for(uint i=1;i<n;i<<=1)for(uint j=0;j<n;j+=i<<1)for(uint k=0;k<i;k++)
                    op?x[j+k]-=x[i+j+k]:x[j+k]+=x[i+j+k];
            }
            voi XOR(modvec&x,bol op)
            {
                if(x.size()<n)x.resize(n);
                for(uint i=1;i<n;i<<=1)for(uint j=0;j<n;j+=i<<1)for(uint k=0;k<i;k++)
                {
                    modint u=x[j+k],t=x[i+j+k];x[j+k]=u+t,x[i+j+k]=u-t;
                }
                if(op){modint v=modint(n).inv();for(uint i=0;i<n;i++)x[i]*=v;}
            }
    };
}
const ullt Mod=998244353,g=3;
typedef ConstMod::mod_ullt<Mod>modint;
typedef std::vector<modint>modvec;
typedef NTT_POLY::poly_NTT<Mod,g>poly;
typedef NTT_POLY::poly_eval<Mod,g>eval;
typedef NTT_POLY::poly_inter<Mod,g>inter;
typedef NTT_POLY::poly_cpd<Mod,g>cpd;
typedef NTT_POLY::poly_nums<Mod,g>nums;
typedef FWT_MODINT::FWT_Mod<Mod>FWT;
const uint M=520;
poly P[25];
chr C[25];
poly mul(poly a,poly b,uint m){
    poly ans=a*b;
    if(ans.size()>m)ans.chg_deg(m),ans.cut_zero();
    return ans;
}
int main()
{
#ifdef MYEE
    freopen("QAQ.in","r",stdin);
    // freopen("QAQ.out","w",stdout);
#else
#if !defined(ONLINE_JUDGE)
    freopen("a.in","r",stdin);
    freopen("a.out","w",stdout);
#endif
#endif
    uint n,q;scanf("%u%u%*u",&n,&q);
    for(uint i=0;i<n;i++){
        P[i]=modvec{1},P[i].chg_deg(M);
        uint t;scanf("%u",&t);
        while(t--){
            uint b,c;scanf("%u%u",&b,&c);c=(c+1)*b;
            for(uint j=b;j<=M;j++)P[i][j]+=P[i][j-b];
            for(uint j=M;j>=c;j--)P[i][j]-=P[i][j-c];
        }
        P[i].cut_zero();
    }
    while(q--){
        uint m,k;scanf("%s%u%u",C,&m,&k);
        poly ans=modvec{1};
        for(uint j=0;j<n;j++)
        {
            poly T=P[j];
            if(C[j]=='1'){
                if(T.size()>k)for(uint p=0;p<k;p++)T[p]=0;
                else T=modvec{};
            }
            ans=mul(T,ans,m);
        }
        cpd().point_eval(ans,1).println();
    }
    return 0;
}
// 那就是希望。
// 即便需要取模,也是光明。

详细

Subtask #1:

score: 3
Accepted

Test #1:

score: 3
Accepted
time: 34ms
memory: 2920kb

input:

1 521 998244353
39 520 520 11 22 414 8 95 18 229 356 26 407 316 10 24 26 19 61 11 130 482 476 420 15 192 193 208 24 19 233 494 217 275 294 26 28 439 20 272 277 28 198 5 335 22 8 28 17 154 78 6 13 175 17 2 5 477 256 200 4 1 36 427 371 439 23 10 65 426 25 24 27 121 29 28 13 12 453
0 520 1
1 519 1
1 51...

output:

38813347
922143638
98254957
38813343
922143633
38813338
98254946
922143620
98254933
922143604
38813302
38813288
922143562
38813247
38813220
38813188
38813150
98254715
38813047
922143273
98254516
38812814
922142999
98254191
922142723
38812257
38812058
98253436
922141847
38811240
922141173
38810463
38...

result:

ok 521 lines

Test #2:

score: 0
Accepted
time: 298ms
memory: 2952kb

input:

2 1561 998244353
151 520 520 511 30 121 396 25 16 113 11 6 175 242 20 8 5 61 13 518 447 404 8 220 177 4 19 18 15 70 233 9 14 26 512 17 9 9 19 30 8 495 20 13 27 277 22 396 14 4 29 345 442 19 25 14 5 16 295 19 65 134 10 10 296 245 6 7 30 253 15 187 26 482 454 28 414 170 404 11 27 27 25 13 509 1 5 291 ...

output:

883965618
144348435
762074635
112296779
385763651
821718611
673974966
879750066
927942969
136450507
436584627
612945970
768262217
613885343
39304132
852224740
215596261
151746110
965953558
969833936
664053020
458247365
881060255
878484499
781573019
616944059
850325449
296113117
674829177
887392623
6...

result:

ok 1561 lines

Subtask #2:

score: 0
Time Limit Exceeded

Dependency #1:

100%
Accepted

Test #3:

score: 13
Accepted
time: 1321ms
memory: 2988kb

input:

3 4160 998244353
444 520 520 26 332 29 183 25 479 175 14 13 16 1 447 2 293 4 20 64 472 491 11 21 259 75 22 390 401 8 508 405 3 137 4 15 154 164 1 484 13 257 14 44 20 7 13 26 15 26 432 14 9 478 24 18 10 22 28 8 21 260 25 431 22 7 6 20 26 8 27 239 19 1 134 2 322 16 225 6 42 517 6 197 407 268 500 433 5...

output:

516056999
990096150
497048298
345860798
899328070
577475723
191997503
533625761
516056999
863614705
652318084
514747110
811600228
92531482
136793394
218097588
352553395
821305819
739754364
569418540
402235631
844207347
78271439
896568337
516056999
243958673
201200148
634787992
552693501
893938722
98...

result:

ok 4160 lines

Test #4:

score: -13
Time Limit Exceeded

input:

4 8320 998244353
303 520 520 288 10 15 24 306 456 495 124 20 419 24 473 7 462 365 405 4 30 1 29 15 25 29 324 407 14 30 184 425 451 6 414 7 417 155 12 18 20 2 475 78 174 467 23 300 26 13 15 345 319 10 27 497 25 21 51 24 485 359 268 87 20 509 13 18 261 13 6 20 237 305 26 245 330 514 29 21 197 25 345 1...

output:

857239630
694514392
340827658
834331936
573150389
560202020
302111919
422193966
147386541
201821565
447255018
322990367
192787601
197802108
461775999
315804262
316164169
338416167
240429979
359914423
321666890
541700460
506123940
701447430
823947537
621301718
62107305
163486246
380210777
211911024
9...

result:


Subtask #3:

score: 0
Skipped

Dependency #2:

0%

Subtask #4:

score: 0
Time Limit Exceeded

Test #9:

score: 0
Time Limit Exceeded

input:

15 52099 998244353
1 9 3
1 9 4
1 9 2
1 8 10
1 4 4
1 3 1
1 2 5
1 4 9
1 1 4
1 9 4
1 7 6
1 1 6
1 2 5
1 5 2
1 3 5
101000000001010 516 1
010001001010101 520 2
000000101000001 519 2
101011111100011 518 1
010110001000111 520 2
000110111100111 516 1
000100101001011 519 3
000111001010011 518 1
00001110010111...

output:

993379058
496689529
866368587
797687294
481245176
481245176
39022588
269889529
552778235
769822588
331666941
99789529
903956470
112750588
756797435
519045176
870912000
361582588
594280447
494747647
597778941
178845176
435456000
493445999
461733882
308912117
271186941
496689529
919511294
85533882
894...

result:


Subtask #5:

score: 0
Skipped

Dependency #3:

0%

Subtask #6:

score: 0
Skipped

Dependency #4:

0%

Subtask #7:

score: 0
Skipped

Dependency #6:

0%