QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#665492#9492. 树上简单求和maspy66 3478ms79312kbC++2328.2kb2024-10-22 13:33:012024-10-22 13:33:04

Judging History

This is the latest submission verdict.

  • [2024-10-22 13:33:04]
  • Judged
  • Verdict: 66
  • Time: 3478ms
  • Memory: 79312kb
  • [2024-10-22 13:33:01]
  • Submitted

answer

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "/home/maspy/compro/library/graph/tree.hpp"

#line 2 "/home/maspy/compro/library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  // sum(deg(v)) の計算量になっていて、
  // 新しいグラフの n+m より大きい可能性があるので注意
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (len(used_e) <= e.id) used_e.resize(e.id + 1);
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

  Graph<T, true> to_directed_tree(int root = -1) {
    if (root == -1) root = 0;
    assert(!is_directed && prepared && M == N - 1);
    Graph<T, true> G1(N);
    vc<int> par(N, -1);
    auto dfs = [&](auto& dfs, int v) -> void {
      for (auto& e: (*this)[v]) {
        if (e.to == par[v]) continue;
        par[e.to] = v, dfs(dfs, e.to);
      }
    };
    dfs(dfs, root);
    for (auto& e: edges) {
      int a = e.frm, b = e.to;
      if (par[a] == b) swap(a, b);
      assert(par[b] == a);
      G1.add(a, b, e.cost);
    }
    G1.build();
    return G1;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 4 "/home/maspy/compro/library/graph/tree.hpp"

// HLD euler tour をとっていろいろ。
template <typename GT>
struct Tree {
  using Graph_type = GT;
  GT &G;
  using WT = typename GT::cost_type;
  int N;
  vector<int> LID, RID, head, V, parent, VtoE;
  vc<int> depth;
  vc<WT> depth_weighted;

  Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }

  void build(int r = 0, bool hld = 1) {
    if (r == -1) return; // build を遅延したいとき
    N = G.N;
    LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
    V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
    depth.assign(N, -1), depth_weighted.assign(N, 0);
    assert(G.is_prepared());
    int t1 = 0;
    dfs_sz(r, -1, hld);
    dfs_hld(r, t1);
  }

  void dfs_sz(int v, int p, bool hld) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする
    for (int i = r - 2; i >= l; --i) {
      if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      VtoE[e.to] = e.id;
      dfs_sz(e.to, v, hld);
      sz[v] += sz[e.to];
      if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  vc<int> heavy_path_at(int v) {
    vc<int> P = {v};
    while (1) {
      int a = P.back();
      for (auto &&e: G[a]) {
        if (e.to != parent[a] && head[e.to] == v) {
          P.eb(e.to);
          break;
        }
      }
      if (P.back() == a) break;
    }
    return P;
  }

  int heavy_child(int v) {
    int k = LID[v] + 1;
    if (k == N) return -1;
    int w = V[k];
    return (parent[w] == v ? w : -1);
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }
  int v_to_e(int v) { return VtoE[v]; }
  int get_eid(int u, int v) {
    if (parent[u] != v) swap(u, v);
    assert(parent[u] == v);
    return VtoE[u];
  }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  // 目標地点へ進む個数が k
  int LA(int v, int k) {
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }
  int la(int u, int v) { return LA(u, v); }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }

  int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); }
  int lca(int u, int v) { return LCA(u, v); }

  int subtree_size(int v, int root = -1) {
    if (root == -1) return RID[v] - LID[v];
    if (v == root) return N;
    int x = jump(v, root, 1);
    if (in_subtree(v, x)) return RID[v] - LID[v];
    return N - RID[x] + LID[x];
  }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist_weighted(int a, int b) {
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
  }

  // a is in b
  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int jump(int a, int b, ll k) {
    if (k == 1) {
      if (a == b) return -1;
      return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
    }
    int c = LCA(a, b);
    int d_ac = depth[a] - depth[c];
    int d_bc = depth[b] - depth[c];
    if (k > d_ac + d_bc) return -1;
    if (k <= d_ac) return LA(a, k);
    return LA(b, d_ac + d_bc - k);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<int> collect_light(int v) {
    vc<int> res;
    bool skip = true;
    for (auto &&e: G[v])
      if (e.to != parent[v]) {
        if (!skip) res.eb(e.to);
        skip = false;
      }
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  // 辺の列の情報 (frm,to,str)
  // str = "heavy_up", "heavy_down", "light_up", "light_down"
  vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) {
    vc<tuple<int, int, string>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v];
        down.eb(parent[v], v, "light_down"), v = parent[v];
      } else {
        if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u];
        up.eb(u, parent[u], "light_up"), u = parent[u];
      }
    }
    if (LID[u] < LID[v]) down.eb(u, v, "heavy_down");
    elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up");
    reverse(all(down));
    concat(up, down);
    return up;
  }

  vc<int> restore_path(int u, int v) {
    vc<int> P;
    for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
      if (a <= b) {
        FOR(i, a, b + 1) P.eb(V[i]);
      } else {
        FOR_R(i, b, a + 1) P.eb(V[i]);
      }
    }
    return P;
  }

  // path [a,b] と [c,d] の交わり. 空ならば {-1,-1}.
  // https://codeforces.com/problemset/problem/500/G
  pair<int, int> path_intersection(int a, int b, int c, int d) {
    int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d);
    int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d);
    int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d)
    if (x != y) return {x, y};
    int z = ac ^ ad ^ cd;
    if (x != z) x = -1;
    return {x, x};
  }
};
#line 1 "/home/maspy/compro/library/ds/bit_vector.hpp"
struct Bit_Vector {
  int n;
  bool prepared = 0;
  vc<pair<u64, u32>> dat;
  Bit_Vector(int n = 0) : n(n) { dat.assign((n + 127) >> 6, {0, 0}); }
  void set(int i) {
    assert(!prepared && (0 <= i && i < n));
    dat[i >> 6].fi |= u64(1) << (i & 63);
  }
  void reset() {
    fill(all(dat), pair<u64, u32>{0, 0});
    prepared = 0;
  }
  void build() {
    prepared = 1;
    FOR(i, len(dat) - 1) dat[i + 1].se = dat[i].se + popcnt(dat[i].fi);
  }
  // [0, k) 内の 1 の個数
  bool operator[](int i) { return dat[i >> 6].fi >> (i & 63) & 1; }
  int count_prefix(int k, bool f = true) {
    assert(prepared);
    auto [a, b] = dat[k >> 6];
    int ret = b + popcnt(a & ((u64(1) << (k & 63)) - 1));
    return (f ? ret : k - ret);
  }
  int count(int L, int R, bool f = true) { return count_prefix(R, f) - count_prefix(L, f); }
  string to_string() {
    string ans;
    FOR(i, n) ans += '0' + (dat[i / 64].fi >> (i % 64) & 1);
    return ans;
  }
};
#line 6 "main.cpp"

// HLD+平方分割:Blogn+n/B. Qsqrt(nlogn)

/*
点 (X1,Y1) に足したもの / 区間[Y1,Y2]取得
Y1 への点加算と区間和
点加算回数 B_1logN, 取得 (B_2logN+N/B_2)

区間 [X1,X2] に足したもの / 区間取得
区間ごとに足した値を持っておく
あとは頻度列がとれればよい
X 区間ごとに bitvector を持つ
NlogN/B_1

やっぱり sqrt(N)sqrt(logN) になってしまうかな多分速いが
*/

#ifdef LOCAL
const int B = 2;
#else
const int B = 512;
#endif

u64 A0[200100];
u64 A1[1000];
u64 X_ADD[1000];
Bit_Vector bv[1000];

void solve() {
  INT(N, Q);
  VEC(u64, A, N);

  Graph<int, 0> G1(N);
  Graph<int, 0> G2(N);
  G1.read_tree();
  G2.read_tree();

  Tree<decltype(G1)> T1(G1);
  Tree<decltype(G2)> T2(G2);

  vc<int> X = T1.LID;
  vc<int> Y = T2.LID;
  vc<int> XtoY(N);
  FOR(i, N) XtoY[X[i]] = Y[i];

  int b_num = ceil<int>(N, B);
  FOR(i, b_num) bv[i] = Bit_Vector(N);
  FOR(i, N) bv[X[i] / B].set(Y[i]);
  FOR(i, b_num) bv[i].build();

  auto add_at_y = [&](int y, u64 w) -> void { A0[y] += w, A1[y / B] += w; };

  FOR(v, N) add_at_y(Y[v], A[v]);

  auto add = [&](int L, int R, u64 w) -> void {
    int L1 = L / B * B, R1 = R / B * B;
    FOR(i, L1, L) add_at_y(XtoY[i], -w);
    FOR(i, R1, R) add_at_y(XtoY[i], +w);
    FOR(i, L1 / B, R1 / B) X_ADD[i] += w;
  };

  auto get = [&](int L, int R, u64& ANS) -> void {
    // 区間加算した分
    FOR(i, b_num) {
      u64 cnt = bv[i].count(L, R);
      ANS += cnt * X_ADD[i];
    }
    // 点加算した分
    int L1 = L / B * B, R1 = R / B * B;
    FOR(i, L1, L) ANS -= A0[i];
    FOR(i, R1, R) ANS += A0[i];
    FOR(i, L1 / B, R1 / B) ANS += A1[i];
  };

  FOR(Q) {
    INT(a, b);
    U64(c);
    --a, --b;
    for (auto [s, t]: T1.get_path_decomposition(a, b, 0)) {
      if (s > t) swap(s, t);
      ++t;
      add(s, t, c);
    }
    u64 ANS = 0;
    for (auto [s, t]: T2.get_path_decomposition(a, b, 0)) {
      if (s > t) swap(s, t);
      ++t;
      get(s, t, ANS);
    }
    print(ANS);
  }
}

signed main() { solve(); }

詳細信息

Subtask #1:

score: 5
Accepted

Test #1:

score: 5
Accepted
time: 10ms
memory: 4296kb

input:

3000 3000
7236742292501328495 17973811477309806363 16075782662531676171 17971236571771878676 11392080645527132110 3685563455925680459 9773593720088356683 8313828403245053795 7736401634567449043 1634817828009987181 6951124933529719486 12775126714635387213 15460977209223753216 397573676785925632 31372...

output:

12105153858659381124
18367442707572066757
11668241962484097878
11288238120352358472
1742468310074622166
9942835997686093671
3305677510569607477
17741602000425004088
14984128302052618266
1075081718074605786
6509217537832509095
16750513627843273113
8569443169249732820
14475184194298579044
156111071108...

result:

ok 3000 lines

Test #2:

score: 5
Accepted
time: 7ms
memory: 4364kb

input:

3000 3000
1612333876155866602 8538417838700679227 6080765231437578796 17905224638340228394 12270907925903144224 17944105326358594564 17302041033966840611 1006351124625222126 496336153231744288 9393087977687876980 9553975238547373621 9361882717200384390 15051881329169144319 9757999873162420435 882725...

output:

11133131376095771981
7909873024850695144
16250639243139481926
14562550655578101207
8274205996508264973
178549413271904466
2368406276743327913
7464009386554813982
9439464815411774627
1471756740732097060
15201641099137019227
6774030298556871576
18156105511913219667
1553508745644446823
4225137078364117...

result:

ok 3000 lines

Test #3:

score: 5
Accepted
time: 6ms
memory: 4500kb

input:

3000 3000
9709246061666095435 1861649101703072889 10620139893353930613 17635186539135419482 710209455559527146 6075101384669982511 1120305006358459674 9703156967435388252 1397046737759839382 5259056712870179169 8253156305433022999 710199693203327302 15130650033641744675 10720111924616886955 15543351...

output:

7834604406305153073
5037061270969117785
16481572776620825702
15177894197606565804
3120320619896892806
18008650876379132344
7417108723176816402
13515164814425439399
3299769942258542105
15897528270699011770
11642805469843844638
16764682282380318054
4824039114054405772
4859834102876213962
1234210473247...

result:

ok 3000 lines

Test #4:

score: 5
Accepted
time: 3ms
memory: 4576kb

input:

3000 3000
16538965545220923528 18062192327708400751 10422465150728338588 3471522151129113073 1236650672072793692 1942240200040301168 13090729759591037952 15335798523677372669 9912100622761466753 11177948788405690381 3710859061697501523 4984944638666762977 17278589713462878008 6371292801024547050 868...

output:

8182453933067329108
13535217473847106938
17067385337010269798
3806121648880466130
11322569288575153037
11079197311131660121
9670138330007803226
6554062218199796758
965954569567598779
18055887214749050688
6142620503089407421
8690117812667761187
9547139298346295115
8890987597519353054
1755036654049586...

result:

ok 3000 lines

Test #5:

score: 5
Accepted
time: 6ms
memory: 4600kb

input:

3000 3000
17759588706587888497 10550000524636484378 11601004513528075994 7150322911283804521 4459707248078569712 10692395730842402625 8940418793863522991 12967068928670540447 9954278250450015940 13702413838608801301 10598390500439869870 15110245227553613794 490862872212325709 15164980555660957366 94...

output:

9743736929788175512
16812303667256960040
14694223512340829897
550204232580650311
1175342872438242313
17622261358285047637
7413682703975031220
12643066512274062227
1868985217436232595
5471830334855681322
8070132260376389587
3970361922096052085
218281824643752746
991917103472727104
2960248244218479023...

result:

ok 3000 lines

Subtask #2:

score: 12
Accepted

Dependency #1:

100%
Accepted

Test #6:

score: 12
Accepted
time: 0ms
memory: 3920kb

input:

5 7
0 3 2 6 4
1 2
2 4
1 5
5 3
3 4
4 2
2 5
5 1
5 3 0
3 2 5
4 4 4
4 4 3
5 2 0
3 4 3
5 5 6

output:

15
21
10
13
17
26
18

result:

ok 7 lines

Test #7:

score: 12
Accepted
time: 982ms
memory: 19276kb

input:

70000 70000
3805295436278888199 9842309351516174725 1566744796319231180 2206519284152256579 2715928675931950447 6346821976624501261 16020972671480798719 14702021753902144915 17127828773798978442 15779168055669690475 4964561323934614661 9395102787554964450 6377076753365184543 15167378195767668817 288...

output:

5971729064136092190
6457394048987305727
13604212649915736394
8639973959364892219
437861319070967556
16133076880026962355
5384937395694479961
4591478439775690843
16071919565966962790
15485626634068969082
10235993901046758372
3449528613427081475
8064280362779764074
12784984512326434905
424951714880051...

result:

ok 70000 lines

Test #8:

score: 12
Accepted
time: 556ms
memory: 23464kb

input:

70000 70000
17769190865915081913 3772925482507158804 10559962993069063712 16307277356502651642 12014171661057147061 1923543107882042577 13408785599350410314 17786178374951015816 2038922879833426794 2540043772647346461 15419977514837351390 5175974305273838292 16815288359165841441 6295059675346852046 ...

output:

16215781699519408534
17067966839552063165
1639359200259068228
1157756671621253300
12850966537933214537
13917563606289473282
11146906493479190751
869141055866285398
529460535280965984
11437720548737856517
12321579881011015953
4005153170897692243
10217866116994297464
8892403813874757974
12520505236760...

result:

ok 70000 lines

Test #9:

score: 12
Accepted
time: 369ms
memory: 23340kb

input:

70000 70000
1322605819855709761 1534349070722535975 3956030287626175223 12996546673549161162 7258680666490714729 15591023033141410544 11626890152249303179 7745771567168540351 5535931029756133379 11840793767439557739 6286106656048048381 9490665709724541446 4561258384162386434 2460318488748442222 1303...

output:

7565012138645637258
1080785033897684285
4000254219257999844
8727142139647715419
1784876728989450460
2474052717732723820
5108017366064709316
5232698473118606856
7893212823648229982
6449010654774296779
16571818815110297674
603759348329356530
7364528294111530037
4667545362378304836
3039728935129459889
...

result:

ok 70000 lines

Test #10:

score: 12
Accepted
time: 524ms
memory: 20764kb

input:

70000 70000
2918414982140182939 1004760492603077644 7526656799259998488 6665485253854847449 7752199419154649757 12763267823077347079 11745132191692540338 6726116817426709990 15550876907005962464 9760509858122842638 684733892856965421 10077915441058780247 8380400329996723109 16920573433866702239 3069...

output:

8230389499860859172
16425656898047941538
107743004356580170
9778122844868660722
11068387722102791183
13252614309136720348
15937842372230698728
12777338070107774364
17974062134369145560
3740400391792770609
7367804332878038809
14236246024207211797
5659238205278608512
10550373456364765526
3478082332928...

result:

ok 70000 lines

Test #11:

score: 12
Accepted
time: 275ms
memory: 24700kb

input:

70000 70000
14167059704556856337 16190708842842354431 16763990539754009056 7631426709261583690 16701377874952853623 13128000186728267818 13668914249103068169 11444044591715948726 461080622438520919 15327533341012334586 15905150558482528923 18113008235210277231 18273290154232335325 871461822812191943...

output:

5416890687002400795
15434184693210288436
14994504916760087024
2057026449542829151
14782289435774270062
5375237679514404106
6242405047854012647
13176621545709355733
14860610197328732602
2320525143444929350
4955538191022622551
16072981679771537209
16493487770453132249
7457010288198365370
1095949888193...

result:

ok 70000 lines

Test #12:

score: 12
Accepted
time: 524ms
memory: 20040kb

input:

70000 70000
6512290618577097706 2307104154841663907 18099814251235047570 8297332016606109910 6979819983598849680 18022671181330012408 7003320957516774041 10765303713874539785 15263207007138552812 11713955610641877995 9084887894280210904 3653718255996209121 14197591595561260765 2937670413926210256 43...

output:

5372775214253596890
927985558228810546
3829815088328182672
17496384540548895622
2541458359607440535
9685902106698191409
13649653134779075960
2952563488513208867
3457470079648848247
11542323450217419837
6576344363223624061
12316990756988470568
17923006133291073450
13069551524451668138
648013229980407...

result:

ok 70000 lines

Test #13:

score: 12
Accepted
time: 507ms
memory: 20560kb

input:

70000 70000
13665984219894847790 9458613748861462697 7467746948118990839 10855454155004540952 10025433108785732161 15816172836312183738 2834129139700401667 221649423184372325 8409217794427284711 16119623676185869010 12488380095384700010 3049877130176336551 5805665682633632307 13224802542929355280 18...

output:

7934210059911784858
14305091721658406168
5803801684631217062
8806866881905382618
14997911434771439753
7006465422324293550
15394754861139766679
8377831978907312075
12227086919743533414
8784212755151945751
17039860679476902214
6474495685436520748
11136139762939837997
16869294577244011226
1164744311638...

result:

ok 70000 lines

Subtask #3:

score: 13
Accepted

Dependency #2:

100%
Accepted

Test #14:

score: 13
Accepted
time: 1184ms
memory: 39760kb

input:

120000 120000
4056283459929576306 2264755903151268173 1157390036441353969 5734735320959854923 6025999163810189446 3972481234804681969 4746636248696530169 6716674455256322787 6407347371842702902 7463142557880503801 208361219405474896 512530621977574257 6488145455921761864 6595856237657889728 95997703...

output:

11686658894480913739
10283716998652647869
7469817527336516079
9879285786875030762
4982549977394044949
16564334076086174008
6433057925981833441
7460470339844352254
9945354316570680900
18377735143728853940
15872286040534058104
8507347369923543553
308747406436979607
18218197459972943141
177225056570719...

result:

ok 120000 lines

Test #15:

score: 13
Accepted
time: 745ms
memory: 41900kb

input:

120000 120000
5867632904403891095 7734115005912544376 13901514937742085110 17141033381317351710 17988246451665298411 17540600012243810041 15190868862458266725 15454563456231559301 8740470882859091311 17882360629171437337 12095218884748126199 17817518168343018595 7112391591378197276 65538601378146110...

output:

13420129597746517056
18337642296188485079
4380067206814687930
5525410739012465159
1979575298167242590
10855827974711636510
9874020479466690595
17720000790164899934
16724816545805525287
15594891417371432986
14655386085151616523
11435247647009150363
7635358811289719984
14609735500036643833
13339404812...

result:

ok 120000 lines

Test #16:

score: 13
Accepted
time: 2534ms
memory: 37748kb

input:

120000 120000
12590795589408290093 11275909154009220197 10996087245163181988 287253987689120747 522028471439816976 5251098397309018220 9466903789635983479 12562504698210775380 14359608006525868271 12860739587215060171 6110493152041264342 8941951597283806533 7247902667356706183 13908919237133011991 1...

output:

12568574963997891813
9761481874717599084
9748193662109666281
17759229044598540251
9232146611495947992
16451851566322082145
10163587939420717881
11939061140179225100
13555756814075457024
15331444302135124578
12404089960631589833
10914316315261843243
3330610810849167077
4308673861372384247
22214038984...

result:

ok 120000 lines

Test #17:

score: 13
Accepted
time: 1334ms
memory: 37748kb

input:

120000 120000
16014732670888203993 17003360764706956461 4309217563402934767 12155136955819956058 9472943536135969437 8619903067520668384 8532935983471178458 840596314384730622 8808409849265669508 16268252642839060126 8703458878963184072 14133056030074803107 16125379684339605436 13795196609771489642 ...

output:

14157083647705042191
9626539498588941455
12672590587667741319
7637586779842324001
17945793757619266709
6486513804042528016
17128439522931715545
14506773931432125656
10149598925465005229
8493513931817247270
9843224754697262936
17563138715401598781
5251652421620155711
16347886781065131205
141775307219...

result:

ok 120000 lines

Test #18:

score: 13
Accepted
time: 1574ms
memory: 35424kb

input:

120000 120000
3799726989717681598 2540658873004706851 6999377479951345208 4574847538261052797 1388764904624490347 797597442974571877 12049698136986117426 1334073669070317189 11812534794423707083 12910806883079537898 8919907966949030320 3609251437048437267 6955259073591432492 1913761510032208708 1536...

output:

16410218753178084291
3452125570141203996
12637348475870430626
939828522750114530
6181904502892064992
7530673907543931274
11125835388154440123
1132493328298594689
6540415366631312545
10171022468601061874
10785984448364782773
15132462728937914062
13894055239781007518
14553135357399426810
1058534365058...

result:

ok 120000 lines

Test #19:

score: 13
Accepted
time: 1482ms
memory: 37784kb

input:

120000 120000
523123731336918243 4097858622836674571 1961367823237386001 2725250184116707092 15256083167104925470 8826573328357841773 14551942275839683916 4676612813711946771 16866097649532049020 16028370234860808559 16550040875881081238 13114506992715113111 18223636920754369434 4711187061384408363 ...

output:

13171866584326858355
7378923635054867195
4676544939953182559
8211313138413629930
3762100382261198154
17376905504590956432
11575432112253285846
6651270238220236939
7296214239679292747
3921715204635211841
13514446212830941534
14681462832343839777
9394758474079991863
2039117273115115478
162036285844685...

result:

ok 120000 lines

Test #20:

score: 13
Accepted
time: 1458ms
memory: 37872kb

input:

120000 120000
16563527794956746492 3507607345845239151 6704373347302736722 4366660651585002614 17477711326324414919 14064904073416411127 1886265819461820151 1530962154006256458 3386801749967932412 10176358119958383434 14136333004424650089 18047845530334381646 14290290829566494165 1979382774616512004...

output:

2687063429907612648
7246290134975359576
451523845887078136
6787443537167049842
11742387638116508426
9452080235999660003
1640133015384348445
9479626460563956802
8536081354965239985
14886879078945984440
5977814891978138604
16811290642393481835
2319291536056800936
4327858711873466013
508236457787094527...

result:

ok 120000 lines

Subtask #4:

score: 0
Time Limit Exceeded

Test #21:

score: 0
Time Limit Exceeded

input:

200000 200000
622783158027686223 2242697872372232537 8481648430436878777 10092474834140799044 15403999682625301609 12614289513474949582 9180944589267018841 7823784919308285798 8257785171198951273 5134508521895120821 8041682272181381093 3835432206618893170 2653803171409877650 5589823419153460372 1007...

output:

9042998055336671259
11611293489264521142
5835924579879681322
9187084356907537870
17810346410706951073
565636160725988981
837626748701483168
16059573289829807099
7246210357888652619
7725251776483176497
17088098442183693937
9042305714006927228
10907378739216215456
6526772063609981609
51578202456469609...

result:


Subtask #5:

score: 17
Accepted

Test #27:

score: 17
Accepted
time: 2385ms
memory: 74032kb

input:

200000 200000
1958469220619413759 14991498002015735322 6054491201406941902 18206143187746582567 15082377615826460430 2936248617457291604 10073577150351675920 16534472678586906457 2207599132486246393 10301540360769075442 1492580560381080472 551692353431379140 13238280352539145808 8462626987240986565 ...

output:

11479812171669345085
7612644482907856514
7664363696211351499
10419050713553268082
7115244954460011045
9683711549165598600
15714069303067445091
5098969076555779384
17312050420753525411
13302302653999024684
15237835478514966949
1011923303415334401
15280591493481885526
11613220426756932450
109080667232...

result:

ok 200000 lines

Test #28:

score: 17
Accepted
time: 2167ms
memory: 78292kb

input:

200000 200000
16779443803326674772 15639579352489825289 13969981610137062426 16505376510381344640 9806280160602498118 1419045977670621133 7677707894082613460 11957033082833096140 2771983498938827257 14706498164400422706 9378952791453329569 1930132295950861416 16111764090559108273 8905137311835789422...

output:

16293566981830212911
10264859857591337484
8994663676867609646
2754771179506593788
4767946170760042771
742819530451319825
2803285017809086810
3484130454853725644
7697600623078121691
5084812233611883732
3280787561128521192
1047502191383912852
14082348302073768112
2601331176748190671
117450452631909696...

result:

ok 200000 lines

Test #29:

score: 17
Accepted
time: 758ms
memory: 76892kb

input:

200000 200000
12029385893748061284 9172822681287286332 11779114870282057106 4849897936395853889 6103529715098530443 8797239236736271231 11618134370305604768 10908476427113524251 3933201111692274240 4499796948331538987 4232975400910660164 10415557794345312125 17360908993089799508 13708880030692860522...

output:

13101691483811142037
7858940297704268921
9131311782659594969
3979986497647305855
131040009215643795
10080455913202724993
13237896591702170157
4007300413168456185
10099014266690222675
16590528230541839393
10133194446659869919
16360073169922464941
15194261798246191631
5464643399868946391
1634883990603...

result:

ok 200000 lines

Test #30:

score: 17
Accepted
time: 1435ms
memory: 76464kb

input:

200000 200000
12279899037614140058 8888114948527866653 13928233147675322734 12454101025136386040 5288759580423671283 8776652717163613021 16449880332412915864 17287034922899709125 10532733829212727135 10764189288575553991 13953267646406847995 13908054688602304211 5827028562849173311 10886964702131020...

output:

16698510136139978210
16369094547606910925
1326550504815919356
15571631364851754526
15142726028067532669
16433307477502505346
2288796203808772846
14834334808701484355
11332372387379739662
16882038025761766711
15880577744881855798
3482331692875200083
3909893051643604341
17525221195783380334
1592129559...

result:

ok 200000 lines

Test #31:

score: 17
Accepted
time: 1282ms
memory: 76016kb

input:

200000 200000
4893160298280825903 18198846065921817748 16343447781007974282 15723743432312964985 12871862738540236681 9972578954818260019 125153552836276808 5361924347833293579 11971958522882153451 6606998668153528639 9846700557419796517 924197471899377062 16510652970019285610 13527675083280389351 1...

output:

12217733345977585604
15090345895939064308
8800682550100929240
8418299123801754016
9906718252280231096
3019478245971491784
9496949828298647194
17471225676572414614
11441204915622920024
5759065639620250580
3072007946120216696
17839333347550122908
11855291417460815970
1574976372415972484
15048267748478...

result:

ok 200000 lines

Test #32:

score: 17
Accepted
time: 882ms
memory: 74948kb

input:

200000 200000
16269080113100378653 4484500057558985491 3155111047194780915 1955124878557628793 1131676785723263995 15670458790089679131 12642775067469645913 16058994799171671871 11128893081798077921 17630174838696618160 10509057764997030178 2736352128209806460 11214180975026520052 990613932293281058...

output:

12064924625133015846
16862321744372560028
1994646811747150992
10140722851099240116
2557503422311666754
15259878734280971978
3955576474907811510
3673505041702176640
7400377071018962046
12622228824601464114
10514727287268994992
17046945994663165568
3131278608817391298
7110396577833899144
2955850235837...

result:

ok 200000 lines

Test #33:

score: 17
Accepted
time: 2293ms
memory: 75708kb

input:

200000 200000
7793598924465250299 11320616179551810509 4514956344247028440 13595219380199005841 9022300443122747211 5306720789215014051 12829201090248291001 17484907120965865432 4426007998575926549 16938003364463208590 8456717373555158888 9856394533639307403 4263328592244098713 4497412961128822026 1...

output:

10753764993328700009
18007939111928197938
9749484091345535325
5504011101575545606
13062921586637652283
11960644823021452066
5934883515296641825
14816522537666728261
11155114586067595959
7338645965836498696
6416169899635462788
11575170211633743517
11478197945758314236
5225462134046697629
164046911152...

result:

ok 200000 lines

Subtask #6:

score: 19
Accepted

Test #34:

score: 19
Accepted
time: 2261ms
memory: 78364kb

input:

200000 200000
6794776813641982926 1561596256197101737 10910039723053043515 7892247858295192798 12233819960547881004 17695389034783066733 9173201689566865598 17626618141377486739 7358781671024283919 6787559733384974662 3884392438269280436 14872846228351316833 9037842441501571648 14299818404271084016 ...

output:

5519324519442957729
13462861144392030499
8898301730697138469
4148979398311169421
15090246851327208067
8628707816538336707
13867297907038176506
10296428352441857103
15654304415409320656
7404566644919251615
9870876264015800597
6356224262148620783
249874952637342736
9023132497407647441
1416175985367538...

result:

ok 200000 lines

Test #35:

score: 19
Accepted
time: 3241ms
memory: 79216kb

input:

200000 200000
11863650499568632095 6646669915142734572 4053375998669045948 14662364203830894482 7319511971537928619 4131498054494361157 7103043576860354080 2730587527012777841 8626012955062792888 7098277606750148625 12990209623538415680 100871355087529915 12267084290544303817 7008468684400973426 856...

output:

11796827338356402281
853302424664654652
564419876379363056
11173501553976506440
2595891684253320024
5590778053561483334
16613470245879883493
5698255402711241072
8125718572356459513
11371252602486101178
7605800585391618993
17939653588292877927
15906636118593883045
14840423959426947118
122409373008752...

result:

ok 200000 lines

Test #36:

score: 19
Accepted
time: 1998ms
memory: 78164kb

input:

200000 200000
7819034666999754227 1261434745131385029 4729051582132640442 9603230030483067185 9188148629137054368 4647584887897271213 14878584596185020248 5036501082632549589 13434605396022727436 10747373329537943689 2859138487129973374 17399126170759425906 5170686633178482234 1548518177806164267 68...

output:

13979872615900358449
13089809959604496472
1561607543806976909
704865086165131395
4750114500765789463
8620101000132483891
1061990993707638791
8219417779659049453
16783172337878697026
731502258552473136
15516870835064396649
13412140913912394465
5029558179142432386
9655856473800271062
14498308915283050...

result:

ok 200000 lines

Test #37:

score: 19
Accepted
time: 1917ms
memory: 78112kb

input:

200000 200000
13667364256171297683 5643454264481609425 13916992424255487273 16139471110620927446 10964822257543206396 18104319795931117637 6754294313610492941 627150985476406559 9787453073837140391 8330282299925244302 16457178623381098023 2644823686047461659 3971198924127091796 9747389824949735337 1...

output:

11367465309833674818
18362877133708215281
7423548724337603968
8957456044849213851
17833913066069915980
7858235162317128668
12543057704351927321
10505054748074388644
6816176482433035300
2467436539272277421
1679282916199502250
4514431222303891247
8020348968469583082
4250522620562980350
344143146282723...

result:

ok 200000 lines

Test #38:

score: 19
Accepted
time: 3478ms
memory: 79312kb

input:

200000 200000
8264785020939323331 5620958879723030311 933008402364228745 5711653520387260744 16167130674961631916 10635243671618608635 7034482071437480120 10254956504177159052 10510387087831623788 8381634740474427698 9506597691312026965 14784451691298216046 15821757099494287606 1919888068508281591 1...

output:

5787014875832445646
9634577796009446262
12314294073540302873
2915216425908688602
7120463906657998875
4286046781319255714
6776880553034928756
7781782119312943753
10261843991161497641
6413565360321098258
15025688638596291097
9526784383328827422
4012177064000612489
1287077077700121461
98702777920648956...

result:

ok 200000 lines

Test #39:

score: 19
Accepted
time: 2110ms
memory: 78536kb

input:

200000 200000
11664667196988092805 1811572170904050995 15694419630875459125 12737549840477675073 16755302998318006416 4014818780481352253 5609118000649893828 6256332194728466258 15733576495075669968 17960532384856428505 15897732465031414620 17425753576410476171 4620624862371502705 112264419736513372...

output:

6480474289914832244
5686011217288555755
14160731859453855234
17554436276709117739
2341367826083254204
8545580044567165676
264741062779916095
3300445074446425091
1133253489203829542
15906618027983611292
4617068730941954223
9183813939934374009
17667722659841632674
17058280131349615456
5995389694319663...

result:

ok 200000 lines

Test #40:

score: 19
Accepted
time: 2292ms
memory: 79160kb

input:

200000 200000
1537940886958943461 9001579450047645548 5527298164056925772 15445874594277229387 11547996012713764596 2685142508745516922 15898551218448062337 16566357055814699599 15778851736432174335 10222916087451023672 14639095824490451029 13130899683058695675 2954207938828868462 150325623383373666...

output:

6794024285749225899
15444253183026756906
16252225983581025191
18270054647591833460
14669804966517502833
7889126920459519979
11162985402720101082
6093427967053788994
10568703419124160247
10842018941076619829
12114458223856608006
16611571295135208112
6660992456255029750
14854289142138250053
8448421034...

result:

ok 200000 lines

Test #41:

score: 19
Accepted
time: 2012ms
memory: 78704kb

input:

200000 200000
9312450956088465409 13091411438344500136 13533801408631028803 397220365455228788 9050318983523848941 14099016315633088068 17718824544128458130 18224580765371017222 16359847342241893914 6209442109030804295 8140737573685484628 16329892452717577856 12435238272437023209 1214903064014288477...

output:

17881136615169673858
10075746974396262535
1101717753396811008
11092187645455964376
312406901260616120
15269190090424605570
16293852523769965660
7287397773622456008
12586683442681630396
10525460771223157010
16483491603350167181
5677129374080663282
17770626863503596216
16241388034502960475
16358076653...

result:

ok 200000 lines

Subtask #7:

score: 0
Skipped

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Dependency #3:

100%
Accepted

Dependency #4:

0%