QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#665377#9492. 树上简单求和maspy24 1675ms93688kbC++2331.2kb2024-10-22 11:54:562024-10-22 11:54:56

Judging History

你现在查看的是最新测评结果

  • [2024-10-22 11:54:56]
  • 评测
  • 测评结果:24
  • 用时:1675ms
  • 内存:93688kb
  • [2024-10-22 11:54:56]
  • 提交

answer

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "/home/maspy/compro/library/graph/tree.hpp"

#line 2 "/home/maspy/compro/library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  // sum(deg(v)) の計算量になっていて、
  // 新しいグラフの n+m より大きい可能性があるので注意
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (len(used_e) <= e.id) used_e.resize(e.id + 1);
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

  Graph<T, true> to_directed_tree(int root = -1) {
    if (root == -1) root = 0;
    assert(!is_directed && prepared && M == N - 1);
    Graph<T, true> G1(N);
    vc<int> par(N, -1);
    auto dfs = [&](auto& dfs, int v) -> void {
      for (auto& e: (*this)[v]) {
        if (e.to == par[v]) continue;
        par[e.to] = v, dfs(dfs, e.to);
      }
    };
    dfs(dfs, root);
    for (auto& e: edges) {
      int a = e.frm, b = e.to;
      if (par[a] == b) swap(a, b);
      assert(par[b] == a);
      G1.add(a, b, e.cost);
    }
    G1.build();
    return G1;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 4 "/home/maspy/compro/library/graph/tree.hpp"

// HLD euler tour をとっていろいろ。
template <typename GT>
struct Tree {
  using Graph_type = GT;
  GT &G;
  using WT = typename GT::cost_type;
  int N;
  vector<int> LID, RID, head, V, parent, VtoE;
  vc<int> depth;
  vc<WT> depth_weighted;

  Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }

  void build(int r = 0, bool hld = 1) {
    if (r == -1) return; // build を遅延したいとき
    N = G.N;
    LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
    V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
    depth.assign(N, -1), depth_weighted.assign(N, 0);
    assert(G.is_prepared());
    int t1 = 0;
    dfs_sz(r, -1, hld);
    dfs_hld(r, t1);
  }

  void dfs_sz(int v, int p, bool hld) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする
    for (int i = r - 2; i >= l; --i) {
      if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      VtoE[e.to] = e.id;
      dfs_sz(e.to, v, hld);
      sz[v] += sz[e.to];
      if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  vc<int> heavy_path_at(int v) {
    vc<int> P = {v};
    while (1) {
      int a = P.back();
      for (auto &&e: G[a]) {
        if (e.to != parent[a] && head[e.to] == v) {
          P.eb(e.to);
          break;
        }
      }
      if (P.back() == a) break;
    }
    return P;
  }

  int heavy_child(int v) {
    int k = LID[v] + 1;
    if (k == N) return -1;
    int w = V[k];
    return (parent[w] == v ? w : -1);
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }
  int v_to_e(int v) { return VtoE[v]; }
  int get_eid(int u, int v) {
    if (parent[u] != v) swap(u, v);
    assert(parent[u] == v);
    return VtoE[u];
  }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  // 目標地点へ進む個数が k
  int LA(int v, int k) {
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }
  int la(int u, int v) { return LA(u, v); }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }

  int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); }
  int lca(int u, int v) { return LCA(u, v); }

  int subtree_size(int v, int root = -1) {
    if (root == -1) return RID[v] - LID[v];
    if (v == root) return N;
    int x = jump(v, root, 1);
    if (in_subtree(v, x)) return RID[v] - LID[v];
    return N - RID[x] + LID[x];
  }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist_weighted(int a, int b) {
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
  }

  // a is in b
  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int jump(int a, int b, ll k) {
    if (k == 1) {
      if (a == b) return -1;
      return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
    }
    int c = LCA(a, b);
    int d_ac = depth[a] - depth[c];
    int d_bc = depth[b] - depth[c];
    if (k > d_ac + d_bc) return -1;
    if (k <= d_ac) return LA(a, k);
    return LA(b, d_ac + d_bc - k);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<int> collect_light(int v) {
    vc<int> res;
    bool skip = true;
    for (auto &&e: G[v])
      if (e.to != parent[v]) {
        if (!skip) res.eb(e.to);
        skip = false;
      }
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  // 辺の列の情報 (frm,to,str)
  // str = "heavy_up", "heavy_down", "light_up", "light_down"
  vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) {
    vc<tuple<int, int, string>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v];
        down.eb(parent[v], v, "light_down"), v = parent[v];
      } else {
        if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u];
        up.eb(u, parent[u], "light_up"), u = parent[u];
      }
    }
    if (LID[u] < LID[v]) down.eb(u, v, "heavy_down");
    elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up");
    reverse(all(down));
    concat(up, down);
    return up;
  }

  vc<int> restore_path(int u, int v) {
    vc<int> P;
    for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
      if (a <= b) {
        FOR(i, a, b + 1) P.eb(V[i]);
      } else {
        FOR_R(i, b, a + 1) P.eb(V[i]);
      }
    }
    return P;
  }

  // path [a,b] と [c,d] の交わり. 空ならば {-1,-1}.
  // https://codeforces.com/problemset/problem/500/G
  pair<int, int> path_intersection(int a, int b, int c, int d) {
    int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d);
    int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d);
    int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d)
    if (x != y) return {x, y};
    int z = ac ^ ad ^ cd;
    if (x != z) x = -1;
    return {x, x};
  }
};
#line 1 "/home/maspy/compro/library/ds/kdtree/kdtree_acted_monoid.hpp"
template <class ActedMonoid, typename XY>
struct KDTree_ActedMonoid {
  using AM = ActedMonoid;
  using MX = typename AM::Monoid_X;
  using MA = typename AM::Monoid_A;
  using X = typename AM::X;
  using A = typename AM::A;
  static_assert(MX::commute);

  // 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う
  vc<tuple<XY, XY, XY, XY>> closed_range;
  vc<X> dat;
  vc<A> lazy;
  vc<int> size;
  int n;

  KDTree_ActedMonoid(vc<XY> xs, vc<XY> ys, vc<X> vs) : n(len(xs)) {
    assert(n > 0);
    int log = 0;
    while ((1 << log) < n) ++log;
    dat.resize(1 << (log + 1));
    lazy.assign(1 << log, MA::unit());
    closed_range.resize(1 << (log + 1));
    size.resize(1 << (log + 1));
    build(1, xs, ys, vs);
  }

  void multiply(XY x, XY y, const X& v) { multiply_rec(1, x, y, v); }

  // [xl, xr) x [yl, yr)
  X prod(XY xl, XY xr, XY yl, XY yr) {
    assert(xl <= xr && yl <= yr);
    return prod_rec(1, xl, xr, yl, yr);
  }

  X prod_all() { return dat[1]; }

  // [xl, xr) x [yl, yr)
  void apply(XY xl, XY xr, XY yl, XY yr, A a) {
    assert(xl <= xr && yl <= yr);
    return apply_rec(1, xl, xr, yl, yr, a);
  }

private:
  void build(int idx, vc<XY> xs, vc<XY> ys, vc<X> vs, bool divx = true) {
    int n = len(xs);
    size[idx] = n;
    auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
    xmin = ymin = infty<XY>;
    xmax = ymax = -infty<XY>;

    FOR(i, n) {
      auto x = xs[i], y = ys[i];
      chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y);
    }
    if (xmin == xmax && ymin == ymax) {
      X x = MX::unit();
      for (auto&& v: vs) x = MX::op(x, v);
      dat[idx] = x;
      return;
    }

    int m = n / 2;
    vc<int> I(n);
    iota(all(I), 0);
    if (divx) {
      nth_element(I.begin(), I.begin() + m, I.end(),
                  [xs](int i, int j) { return xs[i] < xs[j]; });
    } else {
      nth_element(I.begin(), I.begin() + m, I.end(),
                  [ys](int i, int j) { return ys[i] < ys[j]; });
    }
    xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I);
    build(2 * idx + 0, {xs.begin(), xs.begin() + m},
          {ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, !divx);
    build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()},
          {vs.begin() + m, vs.end()}, !divx);
    dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]);
  }

  inline bool is_leaf(int idx) {
    auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
    return xmin == xmax && ymin == ymax;
  }

  inline bool isin(XY x, XY y, int idx) {
    auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
    return (xmin <= x && x <= xmax && ymin <= y && y <= ymax);
  }

  void apply_at(int idx, A a) {
    dat[idx] = AM::act(dat[idx], a, size[idx]);
    if (!is_leaf(idx)) lazy[idx] = MA::op(lazy[idx], a);
  }

  void push(int idx) {
    if (lazy[idx] == MA::unit()) return;
    apply_at(2 * idx + 0, lazy[idx]), apply_at(2 * idx + 1, lazy[idx]);
    lazy[idx] = MA::unit();
  }

  bool multiply_rec(int idx, XY x, XY y, X v) {
    if (!isin(x, y, idx)) return false;
    if (is_leaf(idx)) {
      dat[idx] = MX::op(dat[idx], v);
      size[idx] += 1;
      return true;
    }
    push(idx);
    bool done = 0;
    if (multiply_rec(2 * idx + 0, x, y, v)) done = 1;
    if (!done && multiply_rec(2 * idx + 1, x, y, v)) done = 1;
    if (done) {
      dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]);
      size[idx] = size[2 * idx + 0] + size[2 * idx + 1];
    }
    return done;
  }

  X prod_rec(int idx, XY x1, XY x2, XY y1, XY y2) {
    auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
    if (x2 <= xmin || xmax < x1) return MX::unit();
    if (y2 <= ymin || ymax < y1) return MX::unit();
    if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return dat[idx]; }
    push(idx);
    return MX::op(prod_rec(2 * idx + 0, x1, x2, y1, y2),
                  prod_rec(2 * idx + 1, x1, x2, y1, y2));
  }

  void apply_rec(int idx, XY x1, XY x2, XY y1, XY y2, A a) {
    auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
    if (x2 <= xmin || xmax < x1) return;
    if (y2 <= ymin || ymax < y1) return;
    if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) {
      return apply_at(idx, a);
    }
    push(idx);
    apply_rec(2 * idx + 0, x1, x2, y1, y2, a);
    apply_rec(2 * idx + 1, x1, x2, y1, y2, a);
    dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]);
  }
};
#line 2 "/home/maspy/compro/library/alg/monoid/add.hpp"

template <typename E>
struct Monoid_Add {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 2 "/home/maspy/compro/library/alg/acted_monoid/sum_add.hpp"

template <typename E>
struct ActedMonoid_Sum_Add {
  using Monoid_X = Monoid_Add<E>;
  using Monoid_A = Monoid_Add<E>;
  using X = typename Monoid_X::value_type;
  using A = typename Monoid_A::value_type;
  static constexpr X act(const X &x, const A &a, const ll &size) {
    return x + a * E(size);
  }
};
#line 7 "main.cpp"

using AM = ActedMonoid_Sum_Add<u64>;

void solve() {
  INT(N, Q);
  VEC(u64, A, N);

  Graph<int, 0> G1(N);
  Graph<int, 0> G2(N);
  G1.read_tree();
  G2.read_tree();
  Tree<decltype(G1)> T1(G1);
  Tree<decltype(G2)> T2(G2);

  vc<int> X(N), Y(N);
  FOR(i, N) X[i] = T1.LID[i];
  FOR(i, N) Y[i] = T2.LID[i];
  KDTree_ActedMonoid<AM, int> KDT(X, Y, A);

  FOR(Q) {
    INT(a, b);
    U64(c);
    --a, --b;
    for (auto [s, t]: T1.get_path_decomposition(a, b, 0)) {
      if (s > t) swap(s, t);
      KDT.apply(s, t + 1, 0, N, c);
    }
    u64 ANS = 0;
    for (auto [s, t]: T2.get_path_decomposition(a, b, 0)) {
      if (s > t) swap(s, t);
      ANS += KDT.prod(0, N, s, t + 1);
    }
    print(ANS);
  }
}

signed main() { solve(); }

详细

Subtask #1:

score: 5
Accepted

Test #1:

score: 5
Accepted
time: 36ms
memory: 5060kb

input:

3000 3000
7236742292501328495 17973811477309806363 16075782662531676171 17971236571771878676 11392080645527132110 3685563455925680459 9773593720088356683 8313828403245053795 7736401634567449043 1634817828009987181 6951124933529719486 12775126714635387213 15460977209223753216 397573676785925632 31372...

output:

12105153858659381124
18367442707572066757
11668241962484097878
11288238120352358472
1742468310074622166
9942835997686093671
3305677510569607477
17741602000425004088
14984128302052618266
1075081718074605786
6509217537832509095
16750513627843273113
8569443169249732820
14475184194298579044
156111071108...

result:

ok 3000 lines

Test #2:

score: 5
Accepted
time: 37ms
memory: 4872kb

input:

3000 3000
1612333876155866602 8538417838700679227 6080765231437578796 17905224638340228394 12270907925903144224 17944105326358594564 17302041033966840611 1006351124625222126 496336153231744288 9393087977687876980 9553975238547373621 9361882717200384390 15051881329169144319 9757999873162420435 882725...

output:

11133131376095771981
7909873024850695144
16250639243139481926
14562550655578101207
8274205996508264973
178549413271904466
2368406276743327913
7464009386554813982
9439464815411774627
1471756740732097060
15201641099137019227
6774030298556871576
18156105511913219667
1553508745644446823
4225137078364117...

result:

ok 3000 lines

Test #3:

score: 5
Accepted
time: 8ms
memory: 5060kb

input:

3000 3000
9709246061666095435 1861649101703072889 10620139893353930613 17635186539135419482 710209455559527146 6075101384669982511 1120305006358459674 9703156967435388252 1397046737759839382 5259056712870179169 8253156305433022999 710199693203327302 15130650033641744675 10720111924616886955 15543351...

output:

7834604406305153073
5037061270969117785
16481572776620825702
15177894197606565804
3120320619896892806
18008650876379132344
7417108723176816402
13515164814425439399
3299769942258542105
15897528270699011770
11642805469843844638
16764682282380318054
4824039114054405772
4859834102876213962
1234210473247...

result:

ok 3000 lines

Test #4:

score: 5
Accepted
time: 33ms
memory: 4888kb

input:

3000 3000
16538965545220923528 18062192327708400751 10422465150728338588 3471522151129113073 1236650672072793692 1942240200040301168 13090729759591037952 15335798523677372669 9912100622761466753 11177948788405690381 3710859061697501523 4984944638666762977 17278589713462878008 6371292801024547050 868...

output:

8182453933067329108
13535217473847106938
17067385337010269798
3806121648880466130
11322569288575153037
11079197311131660121
9670138330007803226
6554062218199796758
965954569567598779
18055887214749050688
6142620503089407421
8690117812667761187
9547139298346295115
8890987597519353054
1755036654049586...

result:

ok 3000 lines

Test #5:

score: 5
Accepted
time: 30ms
memory: 5084kb

input:

3000 3000
17759588706587888497 10550000524636484378 11601004513528075994 7150322911283804521 4459707248078569712 10692395730842402625 8940418793863522991 12967068928670540447 9954278250450015940 13702413838608801301 10598390500439869870 15110245227553613794 490862872212325709 15164980555660957366 94...

output:

9743736929788175512
16812303667256960040
14694223512340829897
550204232580650311
1175342872438242313
17622261358285047637
7413682703975031220
12643066512274062227
1868985217436232595
5471830334855681322
8070132260376389587
3970361922096052085
218281824643752746
991917103472727104
2960248244218479023...

result:

ok 3000 lines

Subtask #2:

score: 0
Time Limit Exceeded

Dependency #1:

100%
Accepted

Test #6:

score: 12
Accepted
time: 0ms
memory: 3612kb

input:

5 7
0 3 2 6 4
1 2
2 4
1 5
5 3
3 4
4 2
2 5
5 1
5 3 0
3 2 5
4 4 4
4 4 3
5 2 0
3 4 3
5 5 6

output:

15
21
10
13
17
26
18

result:

ok 7 lines

Test #7:

score: 0
Time Limit Exceeded

input:

70000 70000
3805295436278888199 9842309351516174725 1566744796319231180 2206519284152256579 2715928675931950447 6346821976624501261 16020972671480798719 14702021753902144915 17127828773798978442 15779168055669690475 4964561323934614661 9395102787554964450 6377076753365184543 15167378195767668817 288...

output:

5971729064136092190
6457394048987305727
13604212649915736394
8639973959364892219
437861319070967556
16133076880026962355
5384937395694479961
4591478439775690843
16071919565966962790
15485626634068969082
10235993901046758372
3449528613427081475
8064280362779764074
12784984512326434905
424951714880051...

result:


Subtask #3:

score: 0
Skipped

Dependency #2:

0%

Subtask #4:

score: 0
Time Limit Exceeded

Test #21:

score: 0
Time Limit Exceeded

input:

200000 200000
622783158027686223 2242697872372232537 8481648430436878777 10092474834140799044 15403999682625301609 12614289513474949582 9180944589267018841 7823784919308285798 8257785171198951273 5134508521895120821 8041682272181381093 3835432206618893170 2653803171409877650 5589823419153460372 1007...

output:

9042998055336671259
11611293489264521142
5835924579879681322
9187084356907537870
17810346410706951073
565636160725988981
837626748701483168
16059573289829807099
7246210357888652619
7725251776483176497
17088098442183693937
9042305714006927228
10907378739216215456
6526772063609981609
51578202456469609...

result:


Subtask #5:

score: 0
Time Limit Exceeded

Test #27:

score: 0
Time Limit Exceeded

input:

200000 200000
1958469220619413759 14991498002015735322 6054491201406941902 18206143187746582567 15082377615826460430 2936248617457291604 10073577150351675920 16534472678586906457 2207599132486246393 10301540360769075442 1492580560381080472 551692353431379140 13238280352539145808 8462626987240986565 ...

output:

11479812171669345085
7612644482907856514
7664363696211351499
10419050713553268082
7115244954460011045
9683711549165598600
15714069303067445091
5098969076555779384
17312050420753525411
13302302653999024684
15237835478514966949
1011923303415334401
15280591493481885526
11613220426756932450
109080667232...

result:


Subtask #6:

score: 19
Accepted

Test #34:

score: 19
Accepted
time: 996ms
memory: 93080kb

input:

200000 200000
6794776813641982926 1561596256197101737 10910039723053043515 7892247858295192798 12233819960547881004 17695389034783066733 9173201689566865598 17626618141377486739 7358781671024283919 6787559733384974662 3884392438269280436 14872846228351316833 9037842441501571648 14299818404271084016 ...

output:

5519324519442957729
13462861144392030499
8898301730697138469
4148979398311169421
15090246851327208067
8628707816538336707
13867297907038176506
10296428352441857103
15654304415409320656
7404566644919251615
9870876264015800597
6356224262148620783
249874952637342736
9023132497407647441
1416175985367538...

result:

ok 200000 lines

Test #35:

score: 19
Accepted
time: 1672ms
memory: 93016kb

input:

200000 200000
11863650499568632095 6646669915142734572 4053375998669045948 14662364203830894482 7319511971537928619 4131498054494361157 7103043576860354080 2730587527012777841 8626012955062792888 7098277606750148625 12990209623538415680 100871355087529915 12267084290544303817 7008468684400973426 856...

output:

11796827338356402281
853302424664654652
564419876379363056
11173501553976506440
2595891684253320024
5590778053561483334
16613470245879883493
5698255402711241072
8125718572356459513
11371252602486101178
7605800585391618993
17939653588292877927
15906636118593883045
14840423959426947118
122409373008752...

result:

ok 200000 lines

Test #36:

score: 19
Accepted
time: 581ms
memory: 91968kb

input:

200000 200000
7819034666999754227 1261434745131385029 4729051582132640442 9603230030483067185 9188148629137054368 4647584887897271213 14878584596185020248 5036501082632549589 13434605396022727436 10747373329537943689 2859138487129973374 17399126170759425906 5170686633178482234 1548518177806164267 68...

output:

13979872615900358449
13089809959604496472
1561607543806976909
704865086165131395
4750114500765789463
8620101000132483891
1061990993707638791
8219417779659049453
16783172337878697026
731502258552473136
15516870835064396649
13412140913912394465
5029558179142432386
9655856473800271062
14498308915283050...

result:

ok 200000 lines

Test #37:

score: 19
Accepted
time: 566ms
memory: 93688kb

input:

200000 200000
13667364256171297683 5643454264481609425 13916992424255487273 16139471110620927446 10964822257543206396 18104319795931117637 6754294313610492941 627150985476406559 9787453073837140391 8330282299925244302 16457178623381098023 2644823686047461659 3971198924127091796 9747389824949735337 1...

output:

11367465309833674818
18362877133708215281
7423548724337603968
8957456044849213851
17833913066069915980
7858235162317128668
12543057704351927321
10505054748074388644
6816176482433035300
2467436539272277421
1679282916199502250
4514431222303891247
8020348968469583082
4250522620562980350
344143146282723...

result:

ok 200000 lines

Test #38:

score: 19
Accepted
time: 1675ms
memory: 92116kb

input:

200000 200000
8264785020939323331 5620958879723030311 933008402364228745 5711653520387260744 16167130674961631916 10635243671618608635 7034482071437480120 10254956504177159052 10510387087831623788 8381634740474427698 9506597691312026965 14784451691298216046 15821757099494287606 1919888068508281591 1...

output:

5787014875832445646
9634577796009446262
12314294073540302873
2915216425908688602
7120463906657998875
4286046781319255714
6776880553034928756
7781782119312943753
10261843991161497641
6413565360321098258
15025688638596291097
9526784383328827422
4012177064000612489
1287077077700121461
98702777920648956...

result:

ok 200000 lines

Test #39:

score: 19
Accepted
time: 621ms
memory: 92984kb

input:

200000 200000
11664667196988092805 1811572170904050995 15694419630875459125 12737549840477675073 16755302998318006416 4014818780481352253 5609118000649893828 6256332194728466258 15733576495075669968 17960532384856428505 15897732465031414620 17425753576410476171 4620624862371502705 112264419736513372...

output:

6480474289914832244
5686011217288555755
14160731859453855234
17554436276709117739
2341367826083254204
8545580044567165676
264741062779916095
3300445074446425091
1133253489203829542
15906618027983611292
4617068730941954223
9183813939934374009
17667722659841632674
17058280131349615456
5995389694319663...

result:

ok 200000 lines

Test #40:

score: 19
Accepted
time: 801ms
memory: 93564kb

input:

200000 200000
1537940886958943461 9001579450047645548 5527298164056925772 15445874594277229387 11547996012713764596 2685142508745516922 15898551218448062337 16566357055814699599 15778851736432174335 10222916087451023672 14639095824490451029 13130899683058695675 2954207938828868462 150325623383373666...

output:

6794024285749225899
15444253183026756906
16252225983581025191
18270054647591833460
14669804966517502833
7889126920459519979
11162985402720101082
6093427967053788994
10568703419124160247
10842018941076619829
12114458223856608006
16611571295135208112
6660992456255029750
14854289142138250053
8448421034...

result:

ok 200000 lines

Test #41:

score: 19
Accepted
time: 892ms
memory: 92004kb

input:

200000 200000
9312450956088465409 13091411438344500136 13533801408631028803 397220365455228788 9050318983523848941 14099016315633088068 17718824544128458130 18224580765371017222 16359847342241893914 6209442109030804295 8140737573685484628 16329892452717577856 12435238272437023209 1214903064014288477...

output:

17881136615169673858
10075746974396262535
1101717753396811008
11092187645455964376
312406901260616120
15269190090424605570
16293852523769965660
7287397773622456008
12586683442681630396
10525460771223157010
16483491603350167181
5677129374080663282
17770626863503596216
16241388034502960475
16358076653...

result:

ok 200000 lines

Subtask #7:

score: 0
Skipped

Dependency #1:

100%
Accepted

Dependency #2:

0%