QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#665377 | #9492. 树上简单求和 | maspy | 24 | 1675ms | 93688kb | C++23 | 31.2kb | 2024-10-22 11:54:56 | 2024-10-22 11:54:56 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "/home/maspy/compro/library/graph/tree.hpp"
#line 2 "/home/maspy/compro/library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 4 "/home/maspy/compro/library/graph/tree.hpp"
// HLD euler tour をとっていろいろ。
template <typename GT>
struct Tree {
using Graph_type = GT;
GT &G;
using WT = typename GT::cost_type;
int N;
vector<int> LID, RID, head, V, parent, VtoE;
vc<int> depth;
vc<WT> depth_weighted;
Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }
void build(int r = 0, bool hld = 1) {
if (r == -1) return; // build を遅延したいとき
N = G.N;
LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
depth.assign(N, -1), depth_weighted.assign(N, 0);
assert(G.is_prepared());
int t1 = 0;
dfs_sz(r, -1, hld);
dfs_hld(r, t1);
}
void dfs_sz(int v, int p, bool hld) {
auto &sz = RID;
parent[v] = p;
depth[v] = (p == -1 ? 0 : depth[p] + 1);
sz[v] = 1;
int l = G.indptr[v], r = G.indptr[v + 1];
auto &csr = G.csr_edges;
// 使う辺があれば先頭にする
for (int i = r - 2; i >= l; --i) {
if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
}
int hld_sz = 0;
for (int i = l; i < r; ++i) {
auto e = csr[i];
if (depth[e.to] != -1) continue;
depth_weighted[e.to] = depth_weighted[v] + e.cost;
VtoE[e.to] = e.id;
dfs_sz(e.to, v, hld);
sz[v] += sz[e.to];
if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
}
}
void dfs_hld(int v, int ×) {
LID[v] = times++;
RID[v] += LID[v];
V[LID[v]] = v;
bool heavy = true;
for (auto &&e: G[v]) {
if (depth[e.to] <= depth[v]) continue;
head[e.to] = (heavy ? head[v] : e.to);
heavy = false;
dfs_hld(e.to, times);
}
}
vc<int> heavy_path_at(int v) {
vc<int> P = {v};
while (1) {
int a = P.back();
for (auto &&e: G[a]) {
if (e.to != parent[a] && head[e.to] == v) {
P.eb(e.to);
break;
}
}
if (P.back() == a) break;
}
return P;
}
int heavy_child(int v) {
int k = LID[v] + 1;
if (k == N) return -1;
int w = V[k];
return (parent[w] == v ? w : -1);
}
int e_to_v(int eid) {
auto e = G.edges[eid];
return (parent[e.frm] == e.to ? e.frm : e.to);
}
int v_to_e(int v) { return VtoE[v]; }
int get_eid(int u, int v) {
if (parent[u] != v) swap(u, v);
assert(parent[u] == v);
return VtoE[u];
}
int ELID(int v) { return 2 * LID[v] - depth[v]; }
int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }
// 目標地点へ進む個数が k
int LA(int v, int k) {
assert(k <= depth[v]);
while (1) {
int u = head[v];
if (LID[v] - k >= LID[u]) return V[LID[v] - k];
k -= LID[v] - LID[u] + 1;
v = parent[u];
}
}
int la(int u, int v) { return LA(u, v); }
int LCA(int u, int v) {
for (;; v = parent[head[v]]) {
if (LID[u] > LID[v]) swap(u, v);
if (head[u] == head[v]) return u;
}
}
int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); }
int lca(int u, int v) { return LCA(u, v); }
int subtree_size(int v, int root = -1) {
if (root == -1) return RID[v] - LID[v];
if (v == root) return N;
int x = jump(v, root, 1);
if (in_subtree(v, x)) return RID[v] - LID[v];
return N - RID[x] + LID[x];
}
int dist(int a, int b) {
int c = LCA(a, b);
return depth[a] + depth[b] - 2 * depth[c];
}
WT dist_weighted(int a, int b) {
int c = LCA(a, b);
return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
}
// a is in b
bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }
int jump(int a, int b, ll k) {
if (k == 1) {
if (a == b) return -1;
return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
}
int c = LCA(a, b);
int d_ac = depth[a] - depth[c];
int d_bc = depth[b] - depth[c];
if (k > d_ac + d_bc) return -1;
if (k <= d_ac) return LA(a, k);
return LA(b, d_ac + d_bc - k);
}
vc<int> collect_child(int v) {
vc<int> res;
for (auto &&e: G[v])
if (e.to != parent[v]) res.eb(e.to);
return res;
}
vc<int> collect_light(int v) {
vc<int> res;
bool skip = true;
for (auto &&e: G[v])
if (e.to != parent[v]) {
if (!skip) res.eb(e.to);
skip = false;
}
return res;
}
vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
// [始点, 終点] の"閉"区間列。
vc<pair<int, int>> up, down;
while (1) {
if (head[u] == head[v]) break;
if (LID[u] < LID[v]) {
down.eb(LID[head[v]], LID[v]);
v = parent[head[v]];
} else {
up.eb(LID[u], LID[head[u]]);
u = parent[head[u]];
}
}
if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
reverse(all(down));
up.insert(up.end(), all(down));
return up;
}
// 辺の列の情報 (frm,to,str)
// str = "heavy_up", "heavy_down", "light_up", "light_down"
vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) {
vc<tuple<int, int, string>> up, down;
while (1) {
if (head[u] == head[v]) break;
if (LID[u] < LID[v]) {
if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v];
down.eb(parent[v], v, "light_down"), v = parent[v];
} else {
if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u];
up.eb(u, parent[u], "light_up"), u = parent[u];
}
}
if (LID[u] < LID[v]) down.eb(u, v, "heavy_down");
elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up");
reverse(all(down));
concat(up, down);
return up;
}
vc<int> restore_path(int u, int v) {
vc<int> P;
for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
if (a <= b) {
FOR(i, a, b + 1) P.eb(V[i]);
} else {
FOR_R(i, b, a + 1) P.eb(V[i]);
}
}
return P;
}
// path [a,b] と [c,d] の交わり. 空ならば {-1,-1}.
// https://codeforces.com/problemset/problem/500/G
pair<int, int> path_intersection(int a, int b, int c, int d) {
int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d);
int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d);
int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d)
if (x != y) return {x, y};
int z = ac ^ ad ^ cd;
if (x != z) x = -1;
return {x, x};
}
};
#line 1 "/home/maspy/compro/library/ds/kdtree/kdtree_acted_monoid.hpp"
template <class ActedMonoid, typename XY>
struct KDTree_ActedMonoid {
using AM = ActedMonoid;
using MX = typename AM::Monoid_X;
using MA = typename AM::Monoid_A;
using X = typename AM::X;
using A = typename AM::A;
static_assert(MX::commute);
// 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う
vc<tuple<XY, XY, XY, XY>> closed_range;
vc<X> dat;
vc<A> lazy;
vc<int> size;
int n;
KDTree_ActedMonoid(vc<XY> xs, vc<XY> ys, vc<X> vs) : n(len(xs)) {
assert(n > 0);
int log = 0;
while ((1 << log) < n) ++log;
dat.resize(1 << (log + 1));
lazy.assign(1 << log, MA::unit());
closed_range.resize(1 << (log + 1));
size.resize(1 << (log + 1));
build(1, xs, ys, vs);
}
void multiply(XY x, XY y, const X& v) { multiply_rec(1, x, y, v); }
// [xl, xr) x [yl, yr)
X prod(XY xl, XY xr, XY yl, XY yr) {
assert(xl <= xr && yl <= yr);
return prod_rec(1, xl, xr, yl, yr);
}
X prod_all() { return dat[1]; }
// [xl, xr) x [yl, yr)
void apply(XY xl, XY xr, XY yl, XY yr, A a) {
assert(xl <= xr && yl <= yr);
return apply_rec(1, xl, xr, yl, yr, a);
}
private:
void build(int idx, vc<XY> xs, vc<XY> ys, vc<X> vs, bool divx = true) {
int n = len(xs);
size[idx] = n;
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
xmin = ymin = infty<XY>;
xmax = ymax = -infty<XY>;
FOR(i, n) {
auto x = xs[i], y = ys[i];
chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y);
}
if (xmin == xmax && ymin == ymax) {
X x = MX::unit();
for (auto&& v: vs) x = MX::op(x, v);
dat[idx] = x;
return;
}
int m = n / 2;
vc<int> I(n);
iota(all(I), 0);
if (divx) {
nth_element(I.begin(), I.begin() + m, I.end(),
[xs](int i, int j) { return xs[i] < xs[j]; });
} else {
nth_element(I.begin(), I.begin() + m, I.end(),
[ys](int i, int j) { return ys[i] < ys[j]; });
}
xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I);
build(2 * idx + 0, {xs.begin(), xs.begin() + m},
{ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, !divx);
build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()},
{vs.begin() + m, vs.end()}, !divx);
dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]);
}
inline bool is_leaf(int idx) {
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
return xmin == xmax && ymin == ymax;
}
inline bool isin(XY x, XY y, int idx) {
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
return (xmin <= x && x <= xmax && ymin <= y && y <= ymax);
}
void apply_at(int idx, A a) {
dat[idx] = AM::act(dat[idx], a, size[idx]);
if (!is_leaf(idx)) lazy[idx] = MA::op(lazy[idx], a);
}
void push(int idx) {
if (lazy[idx] == MA::unit()) return;
apply_at(2 * idx + 0, lazy[idx]), apply_at(2 * idx + 1, lazy[idx]);
lazy[idx] = MA::unit();
}
bool multiply_rec(int idx, XY x, XY y, X v) {
if (!isin(x, y, idx)) return false;
if (is_leaf(idx)) {
dat[idx] = MX::op(dat[idx], v);
size[idx] += 1;
return true;
}
push(idx);
bool done = 0;
if (multiply_rec(2 * idx + 0, x, y, v)) done = 1;
if (!done && multiply_rec(2 * idx + 1, x, y, v)) done = 1;
if (done) {
dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]);
size[idx] = size[2 * idx + 0] + size[2 * idx + 1];
}
return done;
}
X prod_rec(int idx, XY x1, XY x2, XY y1, XY y2) {
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
if (x2 <= xmin || xmax < x1) return MX::unit();
if (y2 <= ymin || ymax < y1) return MX::unit();
if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return dat[idx]; }
push(idx);
return MX::op(prod_rec(2 * idx + 0, x1, x2, y1, y2),
prod_rec(2 * idx + 1, x1, x2, y1, y2));
}
void apply_rec(int idx, XY x1, XY x2, XY y1, XY y2, A a) {
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
if (x2 <= xmin || xmax < x1) return;
if (y2 <= ymin || ymax < y1) return;
if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) {
return apply_at(idx, a);
}
push(idx);
apply_rec(2 * idx + 0, x1, x2, y1, y2, a);
apply_rec(2 * idx + 1, x1, x2, y1, y2, a);
dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]);
}
};
#line 2 "/home/maspy/compro/library/alg/monoid/add.hpp"
template <typename E>
struct Monoid_Add {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 2 "/home/maspy/compro/library/alg/acted_monoid/sum_add.hpp"
template <typename E>
struct ActedMonoid_Sum_Add {
using Monoid_X = Monoid_Add<E>;
using Monoid_A = Monoid_Add<E>;
using X = typename Monoid_X::value_type;
using A = typename Monoid_A::value_type;
static constexpr X act(const X &x, const A &a, const ll &size) {
return x + a * E(size);
}
};
#line 7 "main.cpp"
using AM = ActedMonoid_Sum_Add<u64>;
void solve() {
INT(N, Q);
VEC(u64, A, N);
Graph<int, 0> G1(N);
Graph<int, 0> G2(N);
G1.read_tree();
G2.read_tree();
Tree<decltype(G1)> T1(G1);
Tree<decltype(G2)> T2(G2);
vc<int> X(N), Y(N);
FOR(i, N) X[i] = T1.LID[i];
FOR(i, N) Y[i] = T2.LID[i];
KDTree_ActedMonoid<AM, int> KDT(X, Y, A);
FOR(Q) {
INT(a, b);
U64(c);
--a, --b;
for (auto [s, t]: T1.get_path_decomposition(a, b, 0)) {
if (s > t) swap(s, t);
KDT.apply(s, t + 1, 0, N, c);
}
u64 ANS = 0;
for (auto [s, t]: T2.get_path_decomposition(a, b, 0)) {
if (s > t) swap(s, t);
ANS += KDT.prod(0, N, s, t + 1);
}
print(ANS);
}
}
signed main() { solve(); }
详细
Subtask #1:
score: 5
Accepted
Test #1:
score: 5
Accepted
time: 36ms
memory: 5060kb
input:
3000 3000 7236742292501328495 17973811477309806363 16075782662531676171 17971236571771878676 11392080645527132110 3685563455925680459 9773593720088356683 8313828403245053795 7736401634567449043 1634817828009987181 6951124933529719486 12775126714635387213 15460977209223753216 397573676785925632 31372...
output:
12105153858659381124 18367442707572066757 11668241962484097878 11288238120352358472 1742468310074622166 9942835997686093671 3305677510569607477 17741602000425004088 14984128302052618266 1075081718074605786 6509217537832509095 16750513627843273113 8569443169249732820 14475184194298579044 156111071108...
result:
ok 3000 lines
Test #2:
score: 5
Accepted
time: 37ms
memory: 4872kb
input:
3000 3000 1612333876155866602 8538417838700679227 6080765231437578796 17905224638340228394 12270907925903144224 17944105326358594564 17302041033966840611 1006351124625222126 496336153231744288 9393087977687876980 9553975238547373621 9361882717200384390 15051881329169144319 9757999873162420435 882725...
output:
11133131376095771981 7909873024850695144 16250639243139481926 14562550655578101207 8274205996508264973 178549413271904466 2368406276743327913 7464009386554813982 9439464815411774627 1471756740732097060 15201641099137019227 6774030298556871576 18156105511913219667 1553508745644446823 4225137078364117...
result:
ok 3000 lines
Test #3:
score: 5
Accepted
time: 8ms
memory: 5060kb
input:
3000 3000 9709246061666095435 1861649101703072889 10620139893353930613 17635186539135419482 710209455559527146 6075101384669982511 1120305006358459674 9703156967435388252 1397046737759839382 5259056712870179169 8253156305433022999 710199693203327302 15130650033641744675 10720111924616886955 15543351...
output:
7834604406305153073 5037061270969117785 16481572776620825702 15177894197606565804 3120320619896892806 18008650876379132344 7417108723176816402 13515164814425439399 3299769942258542105 15897528270699011770 11642805469843844638 16764682282380318054 4824039114054405772 4859834102876213962 1234210473247...
result:
ok 3000 lines
Test #4:
score: 5
Accepted
time: 33ms
memory: 4888kb
input:
3000 3000 16538965545220923528 18062192327708400751 10422465150728338588 3471522151129113073 1236650672072793692 1942240200040301168 13090729759591037952 15335798523677372669 9912100622761466753 11177948788405690381 3710859061697501523 4984944638666762977 17278589713462878008 6371292801024547050 868...
output:
8182453933067329108 13535217473847106938 17067385337010269798 3806121648880466130 11322569288575153037 11079197311131660121 9670138330007803226 6554062218199796758 965954569567598779 18055887214749050688 6142620503089407421 8690117812667761187 9547139298346295115 8890987597519353054 1755036654049586...
result:
ok 3000 lines
Test #5:
score: 5
Accepted
time: 30ms
memory: 5084kb
input:
3000 3000 17759588706587888497 10550000524636484378 11601004513528075994 7150322911283804521 4459707248078569712 10692395730842402625 8940418793863522991 12967068928670540447 9954278250450015940 13702413838608801301 10598390500439869870 15110245227553613794 490862872212325709 15164980555660957366 94...
output:
9743736929788175512 16812303667256960040 14694223512340829897 550204232580650311 1175342872438242313 17622261358285047637 7413682703975031220 12643066512274062227 1868985217436232595 5471830334855681322 8070132260376389587 3970361922096052085 218281824643752746 991917103472727104 2960248244218479023...
result:
ok 3000 lines
Subtask #2:
score: 0
Time Limit Exceeded
Dependency #1:
100%
Accepted
Test #6:
score: 12
Accepted
time: 0ms
memory: 3612kb
input:
5 7 0 3 2 6 4 1 2 2 4 1 5 5 3 3 4 4 2 2 5 5 1 5 3 0 3 2 5 4 4 4 4 4 3 5 2 0 3 4 3 5 5 6
output:
15 21 10 13 17 26 18
result:
ok 7 lines
Test #7:
score: 0
Time Limit Exceeded
input:
70000 70000 3805295436278888199 9842309351516174725 1566744796319231180 2206519284152256579 2715928675931950447 6346821976624501261 16020972671480798719 14702021753902144915 17127828773798978442 15779168055669690475 4964561323934614661 9395102787554964450 6377076753365184543 15167378195767668817 288...
output:
5971729064136092190 6457394048987305727 13604212649915736394 8639973959364892219 437861319070967556 16133076880026962355 5384937395694479961 4591478439775690843 16071919565966962790 15485626634068969082 10235993901046758372 3449528613427081475 8064280362779764074 12784984512326434905 424951714880051...
result:
Subtask #3:
score: 0
Skipped
Dependency #2:
0%
Subtask #4:
score: 0
Time Limit Exceeded
Test #21:
score: 0
Time Limit Exceeded
input:
200000 200000 622783158027686223 2242697872372232537 8481648430436878777 10092474834140799044 15403999682625301609 12614289513474949582 9180944589267018841 7823784919308285798 8257785171198951273 5134508521895120821 8041682272181381093 3835432206618893170 2653803171409877650 5589823419153460372 1007...
output:
9042998055336671259 11611293489264521142 5835924579879681322 9187084356907537870 17810346410706951073 565636160725988981 837626748701483168 16059573289829807099 7246210357888652619 7725251776483176497 17088098442183693937 9042305714006927228 10907378739216215456 6526772063609981609 51578202456469609...
result:
Subtask #5:
score: 0
Time Limit Exceeded
Test #27:
score: 0
Time Limit Exceeded
input:
200000 200000 1958469220619413759 14991498002015735322 6054491201406941902 18206143187746582567 15082377615826460430 2936248617457291604 10073577150351675920 16534472678586906457 2207599132486246393 10301540360769075442 1492580560381080472 551692353431379140 13238280352539145808 8462626987240986565 ...
output:
11479812171669345085 7612644482907856514 7664363696211351499 10419050713553268082 7115244954460011045 9683711549165598600 15714069303067445091 5098969076555779384 17312050420753525411 13302302653999024684 15237835478514966949 1011923303415334401 15280591493481885526 11613220426756932450 109080667232...
result:
Subtask #6:
score: 19
Accepted
Test #34:
score: 19
Accepted
time: 996ms
memory: 93080kb
input:
200000 200000 6794776813641982926 1561596256197101737 10910039723053043515 7892247858295192798 12233819960547881004 17695389034783066733 9173201689566865598 17626618141377486739 7358781671024283919 6787559733384974662 3884392438269280436 14872846228351316833 9037842441501571648 14299818404271084016 ...
output:
5519324519442957729 13462861144392030499 8898301730697138469 4148979398311169421 15090246851327208067 8628707816538336707 13867297907038176506 10296428352441857103 15654304415409320656 7404566644919251615 9870876264015800597 6356224262148620783 249874952637342736 9023132497407647441 1416175985367538...
result:
ok 200000 lines
Test #35:
score: 19
Accepted
time: 1672ms
memory: 93016kb
input:
200000 200000 11863650499568632095 6646669915142734572 4053375998669045948 14662364203830894482 7319511971537928619 4131498054494361157 7103043576860354080 2730587527012777841 8626012955062792888 7098277606750148625 12990209623538415680 100871355087529915 12267084290544303817 7008468684400973426 856...
output:
11796827338356402281 853302424664654652 564419876379363056 11173501553976506440 2595891684253320024 5590778053561483334 16613470245879883493 5698255402711241072 8125718572356459513 11371252602486101178 7605800585391618993 17939653588292877927 15906636118593883045 14840423959426947118 122409373008752...
result:
ok 200000 lines
Test #36:
score: 19
Accepted
time: 581ms
memory: 91968kb
input:
200000 200000 7819034666999754227 1261434745131385029 4729051582132640442 9603230030483067185 9188148629137054368 4647584887897271213 14878584596185020248 5036501082632549589 13434605396022727436 10747373329537943689 2859138487129973374 17399126170759425906 5170686633178482234 1548518177806164267 68...
output:
13979872615900358449 13089809959604496472 1561607543806976909 704865086165131395 4750114500765789463 8620101000132483891 1061990993707638791 8219417779659049453 16783172337878697026 731502258552473136 15516870835064396649 13412140913912394465 5029558179142432386 9655856473800271062 14498308915283050...
result:
ok 200000 lines
Test #37:
score: 19
Accepted
time: 566ms
memory: 93688kb
input:
200000 200000 13667364256171297683 5643454264481609425 13916992424255487273 16139471110620927446 10964822257543206396 18104319795931117637 6754294313610492941 627150985476406559 9787453073837140391 8330282299925244302 16457178623381098023 2644823686047461659 3971198924127091796 9747389824949735337 1...
output:
11367465309833674818 18362877133708215281 7423548724337603968 8957456044849213851 17833913066069915980 7858235162317128668 12543057704351927321 10505054748074388644 6816176482433035300 2467436539272277421 1679282916199502250 4514431222303891247 8020348968469583082 4250522620562980350 344143146282723...
result:
ok 200000 lines
Test #38:
score: 19
Accepted
time: 1675ms
memory: 92116kb
input:
200000 200000 8264785020939323331 5620958879723030311 933008402364228745 5711653520387260744 16167130674961631916 10635243671618608635 7034482071437480120 10254956504177159052 10510387087831623788 8381634740474427698 9506597691312026965 14784451691298216046 15821757099494287606 1919888068508281591 1...
output:
5787014875832445646 9634577796009446262 12314294073540302873 2915216425908688602 7120463906657998875 4286046781319255714 6776880553034928756 7781782119312943753 10261843991161497641 6413565360321098258 15025688638596291097 9526784383328827422 4012177064000612489 1287077077700121461 98702777920648956...
result:
ok 200000 lines
Test #39:
score: 19
Accepted
time: 621ms
memory: 92984kb
input:
200000 200000 11664667196988092805 1811572170904050995 15694419630875459125 12737549840477675073 16755302998318006416 4014818780481352253 5609118000649893828 6256332194728466258 15733576495075669968 17960532384856428505 15897732465031414620 17425753576410476171 4620624862371502705 112264419736513372...
output:
6480474289914832244 5686011217288555755 14160731859453855234 17554436276709117739 2341367826083254204 8545580044567165676 264741062779916095 3300445074446425091 1133253489203829542 15906618027983611292 4617068730941954223 9183813939934374009 17667722659841632674 17058280131349615456 5995389694319663...
result:
ok 200000 lines
Test #40:
score: 19
Accepted
time: 801ms
memory: 93564kb
input:
200000 200000 1537940886958943461 9001579450047645548 5527298164056925772 15445874594277229387 11547996012713764596 2685142508745516922 15898551218448062337 16566357055814699599 15778851736432174335 10222916087451023672 14639095824490451029 13130899683058695675 2954207938828868462 150325623383373666...
output:
6794024285749225899 15444253183026756906 16252225983581025191 18270054647591833460 14669804966517502833 7889126920459519979 11162985402720101082 6093427967053788994 10568703419124160247 10842018941076619829 12114458223856608006 16611571295135208112 6660992456255029750 14854289142138250053 8448421034...
result:
ok 200000 lines
Test #41:
score: 19
Accepted
time: 892ms
memory: 92004kb
input:
200000 200000 9312450956088465409 13091411438344500136 13533801408631028803 397220365455228788 9050318983523848941 14099016315633088068 17718824544128458130 18224580765371017222 16359847342241893914 6209442109030804295 8140737573685484628 16329892452717577856 12435238272437023209 1214903064014288477...
output:
17881136615169673858 10075746974396262535 1101717753396811008 11092187645455964376 312406901260616120 15269190090424605570 16293852523769965660 7287397773622456008 12586683442681630396 10525460771223157010 16483491603350167181 5677129374080663282 17770626863503596216 16241388034502960475 16358076653...
result:
ok 200000 lines
Subtask #7:
score: 0
Skipped
Dependency #1:
100%
Accepted
Dependency #2:
0%