QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#66188 | #4886. Best Sun | japan022022 | TL | 1497ms | 4396kb | C++20 | 23.5kb | 2022-12-07 23:25:06 | 2022-12-07 23:25:06 |
Judging History
answer
#line 1 "library/my_template.hpp"
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) \
overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T pick(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T pick(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T pick(pqg<T> &que) {
assert(que.size());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T pick(vc<T> &que) {
assert(que.size());
T a = que.back();
que.pop_back();
return a;
}
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename F>
ll binary_search(F check, ll ok, ll ng) {
assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = S[i] - first_char; }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
template <typename CNT, typename T>
vc<CNT> bincount(const vc<T> &A, int size) {
vc<CNT> C(size);
for (auto &&x: A) { ++C[x]; }
return C;
}
// stable
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(A.size());
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
int n = len(I);
vc<T> B(n);
FOR(i, n) B[i] = A[I[i]];
return B;
}
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 1 "library/geo/count_points_in_triangles.hpp"
#line 2 "library/geo/angle_sort.hpp"
#line 2 "library/geo/base.hpp"
template <typename T>
struct Point {
T x, y;
Point() = default;
template <typename A, typename B>
Point(A x, B y) : x(x), y(y) {}
template <typename A, typename B>
Point(pair<A, B> p) : x(p.fi), y(p.se) {}
Point operator+(Point p) const { return {x + p.x, y + p.y}; }
Point operator-(Point p) const { return {x - p.x, y - p.y}; }
bool operator==(Point p) const { return x == p.x && y == p.y; }
Point operator-() const { return {-x, -y}; }
bool operator<(Point p) const {
if (x != p.x) return x < p.x;
return y < p.y;
}
T dot(Point other) { return x * other.x + y * other.y; }
T det(Point other) { return x * other.y - y * other.x; }
void read() { fastio::read(x), fastio::read(y); }
void write() { fastio::printer.write(pair<T, T>({x, y})); }
};
template <typename REAL, typename T>
REAL dist(Point<T> A, Point<T> B) {
A = A - B;
T p = A.dot(A);
return sqrt(REAL(p));
}
template <typename T>
struct Line {
T a, b, c;
Line(T a, T b, T c) : a(a), b(b), c(c) {}
Line(Point<T> A, Point<T> B) {
a = A.y - B.y;
b = B.x - A.x;
c = A.x * B.y - A.y * B.x;
}
Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {}
template <typename U>
U eval(Point<U> P) {
return a * P.x + b * P.y + c;
}
template <typename U>
T eval(U x, U y) {
return a * x + b * y + c;
}
bool is_parallel(Line other) { return a * other.b - b * other.a == 0; }
bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; }
};
template <typename T>
struct Segment {
Point<T> A, B;
Segment(Point<T> A, Point<T> B) : A(A), B(B) {}
Segment(T x1, T y1, T x2, T y2)
: Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {}
Line<T> to_Line() { return Line(A, B); }
};
template <typename T>
struct Circle {
Point<T> O;
T r;
Circle(Point<T> O, T r) : O(O), r(r) {}
Circle(T x, T y, T r) : O(Point<T>(x, y)), r(r) {}
};
template <typename T>
struct Polygon {
vc<Point<T>> points;
T a;
template <typename A, typename B>
Polygon(vc<pair<A, B>> pairs) {
for (auto&& [a, b]: pairs) points.eb(Point<T>(a, b));
build();
}
Polygon(vc<Point<T>> points) : points(points) { build(); }
int size() { return len(points); }
template <typename REAL>
REAL area() {
return a * 0.5;
}
template <enable_if_t<is_integral<T>::value, int> = 0>
T area_2() {
return a;
}
bool is_convex() {
FOR(j, len(points)) {
int i = (j == 0 ? len(points) - 1 : j - 1);
int k = (j == len(points) - 1 ? 0 : j + 1);
if ((points[j] - points[i]).det(points[k] - points[j]) < 0) return false;
}
return true;
}
private:
void build() {
a = 0;
FOR(i, len(points)) {
int j = (i + 1 == len(points) ? 0 : i + 1);
a += points[i].det(points[j]);
}
if (a < 0) {
a = -a;
reverse(all(points));
}
}
};
#line 4 "library/geo/angle_sort.hpp"
// 偏角ソートに対する argsort
template <typename T>
vector<int> angle_argsort(vector<Point<T>>& P) {
vector<int> lower, origin, upper;
const Point<T> O = {0, 0};
FOR(i, len(P)) {
if (P[i] == O) origin.eb(i);
elif ((P[i].y < 0) || (P[i].y == 0 && P[i].x > 0)) lower.eb(i);
else upper.eb(i);
}
sort(all(lower), [&](auto& i, auto& j) { return P[i].det(P[j]) > 0; });
sort(all(upper), [&](auto& i, auto& j) { return P[i].det(P[j]) > 0; });
auto& I = lower;
I.insert(I.end(), all(origin));
I.insert(I.end(), all(upper));
return I;
}
// 偏角ソートに対する argsort
template <typename T>
vector<int> angle_argsort(vector<pair<T, T>>& P) {
vc<Point<T>> tmp(len(P));
FOR(i, len(P)) tmp[i] = Point<T>(P[i]);
return angle_argsort<T>(tmp);
}
// inplace に偏角ソートする
// index が欲しい場合は angle_argsort
template <typename T>
void angle_sort(vector<Point<T>>& P) {
auto I = angle_argsort<T>(P);
P = rearrange(P, I);
}
// inplace に偏角ソートする
// index が欲しい場合は angle_argsort
template <typename T>
void angle_sort(vector<pair<T, T>>& P) {
auto I = angle_argsort<T>(P);
P = rearrange(P, I);
}
#line 2 "library/random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 5 "library/geo/count_points_in_triangles.hpp"
// 点群 A, B を入力 (Point<ll>)
// query(i,j,k):三角形 AiAjAk 内部の Bl の個数(非負)を返す
// 前計算 O(N^2M)、クエリ O(1)
struct Count_Points_In_Triangles {
using P = Point<ll>;
const int LIM = 1'000'000'000 + 10;
vc<P> A, B;
vc<int> I, rk; // O から見た偏角ソート順を管理
vc<int> point; // A[i] と一致する B[j] の数え上げ
vvc<int> seg; // 線分 A[i]A[j] 内にある B[k] の数え上げ
vvc<int> tri; // OA[i]A[j] 内部にある B[k] の数え上げ
Count_Points_In_Triangles(vc<P> A, vc<P> B) : A(A), B(B) {
for (auto&& p: A) assert(-LIM < min(p.x, p.y) && max(p.x, p.y) < LIM);
for (auto&& p: B) assert(-LIM < min(p.x, p.y) && max(p.x, p.y) < LIM);
build();
}
int query(int i, int j, int k) {
i = rk[i], j = rk[j], k = rk[k];
if (i > j) swap(i, j);
if (j > k) swap(j, k);
if (i > j) swap(i, j);
assert(i <= j && j <= k);
ll d = (A[j] - A[i]).det(A[k] - A[i]);
if (d == 0) return 0;
if (d > 0) { return tri[i][j] + tri[j][k] - tri[i][k] - seg[i][k]; }
int x = tri[i][k] - tri[i][j] - tri[j][k];
return x - seg[i][j] - seg[j][k] - point[j];
}
private:
P take_origin() {
int N = len(A), M = len(B);
while (1) {
P O = P{-LIM, RNG(-LIM, LIM)};
bool ok = 1;
FOR(i, N) FOR(j, N) {
if (A[i] == A[j]) continue;
if ((A[i] - O).det(A[j] - O) == 0) ok = 0;
}
FOR(i, N) FOR(j, M) {
if (A[i] == B[j]) continue;
if ((A[i] - O).det(B[j] - O) == 0) ok = 0;
}
if (ok) return O;
}
return P{};
}
void build() {
P O = take_origin();
for (auto&& p: A) p = p - O;
for (auto&& p: B) p = p - O;
int N = len(A), M = len(B);
I.resize(N), rk.resize(N);
iota(all(I), 0);
sort(all(I), [&](auto& a, auto& b) -> bool { return A[a].det(A[b]) > 0; });
FOR(i, N) rk[I[i]] = i;
A = rearrange(A, I);
point.assign(N, 0);
seg.assign(N, vc<int>(N));
tri.assign(N, vc<int>(N));
FOR(i, N) FOR(j, M) if (A[i] == B[j])++ point[i];
FOR(i, N) FOR(j, i + 1, N) {
FOR(k, M) {
if (A[i].det(B[k]) <= 0) continue;
if (A[j].det(B[k]) >= 0) continue;
ll d = (B[k] - A[i]).det(A[j] - A[i]);
if (d == 0) ++seg[i][j];
if (d < 0) ++tri[i][j];
}
}
}
};
#line 5 "main.cpp"
using Re = double;
using P = Point<ll>;
void solve() {
INT(N);
VEC(P, A, N);
Count_Points_In_Triangles CT(A, A);
// 線分 i->j を傾き順でソートする
vc<pair<int, int>> IJ;
{
vc<P> tmp;
FOR(i, N) FOR(j, N) tmp.eb(A[j] - A[i]);
auto I = angle_argsort(tmp);
for (auto&& k: I) {
auto [i, j] = divmod(k, N);
if (i != j) IJ.eb(i, j);
}
}
// i->j のときに足すべき面積
vv(Re, AREA, N, N);
FOR(i, N) FOR(j, N) AREA[i][j] = A[i].det(A[j]) * 0.5;
auto angle = [&](P p) -> Re {
int g = gcd(p.x, p.y);
if (g == 0) g = 1;
return atan2(p.y / g, p.x / g);
};
// i->j のときに足すべき長さ。初手 / 途中 / 最後。
vvv(Re, LEN, 3, N, N);
FOR(i, N) FOR(j, N) {
// 自分自身
Re d = dist<Re>(A[i], A[j]);
LEN[0][i][j] += d;
LEN[1][i][j] += d;
LEN[2][i][j] += d;
}
// i->j のときに足すべき長さ、まず帯状領域のものについて
// 「ちょうど 90 度」はここに含めておく
FOR(i, N) FOR(j, N) if (i != j) {
FOR(k, N) {
if (k == i || k == j) continue;
if ((A[j] - A[i]).dot(A[k] - A[i]) < 0) continue;
if ((A[i] - A[j]).dot(A[k] - A[j]) < 0) continue;
if ((A[k] - A[i]).det(A[j] - A[i]) <= 0) continue;
Re d = min(dist<Re>(A[i], A[k]), dist<Re>(A[j], A[k]));
LEN[0][i][j] += d;
LEN[1][i][j] += d;
LEN[2][i][j] += d;
}
FOR(k, N) {
// if (k == i || k == j) continue;
// -180 < ik + 90 < ij のときに、LEN0 に +
// -180 < jk + 90 <= ij のときに、LEN1 に -
// ik + 90 <= ij のときに、LEN1 に +
// ij < jk+90 <= 180 のときに、LEN2 に +
Re IJ = angle(A[j] - A[i]);
Re IK = angle({-(A[k].y - A[i].y), +(A[k].x - A[i].x)});
Re JK = angle({-(A[k].y - A[j].y), +(A[k].x - A[j].x)});
Re di = dist<Re>(A[i], A[k]);
Re dj = dist<Re>(A[j], A[k]);
if (IK < IJ) LEN[0][i][j] += di;
if (JK <= IJ) LEN[0][i][j] -= dj, LEN[1][i][j] -= dj;
if (IK < IJ) LEN[1][i][j] += di, LEN[2][i][j] += di;
if (IJ < JK) LEN[2][i][j] += dj;
}
}
Re ANS = 0;
Re eps = 1e-9;
auto check = [&](const int s, Re w) -> bool {
// s からはじめて、S - wP > 0 を達成できるか?
const ll INF = 1LL << 60;
vc<Re> dp(N, -INF);
dp[s] = 0.0;
for (auto&& [i, j]: IJ) {
if (dp[i] == -INF) continue;
if (CT.query(s, i, j) > 0) continue;
if (i == s) { chmax(dp[j], dp[i] + AREA[i][j] - w * LEN[0][i][j]); }
elif (j == s) { chmax(dp[j], dp[i] + AREA[i][j] - w * LEN[2][i][j]); }
elif (i != s && j != s) {
chmax(dp[j], dp[i] + AREA[i][j] - w * LEN[1][i][j]);
}
}
return dp[s] > eps;
};
vc<bool> done(N);
FOR(N) {
int s = [&]() {
while (1) {
int s = RNG(0, N);
if (done[s]) continue;
return s;
}
return -1;
}();
done[s] = 1;
if (!check(s, ANS + eps)) continue;
Re lo = ANS + eps, hi = 4e12;
FOR(80) {
Re mi = (lo + hi) / 2;
bool ok = check(s, mi);
if (ok) lo = mi;
if (!ok) hi = mi;
}
ANS = lo;
}
print(ANS);
}
signed main() {
INT(T);
FOR(T) solve();
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 4080kb
input:
4 3 -1 -1 1 -1 0 1 4 0 0 10 0 0 10 8 1 5 2 0 -2 0 1 1 -1 1 0 3 8 4 4 -4 4 4 -4 -4 -4 5 6 -6 5 -5 -6 6 -5
output:
0.309016994217240 1.236861427677652 0.271137541410386 1.563100209466980
result:
ok 4 numbers
Test #2:
score: 0
Accepted
time: 150ms
memory: 4144kb
input:
10000 3 702262 828158 -350821 -420883 -466450 13507 3 28647 -193498 126436 -864937 -287798 738936 3 270358 -269567 745815 -485408 834083 677952 3 -2036 -403634 742978 -263774 975937 -609237 3 584248 -472620 482016 -356760 284902 903881 3 -292004 504925 -935756 373793 -781101 -434659 3 -858513 684433...
output:
85789.087398353542085 18268.519361672089872 102489.988390262238681 66685.754428080181242 18674.657937414340267 106468.965131972145173 14427.024651071094922 29966.245302542913123 143547.751083587383619 13097.175688126128080 162410.168316980794771 72070.932417874690145 29369.992627886884293 52867.2944...
result:
ok 10000 numbers
Test #3:
score: 0
Accepted
time: 116ms
memory: 4124kb
input:
10000 3 2 2 2 -2 -5 -5 3 -3 5 5 -4 2 -2 3 -4 1 2 -2 -4 4 3 1 -4 2 1 -4 1 3 2 1 -1 1 -3 3 3 4 5 3 -1 -3 -3 3 1 5 5 0 5 -1 3 2 -3 -5 -3 5 3 3 -4 4 0 -5 5 4 3 2 -3 5 0 2 -5 3 -2 -3 5 -3 5 4 3 -1 4 4 4 4 3 3 5 3 -1 4 2 -1 3 2 -3 4 3 -4 3 3 0 4 -2 -2 -1 -3 3 -2 0 -4 -2 4 2 3 -3 -1 3 1 1 -3 3 2 -5 2 3 -4 ...
output:
0.650700701070052 0.226809070244137 0.494682566160728 0.825532631204007 0.267532474626131 0.737928456332666 0.136852946647847 0.827745795519459 1.389628120365936 0.248476166361209 1.025126265805109 0.225245121511036 0.798168850416742 1.052177633726446 0.270090756669430 0.221028003503229 0.6549291473...
result:
ok 10000 numbers
Test #4:
score: 0
Accepted
time: 194ms
memory: 4140kb
input:
5625 4 -405394 -381883 602267 -335687 -620806 984110 271283 531233 4 196903 -993060 290851 358123 -890076 -717709 -681138 209884 4 -849589 607722 -21517 -586295 208561 -220953 924518 622983 4 -832186 456270 289934 43656 636006 339718 188963 113907 4 -305762 -872205 -520125 368722 -774548 984204 4245...
output:
232625.004274430393707 268175.826985963911284 159589.323630517290439 60440.753042598487809 133893.123436351859709 63201.990748626820277 167697.663406134757679 129470.013284316300997 126903.854072810136131 106643.971263097046176 131692.311227904719999 100421.055016212529154 148490.274817902391078 688...
result:
ok 5625 numbers
Test #5:
score: 0
Accepted
time: 156ms
memory: 4132kb
input:
5625 4 -2 -1 4 -5 -2 -4 -4 -4 4 -1 -5 4 4 2 -5 -5 1 4 -3 -4 -3 -1 -5 -1 4 -2 4 -2 4 -4 1 -1 -1 5 -4 4 -3 -5 -1 4 5 -1 3 5 4 -4 -2 1 4 -1 1 3 4 4 -5 3 -3 3 5 -4 -1 4 4 1 2 2 -5 1 0 0 -3 4 -5 -4 2 -3 5 3 -3 2 4 2 -2 -4 3 1 -4 -5 -5 4 -3 5 -2 4 1 3 1 -4 4 0 -5 5 -5 0 -2 -3 2 4 0 5 -1 -4 -2 0 4 -1 4 4 -...
output:
0.491968206772617 1.608023936284702 0.676463563481186 0.814682126414407 1.572795403267834 0.202044801584030 0.442367305765967 0.305583212279053 1.508906909893292 1.322787523737014 0.521855949158265 0.398280450232526 1.219494625779189 1.177491255268827 1.395102692973639 1.073773125969571 0.7540897904...
result:
ok 5625 numbers
Test #6:
score: 0
Accepted
time: 227ms
memory: 4152kb
input:
3600 5 114127 146710 467065 -311758 189643 449065 -303893 -215009 -789281 -140748 5 -449893 654165 -899120 -560520 719351 652759 285007 471281 987628 -767128 5 -587522 89736 -355416 -178001 801765 512722 314119 -136906 350051 762194 5 85697 920768 161507 -533920 -536515 401333 -27632 -987465 112237 ...
output:
84655.199548642136506 270848.726867046905681 202824.036734045512276 135615.191873947740532 119666.508543506162823 89811.870770703477319 254983.153575301344972 189662.747266510996269 64951.657089439431729 154748.442291013780050 214519.682079036196228 163467.532800249318825 278857.257440859044436 1914...
result:
ok 3600 numbers
Test #7:
score: 0
Accepted
time: 181ms
memory: 4128kb
input:
3600 5 2 6 -6 4 4 0 -5 0 3 1 5 0 3 5 -5 2 6 4 0 2 -4 5 2 -2 -6 -3 -5 -5 -1 3 -4 0 5 0 6 -3 -5 5 1 4 -3 -5 6 5 0 -6 -6 -5 -2 6 1 6 2 0 5 2 1 6 5 4 -1 -3 -2 -6 4 5 -1 -2 5 -6 -1 4 -2 3 6 4 5 -6 3 6 -5 4 -4 3 -1 2 -6 5 5 -4 1 -5 1 0 5 -1 3 2 5 -4 6 2 -4 1 -4 5 5 -1 6 5 -3 0 0 6 -2 5 -5 5 2 6 5 2 -1 -4 ...
output:
1.391733814355341 1.060007676049368 1.338660497136608 2.178641491270747 1.867763529512022 1.255064420023239 1.819705452321456 0.946302319143526 1.131643310431369 1.577239085893961 0.521212423100282 1.537179568005399 0.947338474590416 1.047090988085763 0.557229792969016 1.208597020252809 1.2302893723...
result:
ok 3600 numbers
Test #8:
score: 0
Accepted
time: 180ms
memory: 4132kb
input:
3600 5 -3 1 0 -1 2 -3 4 1 5 0 5 -3 -5 1 -5 -2 -2 3 2 1 5 5 -4 -2 4 5 5 3 2 -4 -4 0 5 0 4 -5 3 1 4 -1 1 4 1 5 5 -3 2 -5 -3 -4 -1 1 5 1 5 -5 5 -2 1 -3 2 2 2 -4 5 5 -2 -3 -1 3 1 1 3 -2 -2 -2 5 2 1 -2 -3 -3 -3 5 0 -5 4 5 2 2 -2 5 5 -1 4 -5 -2 4 5 -4 5 -1 -3 -2 5 5 -1 -4 3 5 -5 -4 -1 -3 0 -1 -5 1 -4 -3 5...
output:
0.543380852415936 1.207931264291513 1.575494574190601 0.807518149133358 1.556679601120247 0.682449066971565 0.907440119365144 0.950838997648517 0.853770882844453 1.371308224848877 0.742640802178514 0.401491624020872 0.747427628601607 0.493469159680953 0.711214495049007 0.609299855727899 1.2344361706...
result:
ok 3600 numbers
Test #9:
score: 0
Accepted
time: 183ms
memory: 4140kb
input:
3600 5 0 2 3 -7 7 3 -6 -1 6 -6 5 -3 6 -5 6 -10 -2 -4 -8 -9 8 5 -2 2 2 -9 6 -3 2 10 -5 7 5 -7 9 9 -4 -8 -2 4 10 9 -8 5 -8 -5 -10 0 -7 0 0 -7 6 8 5 10 -7 8 -8 3 1 0 -4 -7 -4 5 2 -9 -3 1 -4 -2 -3 -3 0 1 5 -8 5 -10 6 2 -8 6 -5 -6 8 5 5 8 -8 -9 3 -7 -9 0 -4 3 5 2 -5 2 0 6 7 10 5 -8 -6 5 -10 -2 7 -6 -10 5...
output:
2.105200917171916 1.536768657804009 1.607020250169050 3.526347323447751 1.978433495947134 1.082518584744045 0.946163226621754 1.602327122581572 2.883772155059313 0.940814876098426 1.701362563351895 1.600920246237998 1.933487252551775 0.691865963757284 1.833984299430693 0.630647968964679 3.4339518738...
result:
ok 3600 numbers
Test #10:
score: 0
Accepted
time: 296ms
memory: 4136kb
input:
900 10 -10 -1 8 -6 7 -1 -5 8 -7 -9 4 -2 -9 10 -10 -8 9 9 -3 -6 10 -5 9 -7 -1 -9 -7 -4 6 -5 2 1 -4 10 8 -9 -9 2 0 7 7 10 -3 -7 9 -4 -5 2 1 1 6 7 -4 7 4 -6 0 1 -8 -5 3 -5 10 -3 -10 -8 -7 -5 -5 -6 3 -3 -1 7 -9 1 -5 9 -7 -2 3 -4 9 10 0 1 -3 8 -3 7 4 -10 10 -6 -5 -8 10 4 4 3 0 -8 3 -10 10 4 -5 2 0 -5 -10...
output:
2.606027487289903 1.263341789415628 1.183899114986993 0.882728471598947 1.878227296469852 1.569813583594919 1.553295323552855 1.632832331019136 1.573799484591302 0.997095963137439 0.942482997230413 1.417282633761506 1.401766575032649 1.693986663664259 2.862877851454087 2.055359776998968 2.2087768678...
result:
ok 900 numbers
Test #11:
score: 0
Accepted
time: 385ms
memory: 4072kb
input:
900 10 670067 394291 -797310 -637136 -435933 -923795 120936 309795 -934569 -688829 950758 634654 983083 900196 174829 181896 -191047 177910 258020 672165 10 424046 -657491 391198 -14995 -302986 -597011 -96387 -486090 -164032 -356501 -891789 12548 -703186 -924511 808215 -212606 659523 490088 738901 5...
output:
81290.161838387415628 91483.733196163346292 100154.027055844286224 192606.414820315665565 177441.647434418933699 76150.892372178423102 177358.705373884906294 230115.879266813135473 280209.262845028191805 61218.543021288038290 137504.791637735906988 168344.544041083048796 162167.181814908981323 13310...
result:
ok 900 numbers
Test #12:
score: 0
Accepted
time: 503ms
memory: 4128kb
input:
225 20 -4 -9 -5 3 7 -10 10 7 2 7 1 4 2 2 -5 -1 -9 -1 -3 10 -8 -6 0 -5 7 -4 -6 -8 -7 -5 -1 -7 -1 -3 8 -6 6 3 8 2 20 8 2 6 -8 -3 -6 -2 9 5 -2 0 8 8 0 -7 -9 3 1 4 -10 4 7 -6 -1 -8 -7 2 -8 -8 -1 1 -9 2 -10 1 2 -7 8 -10 3 20 5 8 0 -3 9 -9 -10 -4 -10 -2 9 10 -2 8 -6 -10 6 -6 -3 7 5 10 7 7 -5 -6 -2 3 -4 0 ...
output:
0.612786987902879 1.113790722844409 0.761536436760829 1.330805908887518 0.754049224578158 1.332837977355119 0.670314797999748 1.035312805518884 0.906817408476045 0.976966662194348 0.750284896345311 0.778031577905511 0.717904921218540 0.571580229491750 0.772106110146106 0.769291031965376 1.8904459998...
result:
ok 225 numbers
Test #13:
score: 0
Accepted
time: 694ms
memory: 4184kb
input:
225 20 983700 -466859 -20884 -364855 807044 -308568 -785298 910840 -61173 -276993 -872226 -878552 -235162 831941 978289 938037 585612 -598517 545857 403231 -450887 -558997 -293044 -675226 -900628 102932 -836719 -530135 -534412 -681687 -487340 -227869 161252 -557533 397943 464720 170537 68556 413322 ...
output:
103902.052600549708586 185063.038457368209492 60443.657372329791542 118360.364609652649960 157018.785130765987560 103511.465806248685112 65549.699479301794781 67043.358828878874192 105010.270532679773169 93450.057668448440381 96005.228207606458454 54350.098601304707699 134718.535343140305486 98397.3...
result:
ok 225 numbers
Test #14:
score: 0
Accepted
time: 268ms
memory: 4240kb
input:
6 50 -107573 -479674 -523931 117259 705403 519626 -802569 -162243 510741 876735 206326 -333274 448335 -276206 482965 -837837 873180 -965235 -359525 608790 -53827 782310 689038 -718590 739597 111296 420387 -953079 -492679 -243600 -929509 1174 800731 -968797 208236 193620 249265 499134 848153 771472 5...
output:
20480.382854002993554 21190.022149754473503 27821.672595881223970 28113.319340533114882 27223.967607933398540 31857.835710023828142
result:
ok 6 numbers
Test #15:
score: 0
Accepted
time: 1497ms
memory: 4272kb
input:
36 50 569818 -279771 972561 928848 383 744221 -453534 -154445 293032 502859 744851 436690 293077 503053 657 744258 317135 -276665 293067 502799 277103 -439313 282010 -387735 276848 -439025 972274 928763 -110443 -507380 744799 436605 282061 -387926 -453689 -154326 317468 -276534 -453630 -154510 28193...
output:
81019.427454406148172 77527.258772980290814 55029.246423312404659 42253.154385652291239 72715.857822992780712 197374.630740651191445 37469.722581922957033 66130.352995365421521 54454.597806512429088 125611.088368524026009 71800.206273050702293 87529.336768807683256 143932.887614790350199 95010.13468...
result:
ok 36 numbers
Test #16:
score: 0
Accepted
time: 1420ms
memory: 4276kb
input:
36 50 -767165 583573 -284890 -681002 -423448 -259226 -285077 -680913 -921552 -557651 -767105 583853 -423314 -259380 790075 -225214 -921537 -557431 -767305 583770 -767124 583508 -921629 -557448 -423530 -259463 -284954 -680837 -423426 -259294 -423469 -259099 -767302 583744 -921772 -557672 -423503 -259...
output:
36643.605480613958207 73491.058057638088940 355454.440213159949053 76283.491515342233470 114070.220777055394137 102751.942339931905735 346834.508596234139986 142611.057937860634411 246800.067113918281393 131055.886666590740788 22279.887989220529562 215589.657625078805722 83424.868814161847695 51800....
result:
ok 36 numbers
Test #17:
score: 0
Accepted
time: 1418ms
memory: 4396kb
input:
36 50 -757926 470127 -757550 470454 250422 -395772 250548 -395869 568164 -704082 250417 -396082 -757845 470427 444672 170989 250387 -395875 250484 -395866 568177 -704202 -757558 470484 250530 -395763 250488 -395883 -757754 470201 250529 -396062 -757760 470255 568050 -704413 444991 171218 444963 1710...
output:
41461.415731251188845 61470.345902095708880 198910.999967383337207 35019.368645437338273 139342.579707833589055 26339.662839055705263 247086.679248967819149 108103.832978620717768 269038.970057263562921 40491.226764097722480 99838.873958293886972 174035.149737151456065 172811.211970721051330 155604....
result:
ok 36 numbers
Test #18:
score: -100
Time Limit Exceeded
input:
9 100 -79487 826724 571284 354748 -312616 727781 -838024 249391 -79475 826592 796988 -514208 -847898 -839919 584481 896431 -847899 -839656 -312680 727782 22798 138363 466409 -215121 -36729 -925283 677267 -733543 -789119 581936 -789111 581860 271104 629366 571356 354824 -946155 -832752 571238 354954 ...