QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#661464#5460. Sum of NumbersafyWA 21ms5628kbC++207.6kb2024-10-20 16:21:482024-10-20 16:21:49

Judging History

你现在查看的是最新测评结果

  • [2024-10-20 16:21:49]
  • 评测
  • 测评结果:WA
  • 用时:21ms
  • 内存:5628kb
  • [2024-10-20 16:21:48]
  • 提交

answer

#include <bits/stdc++.h>
#ifdef LOCAL
#include "debug.h"
#else
#define deb(...)
#endif
using namespace std;
#define ll long long
// #define int long long
#define ull unsigned long long
#define pii pair<int, int>
#define db double
#define baoliu(x, y) cout << fixed << setprecision(y) << x
#define endl "\n"
#define alls(x) (x).begin(), (x).end()
#define fs first
#define sec second
#define bug(x) (void)(cerr << "L" << __LINE__ << ": " << #x << " = " << (x) << endl)
const int N = 2e5 + 10;
const int M = 1e6 + 10;
const int inf = 0x3f3f3f3f;
const int mod = 998244353;
const double eps = 1e-8;
const double PI = acos(-1.0);
using uint = unsigned;
const int MOD = 998244353;  // NTT模数

// 模加法
int Add(int x, int y) { return (x + y >= MOD) ? x + y - MOD : x + y; }
// 模减法
int Dec(int x, int y) { return (x - y < 0) ? x - y + MOD : x - y; }
// 模乘法
int mul(int x, int y) { return 1ll * x * y % MOD; }
// 快速幂计算
uint qp(uint a, int b) {
    uint res = 1;
    for (; b; b >>= 1, a = mul(a, a))
        if (b & 1)
            res = mul(res, a);
    return res;
}

namespace NTT {
int sz;                          // FFT大小
uint w[2500005], w_mf[2500005];  // 存储预计算的单位根及其乘法因子
// 计算乘法因子
int mf(int x) { return (1ll * x << 32) / MOD; }
// 初始化NTT
void init(int n) {
    for (sz = 2; sz < n; sz <<= 1);
    uint pr = qp(3, (MOD - 1) / sz);
    w[sz / 2] = 1;
    w_mf[sz / 2] = mf(1);
    for (int i = 1; i < sz / 2; i++) {
        w[sz / 2 + i] = mul(w[sz / 2 + i - 1], pr);
        w_mf[sz / 2 + i] = mf(w[sz / 2 + i]);
    }
    for (int i = sz / 2 - 1; i; i--) {
        w[i] = w[i << 1];
        w_mf[i] = w_mf[i << 1];
    }
}
// 前向NTT
void ntt(vector<uint>& A, int L) {
    for (int d = L >> 1; d; d >>= 1) {
        for (int i = 0; i < L; i += (d << 1)) {
            for (int j = 0; j < d; j++) {
                uint x = A[i + j] + A[i + d + j];
                if (x >= 2 * MOD)
                    x -= 2 * MOD;
                ll t = A[i + j] + 2 * MOD - A[i + d + j];
                ll q = t * w_mf[d + j] >> 32;
                int y = t * w[d + j] - q * MOD;
                A[i + j] = x;
                A[i + d + j] = y;
            }
        }
    }
    for (int i = 0; i < L; i++) {
        if (A[i] >= MOD)
            A[i] -= MOD;
    }
}
// 逆NTT
void intt(vector<uint>& A, int L) {
    for (int d = 1; d < L; d <<= 1) {
        for (int i = 0; i < L; i += (d << 1)) {
            for (int j = 0; j < d; j++) {
                uint x = A[i + j];
                if (x >= 2 * MOD)
                    x -= 2 * MOD;
                ll t = A[i + d + j];
                ll q = t * w_mf[d + j] >> 32;
                int y = t * w[d + j] - q * MOD;
                A[i + j] = x + y;
                A[i + d + j] = x + 2 * MOD - y;
            }
        }
    }
    int k = (L & (-L));
    reverse(A.begin() + 1, A.end());
    for (int i = 0; i < L; i++) {
        ll m = -A[i] & (L - 1);
        A[i] = (A[i] + m * MOD) / k;
        if (A[i] >= MOD)
            A[i] -= MOD;
    }
}
}  // namespace NTT

struct bigint {
    vector<int> nums;  // 存储大整数的每一位
    int operator[](const int& k) const { return nums[k]; }
    int& operator[](const int& k) { return nums[k]; }
    int size() { return nums.size(); }
    void push_back(int x) { nums.push_back(x); }
    // 从整数构造大整数
    bigint(int x = 0) {
        do {
            nums.push_back(x % 10);
            x /= 10;
        } while (x);
    }
    // 从字符串构造大整数
    bigint(string s) {
        for (int i = s.size() - 1; i >= 0; i--)
            nums.push_back(s[i] - '0');
        trim();
    }
    // 去掉多余的前导零
    void trim() {
        while (nums.size() > 1 && nums.back() == 0) {
            nums.pop_back();
        }
    }
    // 清空大整数
    void clear() {
        nums.clear();
    }
    // 输入大整数
    friend istream& operator>>(istream& cin, bigint& num) {
        string tnum;
        cin >> tnum;
        num = tnum;
        return cin;
    }
    // 输出大整数
    friend ostream& operator<<(ostream& cout, bigint num) {
        bool start = false;
        for (int i = num.size() - 1; i >= 0; i--) {
            if (!start && num[i] == 0)
                continue;
            start = true;
            cout << num[i];
        }
        if (!start)
            cout << 0;
        return cout;
    }
};

// 比较运算符重载
bool operator<(bigint a, bigint b) {
    if (a.size() != b.size())
        return a.size() < b.size();
    for (int i = a.size() - 1; i >= 0; i--)
        if (a[i] != b[i])
            return a[i] < b[i];
    return false;
}

bool operator>(bigint a, bigint b) {
    return b < a;
}

bool operator<=(bigint a, bigint b) {
    return !(a > b);
}

bool operator>=(bigint a, bigint b) {
    return !(a < b);
}

bool operator==(bigint a, bigint b) {
    return !(a < b) && !(a > b);
}

bool operator!=(bigint a, bigint b) {
    return a < b || a > b;
}

// 大整数加法
bigint operator+(bigint a, bigint b) {
    bigint res;
    res.clear();
    int t = 0;
    int mx = max(a.size(), b.size());
    for (int i = 0; i < mx || t; i++) {
        if (i < a.size()) {
            t += a[i];
        }
        if (i < b.size()) {
            t += b[i];
        }
        res.push_back(t % 10);
        t /= 10;
    }
    res.trim();
    return res;
}

// 大整数减法
bigint operator-(bigint a, bigint b) {
    bigint res(a);
    bigint sub(b);
    int flag = 0;
    int len = res.size();
    while (sub.size() < res.size())
        sub.push_back(0);
    for (int i = 0; i < len; i++) {
        if (res[i] + flag >= sub[i]) {
            res[i] = res[i] + flag - sub[i];
            flag = 0;
        } else {
            res[i] = res[i] + 10 + flag - sub[i];
            flag = -1;
        }
    }
    res.trim();
    return res;
}

void solve() {
    int n, k;
    cin >> n >> k;
    deb(n, k);
    int avg = n / (k + 1);
    int lef = n % (k + 1);
    string s;   
    cin >> s;
    s = " " + s;
    string infmx;
    for (int i = 0; i < n; i++) infmx += '9';
    //cout << infmx << endl;
    bigint ans(infmx);
    auto cal = [&](vector<bool>& fvis, bigint& res) {
        int cur = 1;
        for (int i = 0; i < k + 1; i++) {
            if (fvis[i] == 1) {
                res = res + bigint(s.substr(cur, avg + 1));
                cur += avg + 1;
            } else {
                res = res + bigint(s.substr(cur, avg));
                cur += avg;
            }
        }
        assert(cur == n + 1);
    };
    for (int i = 0; i < (1 << (k + 1)); i++) {
        if (__builtin_popcount(i) != lef)
            continue;
        vector<bool> vis(k + 1);
        for (int j = 0; j < (k + 1); j++) {
            if ((i >> j) & 1) {
                vis[j] = 1;
            }
        }
        bigint tmp(0);

        cal(vis, tmp);
        // cout << "tmp: " << tmp << endl;
        // cout << "ans: " << ans << endl;
        if (tmp < ans) {
            ans = tmp;
        }
    }
    cout << ans << endl;
}
signed main() {
    cin.tie(0);
    ios::sync_with_stdio(false);
#ifdef LOCAL
    double starttime = clock();
    // freopen("in.txt", "r", stdin);
    //  freopen("out.txt", "w", stdout);
#endif
    int t = 1;
    cin >> t;
    while (t--) solve();
#ifdef LOCAL
    double endtime = clock();
    cerr << "Time Used: " << (double)(endtime - starttime) / CLOCKS_PER_SEC * 1000 << " ms" << endl;
#endif
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3816kb

input:

2
8 1
45455151
2 1
42

output:

9696
6

result:

ok 2 lines

Test #2:

score: 0
Accepted
time: 17ms
memory: 4100kb

input:

10
1301 6
56328399613959594774559774218276494124991536454496431869449134772679831477279356599352619469813771742358572734317965823527349354276551857226632977613336815474383422853946661428822284645652423563864641261338984158269966469425994769486371736593879954275146732544891889693921182364554588732946...

output:

2861837555106640794797067737879913860686764066159587941287350938727749577629356630565034353414526438507603808735990935008225192080065174423508575377930722196909797866802717925250679901255
1330897896655974774035586406544907434842835048336411271110427836483063457950873824562288934364096546537492367401...

result:

ok 10 lines

Test #3:

score: 0
Accepted
time: 5ms
memory: 4796kb

input:

3
68312 1
97721793232462295468345161395388245623318759168492992575579675893432997968276399269361852215552871434587866112799189725614696256526239439933158479577223186954475137216722241699568491426254779997896288355965839555276546655174417599498493234323661877664997543475525992228661739933395881544363...

output:

165361439370989969611281150911906045608758081895436745302721903170895741831200164992289491213814537683869854746077326282091529052307364873668669947061960472772133388934416763345394409983809105665214082485429685401199520114459892594221344388768178495952936142426649338494017013932243993161711816767032...

result:

ok 3 lines

Test #4:

score: 0
Accepted
time: 7ms
memory: 4716kb

input:

3
104062 2
6586987777965872861989232258194733262765989634859654379877935579528781688159322513128986886481716832258115626748535521126479244461411522889744479186513298679746684345233214226141199846787117661159318966767135455745184384324833645134232699525177668629239933843658643667417337451334591594819...

output:

536246497591460214899497073157707308719964754106858053886979792537707870310253164299747153718261114131636990130350872742851787818427135113617679220183754863021102973854172956224432906133335696002890140207617299467927865340000078212572980076032917286214327823207585568582552662612028254042515906063023...

result:

ok 3 lines

Test #5:

score: 0
Accepted
time: 4ms
memory: 5428kb

input:

3
139639 3
6796297676823528648589397343663999328612414278384367347213637689464348185237425534836886677731351726963453579377613988437426483671299519186839344132333793569544718489728294346989818592279444871423953477919473799463194216678119582972131632322347549538925164854516141164554772823372476647126...

output:

126364763403906564661708542497996384758493064461499142133308596067494936258655259133526434841726196274703766844552726915088706942994746309192813887599486034682622494344506129054929148805249803660505979746418821689885230718372401950523582639142168746487771785553740446005221635828358569536474437471762...

result:

ok 3 lines

Test #6:

score: 0
Accepted
time: 6ms
memory: 4652kb

input:

3
74882 4
34214651312364628656844245717387533432968776973534628295922991352118459564756246556257779312918116552177726519173345828839532314119892538422953191411989526818837499574837984599131437923829691932871927272598159916936847255554115731624229194141184295327556843698221845942155322267254877729895...

output:

652879872016718790343280470756061301445687203441680798826476501917145925778781111109343489062160438478188515389826291555084101569285971285993846457561557667210690487169933469816410296697081463378678731150633158904900018680809858404118923436246875692603950100371337341615443319224405626522868813204392...

result:

ok 3 lines

Test #7:

score: 0
Accepted
time: 12ms
memory: 5628kb

input:

3
191014 5
4625226525489118654543959629348153444699986242632464847423452621546972849227817733763237372239335981427166568676892839618898764121637356149689834276433852165285729163339388526992792556894792278543347578452353389831593643818698478199319882191378795871195868331188637941453446682259469316457...

output:

183433830723962716661960230479245454318025962759914611110498608412928382555357890844482989235397326332530009244441167586569039863115637789245293728629736732433450983262080427109116060046615860768206472546822403232142108561871987242547562597599614404577271199268661821460539766659678709433633532926618...

result:

ok 3 lines

Test #8:

score: 0
Accepted
time: 21ms
memory: 4920kb

input:

3
89585 6
94845874282137954862385693488638122989575112616926699152984211114725742468459969145259337775618857796224956393949274481244989438351268853962294993267143851959948416128442795399969913525879669463929768397987966315181534158658746641933973131881592663842895938779816214825692812493134824556695...

output:

299751945436714405327965382630641151220078087436306886008455290218867774598033154703298350470955635925864103042961309005090519862571207481236797905629359014249368432851738777659221783920211895526401428737190140639519448861544949137222152380658013492841793431645174714140875875011098436373161645837902...

result:

ok 3 lines

Test #9:

score: 0
Accepted
time: 6ms
memory: 3960kb

input:

1000
438 1
2517849689325865499132114642336162462526229452777943938182992956383698881134842963395515712949251433652761697475196628342214595685672144112568956575717136898856177694197933946755524666375993512634793331951161492287212454971511815257823292342711659258415167759313776646368654965574417395231...

output:

748936150458368879147482630159457763028554322942431259314856737377893084493327951133306407733863814927410043574237076571833145300484875759606530375804038146070837054761731126648297282834150805998661305332252023826677983
91742211464580719040769832120828477315449383443456839582655398455396278130875002...

result:

ok 1000 lines

Test #10:

score: -100
Wrong Answer
time: 7ms
memory: 3708kb

input:

1000
84 2
966932289765425941985736948627128913324775123274122997916444286764739984266379596918
70 2
5331446293763416152151916485841778781581747798477137375944877329687691
9 2
634624591
814 2
1988645967814683323112433424295394438122288481686898542983777796753686147185684924621213554165142457245886757...

output:

18826500994871756013649266195
295310256670327308687194
1849
284825795169730623800202989098038033639343406140577208629162918151307022180084222616119982223024776344842017851725895275795084612484054272282348654966167150019465644108270898181205721199473080438042040896310370198851400852136186082174700276...

result:

wrong answer 75th lines differ - expected: '151420555250170599790', found: '165594841649166300319'