QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#66126#4887. Fast Bridgesjapan022022TL 580ms5540kbC++2023.0kb2022-12-06 23:53:022022-12-06 23:53:04

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2022-12-06 23:53:04]
  • 评测
  • 测评结果:TL
  • 用时:580ms
  • 内存:5540kb
  • [2022-12-06 23:53:02]
  • 提交

answer

#line 1 "library/my_template.hpp"
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) \
  overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T pick(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}

template <typename T>
T pick(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}

template <typename T>
T pick(pqg<T> &que) {
  assert(que.size());
  T a = que.top();
  que.pop();
  return a;
}

template <typename T>
T pick(vc<T> &que) {
  assert(que.size());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}

template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}

template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename F>
ll binary_search(F check, ll ok, ll ng) {
  assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}

template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = S[i] - first_char; }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

template <typename CNT, typename T>
vc<CNT> bincount(const vc<T> &A, int size) {
  vc<CNT> C(size);
  for (auto &&x: A) { ++C[x]; }
  return C;
}

// stable
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(A.size());
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  int n = len(I);
  vc<T> B(n);
  FOR(i, n) B[i] = A[I[i]];
  return B;
}
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char &val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string &s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double &x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double &x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T &x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/mod/modint.hpp"

template <int mod>
struct modint {
  int val;
  constexpr modint(ll x = 0) noexcept {
    if (0 <= x && x < mod)
      val = x;
    else {
      x %= mod;
      val = (x < 0 ? x + mod : x);
    }
  }
  bool operator<(const modint &other) const {
    return val < other.val;
  } // To use std::map
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= mod) val -= mod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += mod - p.val) >= mod) val -= mod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = (int)(1LL * val * p.val % mod);
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint(-val); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(int64_t n) const {
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  void write() { fastio::printer.write(val); }
  void read() { fastio::scanner.read(val); }
  static constexpr int get_mod() { return mod; }
};

struct ArbitraryModInt {
  static constexpr bool is_modint = true;
  int val;
  ArbitraryModInt() : val(0) {}
  ArbitraryModInt(int64_t y)
      : val(y >= 0 ? y % get_mod()
                   : (get_mod() - (-y) % get_mod()) % get_mod()) {}
  bool operator<(const ArbitraryModInt &other) const {
    return val < other.val;
  } // To use std::map<ArbitraryModInt, T>
  static int &get_mod() {
    static int mod = 0;
    return mod;
  }
  static void set_mod(int md) { get_mod() = md; }
  ArbitraryModInt &operator+=(const ArbitraryModInt &p) {
    if ((val += p.val) >= get_mod()) val -= get_mod();
    return *this;
  }
  ArbitraryModInt &operator-=(const ArbitraryModInt &p) {
    if ((val += get_mod() - p.val) >= get_mod()) val -= get_mod();
    return *this;
  }
  ArbitraryModInt &operator*=(const ArbitraryModInt &p) {
    long long a = (long long)val * p.val;
    int xh = (int)(a >> 32), xl = (int)a, d, m;
    asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(get_mod()));
    val = m;
    return *this;
  }
  ArbitraryModInt &operator/=(const ArbitraryModInt &p) {
    *this *= p.inverse();
    return *this;
  }
  ArbitraryModInt operator-() const { return ArbitraryModInt(get_mod() - val); }
  ArbitraryModInt operator+(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) += p;
  }
  ArbitraryModInt operator-(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) -= p;
  }
  ArbitraryModInt operator*(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) *= p;
  }
  ArbitraryModInt operator/(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) /= p;
  }
  bool operator==(const ArbitraryModInt &p) const { return val == p.val; }
  bool operator!=(const ArbitraryModInt &p) const { return val != p.val; }
  ArbitraryModInt inverse() const {
    int a = val, b = get_mod(), u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return ArbitraryModInt(u);
  }
  ArbitraryModInt pow(int64_t n) const {
    ArbitraryModInt ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  void write() { fastio::printer.write(val); }
  void read() { fastio::scanner.read(val); }
};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (int(dat.size()) <= n) {
    int k = dat.size();
    auto q = (mod + k - 1) / k;
    int r = k * q - mod;
    dat.emplace_back(dat[r] * mint(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {1, 1};
  assert(0 <= n);
  if (n >= mod) return 0;
  while (int(dat.size()) <= n) {
    int k = dat.size();
    dat.emplace_back(dat[k - 1] * mint(k));
  }
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {1, 1};
  assert(-1 <= n && n < mod);
  if (n == -1) return mint(0);
  while (int(dat.size()) <= n) {
    int k = dat.size();
    dat.emplace_back(dat[k - 1] * inv<mint>(k));
  }
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;

  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };

  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if (dense) return C_dense<mint>(n, k);
  if (!large) return fact<mint>(n) * fact_inv<mint>(k) * fact_inv<mint>(n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) { x *= mint(n - i); }
  x *= fact_inv<mint>(k);
  return x;
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
using amint = ArbitraryModInt;
#line 4 "main.cpp"

constexpr int mod = 998244353;

int DP[510][510];
int dp[510][510];

void solve() {
  using T4 = tuple<int, int, int, int>;
  INT(Q, LIM);
  vc<T4> dat1, dat2;
  FOR(Q) {
    LL(a, b, c, d);
    --a, --b, --c, --d;
    assert(a < c);
    if (b < d) dat1.eb(a, b, c, d);
    if (b > d) dat2.eb(a, LIM - 1 - b, c, LIM - 1 - d);
  }

  ll ANS = 0;
  {
    ll x = LIM;
    ANS += x * x % mod * x % mod * (x - 1) % mod * (x + 1) % mod;
    while (ANS % 3 != 0) ANS += mod;
    ANS /= 3;
  }

  auto solve = [&](vc<T4> dat) -> void {
    const int N = len(dat);
    // (x1,y1) について昇順に並べる
    sort(all(dat));
    // DP[i][j] := 橋 i, ..., j と使う場合の最大個数
    auto can = [&](int i, int j) -> bool {
      auto [a1, b1, c1, d1] = dat[i];
      auto [a2, b2, c2, d2] = dat[j];
      return c1 <= a2 && d1 <= b2;
    };

    FOR(i, N) FOR(j, N) DP[i][j] = 0;
    FOR(i, N) {
      DP[i][i] = 1;
      FOR(j, i, N) FOR(k, j + 1, N) {
        if (DP[i][j] && can(j, k)) chmax(DP[i][k], DP[i][j] + 1);
      }
    }

    // end point で座圧
    vc<int> X = {LIM}, Y = {LIM};
    for (auto&& [a, b, c, d]: dat) { X.eb(c), Y.eb(d); }
    UNIQUE(X), UNIQUE(Y);
    for (auto&& [a, b, c, d]: dat) { c = LB(X, c), d = LB(Y, d); }

    // ix 昇順に走査する。
    // dp[iy][k] := 橋 k を最初に使った場合に領域 (ix, iy) までに使える個数
    FOR(i, len(Y)) FOR(j, N) dp[i][j] = 0;
    FOR(ix, len(X) - 1) {
      FOR(j, N) {
        auto [a, b, c, d] = dat[j];
        if (c != ix) continue;
        FOR(k, j + 1) chmax(dp[d][k], DP[k][j]);
      }
      FOR(iy, len(Y) - 1) { FOR(k, N) chmax(dp[iy + 1][k], dp[iy][k]); }

      FOR(iy, len(Y) - 1) {
        // 直方体の和集合の体積みたいな話になる。のだが、
        // 高さが t+1 の直方体は必ず高さ t の subrectangle になるので
        // 高さごとに独立に断面積を足していけばよい。
        vvc<pair<int, int>> rectangles(N + 1);
        FOR(k, N) {
          int t = dp[iy][k];
          if (t == 0) continue;
          auto [a, b, c, d] = dat[k];
          rectangles[t].eb(a + 1, b + 1);
        }
        ll volume = 0;
        FOR(t, 1, N + 1) {
          ll area = 0;
          if (rectangles[t].empty()) break;
          auto& XY = rectangles[t];
          // 既に x 順にソートされている
          // 後ろにある高さで chmax する
          int M = len(XY);
          int my = 0;
          FOR_R(j, M) { chmax(my, XY[j].se), XY[j].se = my; }
          int px = 0;
          FOR(j, M) {
            auto [x, y] = XY[j];
            area += ll(x - px) * y;
            px = x;
          }
          volume += area % mod;
        }
        volume %= mod;
        int dx = X[ix + 1] - X[ix], dy = Y[iy + 1] - Y[iy];
        ANS -= volume * dx % mod * dy % mod;
      }
    }
  };

  solve(dat1);
  solve(dat2);
  ANS %= mod;
  if (ANS < 0) ANS += mod;
  print(ANS);
}

signed main() {
  solve();

  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 3ms
memory: 3556kb

input:

2 2
1 1 2 2
1 2 2 1

output:

6

result:

ok answer is '6'

Test #2:

score: 0
Accepted
time: 2ms
memory: 3364kb

input:

0 1000000000

output:

916520226

result:

ok answer is '916520226'

Test #3:

score: 0
Accepted
time: 2ms
memory: 3472kb

input:

5 5
1 1 3 3
3 3 5 1
3 3 4 5
3 3 5 4
1 5 3 3

output:

946

result:

ok answer is '946'

Test #4:

score: 0
Accepted
time: 2ms
memory: 3772kb

input:

200 5
1 1 4 2
2 5 4 4
2 3 4 2
2 4 3 5
1 4 4 2
2 5 4 2
1 2 4 4
1 2 2 4
1 4 5 1
3 4 5 1
4 2 5 1
2 2 5 4
3 2 5 1
3 1 5 2
4 2 5 3
1 3 5 1
3 4 4 5
2 2 4 3
2 3 5 4
1 4 5 3
2 2 3 1
2 5 3 3
1 1 5 3
4 4 5 5
1 3 4 4
4 3 5 1
2 3 3 4
3 4 4 2
1 4 4 5
2 1 4 4
1 3 5 2
1 1 3 3
1 5 3 1
1 1 3 5
1 4 3 5
4 5 5 4
1 1 4 ...

output:

708

result:

ok answer is '708'

Test #5:

score: 0
Accepted
time: 0ms
memory: 3864kb

input:

500 10
5 6 7 10
1 3 8 10
3 3 4 9
2 10 10 2
9 4 10 10
5 4 7 8
7 1 10 7
3 1 7 10
5 2 8 9
6 3 7 10
3 10 7 9
4 9 5 1
2 5 3 3
7 10 8 2
7 7 9 8
6 6 8 3
5 10 8 8
1 1 5 5
3 3 10 5
5 5 7 6
3 8 4 7
6 7 7 5
7 3 10 9
5 3 9 4
4 6 10 5
1 5 9 10
5 6 9 7
3 10 10 3
1 2 5 7
4 6 5 1
3 1 8 5
5 8 8 9
1 8 4 3
6 4 7 10
7 ...

output:

27373

result:

ok answer is '27373'

Test #6:

score: 0
Accepted
time: 1ms
memory: 4048kb

input:

500 30
3 13 20 29
14 5 16 25
2 29 9 15
23 30 24 9
1 18 24 28
4 16 5 2
3 29 30 25
4 8 24 19
8 26 10 24
20 14 26 25
15 8 25 25
5 13 18 28
3 30 29 10
14 26 25 11
11 19 16 4
9 4 29 30
15 10 16 8
2 29 12 2
11 22 20 28
4 10 28 1
24 17 30 1
8 26 27 9
15 25 30 14
16 20 24 17
9 23 12 13
9 16 25 28
2 15 8 16
...

output:

7717993

result:

ok answer is '7717993'

Test #7:

score: 0
Accepted
time: 13ms
memory: 4172kb

input:

500 100
25 55 55 43
14 22 84 5
57 7 79 15
63 9 86 23
22 3 53 97
2 22 64 65
32 52 66 30
76 37 79 22
46 100 76 22
21 78 78 44
29 41 92 55
43 14 46 3
14 97 42 1
16 7 35 64
15 27 29 3
11 92 92 70
4 13 66 2
3 38 55 82
41 94 83 44
52 90 100 82
6 100 99 70
18 38 24 22
74 17 98 20
17 94 44 82
33 97 48 19
12...

output:

291628571

result:

ok answer is '291628571'

Test #8:

score: 0
Accepted
time: 1ms
memory: 4608kb

input:

500 8
2 4 8 2
3 7 5 4
2 6 8 1
4 8 5 5
6 6 7 5
2 6 5 5
1 6 8 5
6 5 7 3
4 8 5 7
5 7 6 5
1 6 4 5
2 3 4 2
2 8 8 6
3 8 4 3
5 6 7 2
7 8 8 3
1 8 4 7
1 6 6 1
1 8 7 1
1 4 3 3
2 3 3 1
1 4 5 1
1 8 5 4
7 7 8 5
2 7 4 1
3 7 4 3
2 3 5 1
3 7 8 1
4 7 5 5
6 6 8 3
2 7 5 1
2 5 4 3
5 4 8 2
4 5 8 3
2 3 4 1
2 8 3 2
5 6 8 ...

output:

9321

result:

ok answer is '9321'

Test #9:

score: 0
Accepted
time: 150ms
memory: 4544kb

input:

500 1000000000
228604634 522874974 789854111 585676486
340802063 175643637 661594207 749079321
490078806 844144515 583746323 707696611
833939453 901516824 867397264 848066012
553537526 886003963 679012061 187030606
351500555 847099665 751201742 855105070
169763646 729114554 248951243 211939611
17040...

output:

230090667

result:

ok answer is '230090667'

Test #10:

score: 0
Accepted
time: 514ms
memory: 5500kb

input:

500 1000000000
536804949 618264275 757262973 133194920
206604343 420304040 244005624 331707206
64548973 877773848 685024560 565782395
13572244 271309598 835979107 128627415
128103153 561746493 703898577 9276472
209282309 997406956 216339996 279878227
386095652 999498735 908610032 582414132
232191790...

output:

404991176

result:

ok answer is '404991176'

Test #11:

score: 0
Accepted
time: 526ms
memory: 5536kb

input:

500 1000000000
435165109 887707979 541968631 834720917
43164344 595179931 731392283 541750474
51147932 885859385 525997101 813310992
581745995 569929983 666239343 349298365
720599913 330436249 751561895 84593980
254142704 924477087 706739688 760929039
282091849 414650019 853811117 121534462
21407507...

output:

174105246

result:

ok answer is '174105246'

Test #12:

score: 0
Accepted
time: 524ms
memory: 5496kb

input:

500 1000000000
334968963 60182667 683993047 330063742
372714145 727060351 391638535 972082352
15288009 443033033 549932294 626507494
551292358 201286324 844192128 989162325
138957062 834473180 233314539 840742618
774917762 293038146 784290713 868100668
88362426 108423246 90763875 635080794
197409326...

output:

819654628

result:

ok answer is '819654628'

Test #13:

score: 0
Accepted
time: 580ms
memory: 5540kb

input:

500 1000000000
407797655 600906761 451028876 557753318
739109786 505834673 914488662 267694229
21613693 815099602 741520301 86754775
749426136 864500481 989644055 760004108
97929570 281277866 645537954 194083134
386298407 900097354 590149576 876589970
225981751 604462892 313700311 201620926
13512935...

output:

704804476

result:

ok answer is '704804476'

Test #14:

score: 0
Accepted
time: 146ms
memory: 4412kb

input:

500 1000000000
136588729 322381152 198423052 586895024
146201252 78771798 320963978 33171878
103014217 582579333 112482565 472327049
363500012 171569343 779799989 210605961
916348434 897403875 958218658 848653603
81959275 288412262 293263271 877464982
155884974 409342051 490632310 353856648
42868173...

output:

701057894

result:

ok answer is '701057894'

Test #15:

score: 0
Accepted
time: 148ms
memory: 4708kb

input:

500 1000000000
70732466 818210159 101241592 180120566
551559764 430141447 558477026 919623562
842854549 898003264 988655980 690377539
365038538 842566580 988616538 612555368
119137999 522482797 776356145 341894154
134943863 753491473 621956497 857574689
860979233 313689040 912231580 819779431
253383...

output:

849305849

result:

ok answer is '849305849'

Test #16:

score: 0
Accepted
time: 144ms
memory: 4624kb

input:

500 1000000000
76067493 226360208 588463712 997370258
247139391 228988779 876938260 628658287
173490201 249999131 402004522 332729284
73514885 82656638 357464837 702514607
288650085 526722777 582817141 741491871
859774917 73498480 878952996 868608989
248586909 115745356 485233299 599896403
302539166...

output:

980753674

result:

ok answer is '980753674'

Test #17:

score: -100
Time Limit Exceeded

input:

500 919069957
742507159 740217847 742778031 741238898
320301045 312370945 321929532 313537690
344928356 347275650 349920032 348402734
128430402 156747983 128702472 159673979
89940237 122339622 90602165 123930504
638094551 604903042 638437986 606101004
118489244 152414022 121260981 154139858
41785067...

output:


result: