QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#65829#4887. Fast Bridgesjapan022022#TL 61ms3520kbC++2025.9kb2022-12-03 18:58:522022-12-03 18:58:53

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2022-12-03 18:58:53]
  • 评测
  • 测评结果:TL
  • 用时:61ms
  • 内存:3520kb
  • [2022-12-03 18:58:52]
  • 提交

answer

#line 1 "library/my_template.hpp"
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) \
  overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T pick(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}

template <typename T>
T pick(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}

template <typename T>
T pick(pqg<T> &que) {
  assert(que.size());
  T a = que.top();
  que.pop();
  return a;
}

template <typename T>
T pick(vc<T> &que) {
  assert(que.size());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}

template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}

template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename F>
ll binary_search(F check, ll ok, ll ng) {
  assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}

template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = S[i] - first_char; }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

template <typename CNT, typename T>
vc<CNT> bincount(const vc<T> &A, int size) {
  vc<CNT> C(size);
  for (auto &&x: A) { ++C[x]; }
  return C;
}

// stable
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(A.size());
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  int n = len(I);
  vc<T> B(n);
  FOR(i, n) B[i] = A[I[i]];
  return B;
}
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char &val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string &s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double &x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double &x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> &val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto &x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> &tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/mod/modint.hpp"

template <int mod>
struct modint {
  int val;
  constexpr modint(ll x = 0) noexcept {
    if (0 <= x && x < mod)
      val = x;
    else {
      x %= mod;
      val = (x < 0 ? x + mod : x);
    }
  }
  bool operator<(const modint &other) const {
    return val < other.val;
  } // To use std::map
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= mod) val -= mod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += mod - p.val) >= mod) val -= mod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = (int)(1LL * val * p.val % mod);
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint(-val); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(int64_t n) const {
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  void write() { fastio::printer.write(val); }
  void read() { fastio::scanner.read(val); }
  static constexpr int get_mod() { return mod; }
};

struct ArbitraryModInt {
  static constexpr bool is_modint = true;
  int val;
  ArbitraryModInt() : val(0) {}
  ArbitraryModInt(int64_t y)
      : val(y >= 0 ? y % get_mod()
                   : (get_mod() - (-y) % get_mod()) % get_mod()) {}
  bool operator<(const ArbitraryModInt &other) const {
    return val < other.val;
  } // To use std::map<ArbitraryModInt, T>
  static int &get_mod() {
    static int mod = 0;
    return mod;
  }
  static void set_mod(int md) { get_mod() = md; }
  ArbitraryModInt &operator+=(const ArbitraryModInt &p) {
    if ((val += p.val) >= get_mod()) val -= get_mod();
    return *this;
  }
  ArbitraryModInt &operator-=(const ArbitraryModInt &p) {
    if ((val += get_mod() - p.val) >= get_mod()) val -= get_mod();
    return *this;
  }
  ArbitraryModInt &operator*=(const ArbitraryModInt &p) {
    long long a = (long long)val * p.val;
    int xh = (int)(a >> 32), xl = (int)a, d, m;
    asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(get_mod()));
    val = m;
    return *this;
  }
  ArbitraryModInt &operator/=(const ArbitraryModInt &p) {
    *this *= p.inverse();
    return *this;
  }
  ArbitraryModInt operator-() const { return ArbitraryModInt(get_mod() - val); }
  ArbitraryModInt operator+(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) += p;
  }
  ArbitraryModInt operator-(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) -= p;
  }
  ArbitraryModInt operator*(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) *= p;
  }
  ArbitraryModInt operator/(const ArbitraryModInt &p) const {
    return ArbitraryModInt(*this) /= p;
  }
  bool operator==(const ArbitraryModInt &p) const { return val == p.val; }
  bool operator!=(const ArbitraryModInt &p) const { return val != p.val; }
  ArbitraryModInt inverse() const {
    int a = val, b = get_mod(), u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return ArbitraryModInt(u);
  }
  ArbitraryModInt pow(int64_t n) const {
    ArbitraryModInt ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  void write() { fastio::printer.write(val); }
  void read() { fastio::scanner.read(val); }
};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (int(dat.size()) <= n) {
    int k = dat.size();
    auto q = (mod + k - 1) / k;
    int r = k * q - mod;
    dat.emplace_back(dat[r] * mint(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {1, 1};
  assert(0 <= n);
  if (n >= mod) return 0;
  while (int(dat.size()) <= n) {
    int k = dat.size();
    dat.emplace_back(dat[k - 1] * mint(k));
  }
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {1, 1};
  assert(-1 <= n && n < mod);
  if (n == -1) return mint(0);
  while (int(dat.size()) <= n) {
    int k = dat.size();
    dat.emplace_back(dat[k - 1] * inv<mint>(k));
  }
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;

  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };

  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if (dense) return C_dense<mint>(n, k);
  if (!large) return fact<mint>(n) * fact_inv<mint>(k) * fact_inv<mint>(n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) { x *= mint(n - i); }
  x *= fact_inv<mint>(k);
  return x;
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
using amint = ArbitraryModInt;
#line 1 "library/ds/fastset.hpp"
/* 64分木。
insert, erase
[]での存在判定
next, prev
*/
struct FastSet {
  using uint = unsigned;
  using ull = unsigned long long;

  int bsr(ull x) { return 63 - __builtin_clzll(x); }
  int bsf(ull x) { return __builtin_ctzll(x); }

  static constexpr uint B = 64;
  int n, lg;
  vector<vector<ull>> seg;
  FastSet(int _n) : n(_n) {
    do {
      seg.push_back(vector<ull>((_n + B - 1) / B));
      _n = (_n + B - 1) / B;
    } while (_n > 1);
    lg = int(seg.size());
  }
  bool operator[](int i) const { return (seg[0][i / B] >> (i % B) & 1) != 0; }
  void insert(int i) {
    for (int h = 0; h < lg; h++) {
      seg[h][i / B] |= 1ULL << (i % B);
      i /= B;
    }
  }
  void erase(int i) {
    for (int h = 0; h < lg; h++) {
      seg[h][i / B] &= ~(1ULL << (i % B));
      if (seg[h][i / B]) break;
      i /= B;
    }
  }

  // x以上最小の要素を返す。存在しなければ n。
  int next(int i) {
    for (int h = 0; h < lg; h++) {
      if (i / B == seg[h].size()) break;
      ull d = seg[h][i / B] >> (i % B);
      if (!d) {
        i = i / B + 1;
        continue;
      }
      // find
      i += bsf(d);
      for (int g = h - 1; g >= 0; g--) {
        i *= B;
        i += bsf(seg[g][i / B]);
      }
      return i;
    }
    return n;
  }

  // x以下最大の要素を返す。存在しなければ -1。
  int prev(int i) {
    if (i < 0) return -1;
    if (i >= n) i = n - 1;
    for (int h = 0; h < lg; h++) {
      if (i == -1) break;
      ull d = seg[h][i / B] << (63 - i % 64);
      if (!d) {
        i = i / B - 1;
        continue;
      }
      // find
      i += bsr(d) - (B - 1);
      for (int g = h - 1; g >= 0; g--) {
        i *= B;
        i += bsr(seg[g][i / B]);
      }
      return i;
    }
    return -1;
  }

  // [l, r) 内の要素を全部集める
  vector<int> collect(int l, int r) {
    vector<int> res;
    int x = l - 1;
    while (1) {
      x = next(x + 1);
      if (x >= r) break;
      res.emplace_back(x);
    }
    return res;
  }

  void debug() {
    string s;
    for (int i = 0; i < n; ++i) s += ((*this)[i] ? '1' : '0');
    print(s);
  }
};
#line 5 "main.cpp"

using mint = modint998;

void solve() {
  LL(N, LIM);
  using T4 = tuple<int, int, int, int>;
  vc<T4> dat_1, dat_2;
  FOR(N) {
    LL(x1, y1, x2, y2);
    --x1, --y1, --x2, --y2;
    if (y1 < y2) {
      dat_1.eb(x1, y1, x2, y2);
    } else {
      dat_2.eb(x1, LIM - 1 - y1, x2, LIM - 1 - y2);
    }
  }

  auto calc_full = [&]() -> mint {
    mint x = LIM;
    return x * x * x * (x - mint(1)) * (x + mint(1)) * inv<mint>(3);
  };

  auto solve = [&](vc<T4> dat) -> mint {
    // x1<x2, y1<y2 方向に進む場合の、全点対の節約回数の総和を求める
    vc<int> X, Y;
    for (auto&& [x1, y1, x2, y2]: dat) {
      X.eb(x1), Y.eb(y1), X.eb(x2), Y.eb(y2);
    }
    X.eb(-1);
    Y.eb(-1);
    X.eb(LIM);
    Y.eb(LIM);
    UNIQUE(X);
    UNIQUE(Y);
    for (auto&& [x1, y1, x2, y2]: dat) {
      x1 = LB(X, x1);
      x2 = LB(X, x2);
      y1 = LB(Y, y1);
      y2 = LB(Y, y2);
    }
    vvc<int> edge_start(len(X));
    vvc<int> edge_end(len(X));
    FOR(i, len(dat)) {
      auto [x1, y1, x2, y2] = dat[i];
      edge_start[x1].eb(i);
      edge_end[x2].eb(i);
    }

    auto solve_by_fixed_start = [&](int i0, int j0) -> mint {
      // X[i0] < x <= X[i0+1] and Y[j0] < y <= Y[j0+1] からスタートするとき
      // 始点の個数は return 後に計算する

      // dp の値の境界となっている点集合を管理する fastset
      FastSet LEFT(len(Y) - 1);
      // LEFT のところでは正しいことを保証
      vc<int> RIGHT(len(Y) - 1, -1);
      vc<int> dp(len(Y) - 1, -1);

      LEFT.insert(0);
      RIGHT[0] = len(Y) - 1;
      dp[0] = 0;

      mint res = 0;
      mint dp_sm = 0;
      vvc<pair<int, int>> upd(len(X)); // (y, dp value)

      FOR(i, i0 + 1, len(X) - 1) {
        // X[i] で終わる線分の情報の反映
        for (auto&& [y, dp_val]: upd[i]) {
          int y1 = LEFT.prev(y);
          if (dp[y1] >= dp_val) continue;
          // y の左側の区間を分割しておく
          if (y1 < y) {
            int y2 = RIGHT[y1];
            // [y1,y2) -> [y1,y) and [y,y2)
            if (y < y2) {
              LEFT.insert(y);
              RIGHT[y1] = y;
              RIGHT[y] = y2;
              dp[y] = dp[y1];
            }
          }
          // y の右にある、dp_val 未満の区間を全部削除 していく
          y1 = y;
          while (y1 < len(dp)) {
            if (dp[y1] >= dp_val) break;
            int y2 = RIGHT[y1];
            mint dy = Y[y2] - Y[y1];
            dp_sm -= dy * mint(dp[y1]);
            LEFT.erase(y1);
            dp[y1] = -1;
            RIGHT[y1] = -1;
            y1 = y2;
          }
          // [y, y1) を dp_val に変更
          if (y < y1) {
            mint dy = Y[y1] - Y[y];
            dp_sm += dy * mint(dp_val);
            LEFT.insert(y);
            dp[y] = dp_val;
            RIGHT[y] = y1;
          }
        }
        // print("RIGHT", RIGHT);

        // [X[i], X[i+1]) を終点とするときの答の反映
        res += dp_sm * mint(X[i + 1] - X[i]);

        // X[i] を始点とする線分による遷移のメモ
        for (auto&& eid: edge_start[i]) {
          auto [x1, y1, x2, y2] = dat[eid];
          if (y1 <= j0) continue;
          int dp_val = dp[LEFT.prev(y1)];
          upd[x2].eb(y2, dp_val + 1);
        }
      }
      return res;
    };

    mint res = 0;
    FOR(i0, len(X) - 2) FOR(j0, len(Y) - 2) {
      mint dx = X[i0 + 1] - X[i0];
      mint dy = Y[j0 + 1] - Y[j0];
      mint val = solve_by_fixed_start(i0, j0);
      res += dx * dy * val;
      // print(X[i0 + 1], Y[j0 + 1], val);
    }
    return res;
  };

  mint ANS = calc_full();
  ANS -= solve(dat_1);
  ANS -= solve(dat_2);
  print(ANS);
}

signed main() {
  solve();

  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 4ms
memory: 3460kb

input:

2 2
1 1 2 2
1 2 2 1

output:

6

result:

ok answer is '6'

Test #2:

score: 0
Accepted
time: 5ms
memory: 3316kb

input:

0 1000000000

output:

916520226

result:

ok answer is '916520226'

Test #3:

score: 0
Accepted
time: 4ms
memory: 3252kb

input:

5 5
1 1 3 3
3 3 5 1
3 3 4 5
3 3 5 4
1 5 3 3

output:

946

result:

ok answer is '946'

Test #4:

score: 0
Accepted
time: 4ms
memory: 3520kb

input:

200 5
1 1 4 2
2 5 4 4
2 3 4 2
2 4 3 5
1 4 4 2
2 5 4 2
1 2 4 4
1 2 2 4
1 4 5 1
3 4 5 1
4 2 5 1
2 2 5 4
3 2 5 1
3 1 5 2
4 2 5 3
1 3 5 1
3 4 4 5
2 2 4 3
2 3 5 4
1 4 5 3
2 2 3 1
2 5 3 3
1 1 5 3
4 4 5 5
1 3 4 4
4 3 5 1
2 3 3 4
3 4 4 2
1 4 4 5
2 1 4 4
1 3 5 2
1 1 3 3
1 5 3 1
1 1 3 5
1 4 3 5
4 5 5 4
1 1 4 ...

output:

708

result:

ok answer is '708'

Test #5:

score: 0
Accepted
time: 2ms
memory: 3292kb

input:

500 10
5 6 7 10
1 3 8 10
3 3 4 9
2 10 10 2
9 4 10 10
5 4 7 8
7 1 10 7
3 1 7 10
5 2 8 9
6 3 7 10
3 10 7 9
4 9 5 1
2 5 3 3
7 10 8 2
7 7 9 8
6 6 8 3
5 10 8 8
1 1 5 5
3 3 10 5
5 5 7 6
3 8 4 7
6 7 7 5
7 3 10 9
5 3 9 4
4 6 10 5
1 5 9 10
5 6 9 7
3 10 10 3
1 2 5 7
4 6 5 1
3 1 8 5
5 8 8 9
1 8 4 3
6 4 7 10
7 ...

output:

27373

result:

ok answer is '27373'

Test #6:

score: 0
Accepted
time: 8ms
memory: 3316kb

input:

500 30
3 13 20 29
14 5 16 25
2 29 9 15
23 30 24 9
1 18 24 28
4 16 5 2
3 29 30 25
4 8 24 19
8 26 10 24
20 14 26 25
15 8 25 25
5 13 18 28
3 30 29 10
14 26 25 11
11 19 16 4
9 4 29 30
15 10 16 8
2 29 12 2
11 22 20 28
4 10 28 1
24 17 30 1
8 26 27 9
15 25 30 14
16 20 24 17
9 23 12 13
9 16 25 28
2 15 8 16
...

output:

7717993

result:

ok answer is '7717993'

Test #7:

score: 0
Accepted
time: 61ms
memory: 3472kb

input:

500 100
25 55 55 43
14 22 84 5
57 7 79 15
63 9 86 23
22 3 53 97
2 22 64 65
32 52 66 30
76 37 79 22
46 100 76 22
21 78 78 44
29 41 92 55
43 14 46 3
14 97 42 1
16 7 35 64
15 27 29 3
11 92 92 70
4 13 66 2
3 38 55 82
41 94 83 44
52 90 100 82
6 100 99 70
18 38 24 22
74 17 98 20
17 94 44 82
33 97 48 19
12...

output:

291628571

result:

ok answer is '291628571'

Test #8:

score: 0
Accepted
time: 5ms
memory: 3436kb

input:

500 8
2 4 8 2
3 7 5 4
2 6 8 1
4 8 5 5
6 6 7 5
2 6 5 5
1 6 8 5
6 5 7 3
4 8 5 7
5 7 6 5
1 6 4 5
2 3 4 2
2 8 8 6
3 8 4 3
5 6 7 2
7 8 8 3
1 8 4 7
1 6 6 1
1 8 7 1
1 4 3 3
2 3 3 1
1 4 5 1
1 8 5 4
7 7 8 5
2 7 4 1
3 7 4 3
2 3 5 1
3 7 8 1
4 7 5 5
6 6 8 3
2 7 5 1
2 5 4 3
5 4 8 2
4 5 8 3
2 3 4 1
2 8 3 2
5 6 8 ...

output:

9321

result:

ok answer is '9321'

Test #9:

score: -100
Time Limit Exceeded

input:

500 1000000000
228604634 522874974 789854111 585676486
340802063 175643637 661594207 749079321
490078806 844144515 583746323 707696611
833939453 901516824 867397264 848066012
553537526 886003963 679012061 187030606
351500555 847099665 751201742 855105070
169763646 729114554 248951243 211939611
17040...

output:


result: