QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#65826 | #4887. Fast Bridges | japan022022# | WA | 4ms | 3468kb | C++20 | 25.9kb | 2022-12-03 18:55:52 | 2022-12-03 18:55:53 |
Judging History
answer
#line 1 "library/my_template.hpp"
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) \
overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T pick(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T pick(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T pick(pqg<T> &que) {
assert(que.size());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T pick(vc<T> &que) {
assert(que.size());
T a = que.back();
que.pop_back();
return a;
}
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename F>
ll binary_search(F check, ll ok, ll ng) {
assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = S[i] - first_char; }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
template <typename CNT, typename T>
vc<CNT> bincount(const vc<T> &A, int size) {
vc<CNT> C(size);
for (auto &&x: A) { ++C[x]; }
return C;
}
// stable
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(A.size());
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
int n = len(I);
vc<T> B(n);
FOR(i, n) B[i] = A[I[i]];
return B;
}
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char &val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string &s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double &x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double &x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> &val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> &val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T &t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto &x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> &tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> &val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/mod/modint.hpp"
template <int mod>
struct modint {
int val;
constexpr modint(ll x = 0) noexcept {
if (0 <= x && x < mod)
val = x;
else {
x %= mod;
val = (x < 0 ? x + mod : x);
}
}
bool operator<(const modint &other) const {
return val < other.val;
} // To use std::map
modint &operator+=(const modint &p) {
if ((val += p.val) >= mod) val -= mod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += mod - p.val) >= mod) val -= mod;
return *this;
}
modint &operator*=(const modint &p) {
val = (int)(1LL * val * p.val % mod);
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint(-val); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(int64_t n) const {
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
void write() { fastio::printer.write(val); }
void read() { fastio::scanner.read(val); }
static constexpr int get_mod() { return mod; }
};
struct ArbitraryModInt {
static constexpr bool is_modint = true;
int val;
ArbitraryModInt() : val(0) {}
ArbitraryModInt(int64_t y)
: val(y >= 0 ? y % get_mod()
: (get_mod() - (-y) % get_mod()) % get_mod()) {}
bool operator<(const ArbitraryModInt &other) const {
return val < other.val;
} // To use std::map<ArbitraryModInt, T>
static int &get_mod() {
static int mod = 0;
return mod;
}
static void set_mod(int md) { get_mod() = md; }
ArbitraryModInt &operator+=(const ArbitraryModInt &p) {
if ((val += p.val) >= get_mod()) val -= get_mod();
return *this;
}
ArbitraryModInt &operator-=(const ArbitraryModInt &p) {
if ((val += get_mod() - p.val) >= get_mod()) val -= get_mod();
return *this;
}
ArbitraryModInt &operator*=(const ArbitraryModInt &p) {
long long a = (long long)val * p.val;
int xh = (int)(a >> 32), xl = (int)a, d, m;
asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(get_mod()));
val = m;
return *this;
}
ArbitraryModInt &operator/=(const ArbitraryModInt &p) {
*this *= p.inverse();
return *this;
}
ArbitraryModInt operator-() const { return ArbitraryModInt(get_mod() - val); }
ArbitraryModInt operator+(const ArbitraryModInt &p) const {
return ArbitraryModInt(*this) += p;
}
ArbitraryModInt operator-(const ArbitraryModInt &p) const {
return ArbitraryModInt(*this) -= p;
}
ArbitraryModInt operator*(const ArbitraryModInt &p) const {
return ArbitraryModInt(*this) *= p;
}
ArbitraryModInt operator/(const ArbitraryModInt &p) const {
return ArbitraryModInt(*this) /= p;
}
bool operator==(const ArbitraryModInt &p) const { return val == p.val; }
bool operator!=(const ArbitraryModInt &p) const { return val != p.val; }
ArbitraryModInt inverse() const {
int a = val, b = get_mod(), u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return ArbitraryModInt(u);
}
ArbitraryModInt pow(int64_t n) const {
ArbitraryModInt ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
void write() { fastio::printer.write(val); }
void read() { fastio::scanner.read(val); }
};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (int(dat.size()) <= n) {
int k = dat.size();
auto q = (mod + k - 1) / k;
int r = k * q - mod;
dat.emplace_back(dat[r] * mint(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {1, 1};
assert(0 <= n);
if (n >= mod) return 0;
while (int(dat.size()) <= n) {
int k = dat.size();
dat.emplace_back(dat[k - 1] * mint(k));
}
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {1, 1};
assert(-1 <= n && n < mod);
if (n == -1) return mint(0);
while (int(dat.size()) <= n) {
int k = dat.size();
dat.emplace_back(dat[k - 1] * inv<mint>(k));
}
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if (dense) return C_dense<mint>(n, k);
if (!large) return fact<mint>(n) * fact_inv<mint>(k) * fact_inv<mint>(n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) { x *= mint(n - i); }
x *= fact_inv<mint>(k);
return x;
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
using amint = ArbitraryModInt;
#line 1 "library/ds/fastset.hpp"
/* 64分木。
insert, erase
[]での存在判定
next, prev
*/
struct FastSet {
using uint = unsigned;
using ull = unsigned long long;
int bsr(ull x) { return 63 - __builtin_clzll(x); }
int bsf(ull x) { return __builtin_ctzll(x); }
static constexpr uint B = 64;
int n, lg;
vector<vector<ull>> seg;
FastSet(int _n) : n(_n) {
do {
seg.push_back(vector<ull>((_n + B - 1) / B));
_n = (_n + B - 1) / B;
} while (_n > 1);
lg = int(seg.size());
}
bool operator[](int i) const { return (seg[0][i / B] >> (i % B) & 1) != 0; }
void insert(int i) {
for (int h = 0; h < lg; h++) {
seg[h][i / B] |= 1ULL << (i % B);
i /= B;
}
}
void erase(int i) {
for (int h = 0; h < lg; h++) {
seg[h][i / B] &= ~(1ULL << (i % B));
if (seg[h][i / B]) break;
i /= B;
}
}
// x以上最小の要素を返す。存在しなければ n。
int next(int i) {
for (int h = 0; h < lg; h++) {
if (i / B == seg[h].size()) break;
ull d = seg[h][i / B] >> (i % B);
if (!d) {
i = i / B + 1;
continue;
}
// find
i += bsf(d);
for (int g = h - 1; g >= 0; g--) {
i *= B;
i += bsf(seg[g][i / B]);
}
return i;
}
return n;
}
// x以下最大の要素を返す。存在しなければ -1。
int prev(int i) {
if (i < 0) return -1;
if (i >= n) i = n - 1;
for (int h = 0; h < lg; h++) {
if (i == -1) break;
ull d = seg[h][i / B] << (63 - i % 64);
if (!d) {
i = i / B - 1;
continue;
}
// find
i += bsr(d) - (B - 1);
for (int g = h - 1; g >= 0; g--) {
i *= B;
i += bsr(seg[g][i / B]);
}
return i;
}
return -1;
}
// [l, r) 内の要素を全部集める
vector<int> collect(int l, int r) {
vector<int> res;
int x = l - 1;
while (1) {
x = next(x + 1);
if (x >= r) break;
res.emplace_back(x);
}
return res;
}
void debug() {
string s;
for (int i = 0; i < n; ++i) s += ((*this)[i] ? '1' : '0');
print(s);
}
};
#line 5 "main.cpp"
using mint = modint998;
void solve() {
LL(N, LIM);
using T4 = tuple<int, int, int, int>;
vc<T4> dat_1, dat_2;
FOR(N) {
LL(x1, y1, x2, y2);
--x1, --y1, --x2, --y2;
if (y1 < y2) {
dat_1.eb(x1, y1, x2, y2);
} else {
dat_2.eb(x1, N - 1 - y1, x2, N - 1 - y2);
}
}
auto calc_full = [&]() -> mint {
mint x = LIM;
return x * x * x * (x - mint(1)) * (x + mint(1)) * inv<mint>(3);
};
auto solve = [&](vc<T4> dat) -> mint {
// x1<x2, y1<y2 方向に進む場合の、全点対の節約回数の総和を求める
vc<int> X, Y;
for (auto&& [x1, y1, x2, y2]: dat) {
X.eb(x1), Y.eb(y1), X.eb(x2), Y.eb(y2);
}
X.eb(-1);
Y.eb(-1);
X.eb(LIM);
Y.eb(LIM);
UNIQUE(X);
UNIQUE(Y);
for (auto&& [x1, y1, x2, y2]: dat) {
x1 = LB(X, x1);
x2 = LB(X, x2);
y1 = LB(Y, y1);
y2 = LB(Y, y2);
}
vvc<int> edge_start(len(X));
vvc<int> edge_end(len(X));
FOR(i, len(dat)) {
auto [x1, y1, x2, y2] = dat[i];
edge_start[x1].eb(i);
edge_end[x2].eb(i);
}
auto solve_by_fixed_start = [&](int i0, int j0) -> mint {
// X[i0] < x <= X[i0+1] and Y[j0] < y <= Y[j0+1] からスタートするとき
// 始点の個数は return 後に計算する
// dp の値の境界となっている点集合を管理する fastset
FastSet LEFT(len(Y) - 1);
// LEFT のところでは正しいことを保証
vc<int> RIGHT(len(Y) - 1, -1);
vc<int> dp(len(Y) - 1, -1);
LEFT.insert(0);
RIGHT[0] = len(Y) - 1;
dp[0] = 0;
mint res = 0;
mint dp_sm = 0;
vvc<pair<int, int>> upd(len(X)); // (y, dp value)
FOR(i, i0 + 1, len(X) - 1) {
// X[i] で終わる線分の情報の反映
for (auto&& [y, dp_val]: upd[i]) {
int y1 = LEFT.prev(y);
if (dp[y1] >= dp_val) continue;
// y の左側の区間を分割しておく
if (y1 < y) {
int y2 = RIGHT[y1];
// [y1,y2) -> [y1,y) and [y,y2)
if (y < y2) {
LEFT.insert(y);
RIGHT[y1] = y;
RIGHT[y] = y2;
dp[y] = dp[y1];
}
}
// y の右にある、dp_val 未満の区間を全部削除 していく
y1 = y;
while (y1 < len(dp)) {
if (dp[y1] >= dp_val) break;
int y2 = RIGHT[y1];
mint dy = Y[y2] - Y[y1];
dp_sm -= dy * mint(dp[y1]);
LEFT.erase(y1);
dp[y1] = -1;
RIGHT[y1] = -1;
y1 = y2;
}
// [y, y1) を dp_val に変更
if (y < y1) {
mint dy = Y[y1] - Y[y];
dp_sm += dy * mint(dp_val);
LEFT.insert(y);
dp[y] = dp_val;
RIGHT[y] = y1;
}
}
// print("RIGHT", RIGHT);
// [X[i], X[i+1]) を終点とするときの答の反映
res += dp_sm * mint(X[i + 1] - X[i]);
// X[i] を始点とする線分による遷移のメモ
for (auto&& eid: edge_start[i]) {
auto [x1, y1, x2, y2] = dat[eid];
if (y1 <= j0) continue;
int dp_val = dp[LEFT.prev(y1)];
upd[x2].eb(y2, dp_val + 1);
}
}
return res;
};
mint res = 0;
FOR(i0, len(X) - 2) FOR(j0, len(Y) - 2) {
mint dx = X[i0 + 1] - X[i0];
mint dy = Y[j0 + 1] - Y[j0];
mint val = solve_by_fixed_start(i0, j0);
res += dx * dy * val;
// print(X[i0 + 1], Y[j0 + 1], val);
}
return res;
};
mint ANS = calc_full();
ANS -= solve(dat_1);
ANS -= solve(dat_2);
print(ANS);
}
signed main() {
solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 3ms
memory: 3288kb
input:
2 2 1 1 2 2 1 2 2 1
output:
6
result:
ok answer is '6'
Test #2:
score: 0
Accepted
time: 3ms
memory: 3252kb
input:
0 1000000000
output:
916520226
result:
ok answer is '916520226'
Test #3:
score: 0
Accepted
time: 0ms
memory: 3468kb
input:
5 5 1 1 3 3 3 3 5 1 3 3 4 5 3 3 5 4 1 5 3 3
output:
946
result:
ok answer is '946'
Test #4:
score: -100
Wrong Answer
time: 4ms
memory: 3436kb
input:
200 5 1 1 4 2 2 5 4 4 2 3 4 2 2 4 3 5 1 4 4 2 2 5 4 2 1 2 4 4 1 2 2 4 1 4 5 1 3 4 5 1 4 2 5 1 2 2 5 4 3 2 5 1 3 1 5 2 4 2 5 3 1 3 5 1 3 4 4 5 2 2 4 3 2 3 5 4 1 4 5 3 2 2 3 1 2 5 3 3 1 1 5 3 4 4 5 5 1 3 4 4 4 3 5 1 2 3 3 4 3 4 4 2 1 4 4 5 2 1 4 4 1 3 5 2 1 1 3 3 1 5 3 1 1 1 3 5 1 4 3 5 4 5 5 4 1 1 4 ...
output:
998236351
result:
wrong answer expected '708', found '998236351'