QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#657468#9463. 基础 ABC 练习题wrkwrk0 1ms3580kbC++206.9kb2024-10-19 14:49:122024-10-19 14:49:13

Judging History

你现在查看的是最新测评结果

  • [2024-10-19 14:49:13]
  • 评测
  • 测评结果:0
  • 用时:1ms
  • 内存:3580kb
  • [2024-10-19 14:49:12]
  • 提交

answer

#include<bits/stdc++.h>
using namespace std;
bool st;
namespace _wrk{;
template<int mod>
struct modint{
	int num;
	const static __uint128_t brt=((__uint128_t)(1)<<(64))/mod;
	modint(){
		num=0;
	}
	modint(int x){
		num=x%mod;
	}
	modint(long long x){
		num=x%mod;
	}
	modint<mod>operator=(int x){
		num=x%mod;
		return (*this);
	}
	modint<mod>operator=(long long x){
		num=x%mod;
		return (*this);
	}
	modint<mod>operator=(modint<mod>x){
		num=x.num;
		return (*this);
	}
	modint<mod> operator+(modint<mod> c)const{
		long long x=num+c.num;
		return x>=mod?x-mod:x;
	}
	modint<mod> operator-(modint<mod> c)const{
		long long x=num-c.num;
		return x<0?x+mod:x;
	}
	modint<mod>operator*(modint<mod>c)const{
		long long x=(long long)num*c.num;
		x=x-mod*(brt*x>>64);
		while(x>=mod)x-=mod;
		return x;
	}
	modint<mod>fpof(long long x)const{
		if(x<0)return inv().fpof(-x);
		if(x==0)return 1;
		auto c=((*this)*(*this)).fpof(x/2);
		if(x&1)return c*(*this);
		else return c;
	}
	struct modint_pow{
		int pf;
		modint_pow(int x){
			pf=x;
		}
		modint_pow(modint<mod> x){
			pf=x.num;
		}
		modint_pow operator+(modint_pow x){
			return pf+x.pf;
		}
	};
	modint_pow operator*(){
		return modint_pow(num);
	}
	modint<mod> operator*(modint_pow x){
		return (*this).fpof(x.pf);
	}
	modint<mod>inv()const{
		return fpof(mod-2);
	}
	modint<mod>operator/(modint<mod>c){
		return (*this)*c.inv();
	}
	operator int(){
		return num;
	}

	modint<mod>operator+=(modint<mod> c){
		return (*this)=(*this)+c;
	}
	modint<mod>operator-=(modint<mod> c){
		return (*this)=(*this)-c;
	}
	modint<mod>operator*=(modint<mod> c){
		return (*this)=(*this)*c;
	}
	modint<mod>operator/=(modint<mod> c){
		return (*this)=(*this)/c;
	}
	modint<mod>operator-(){
		return mod-num;
	}
	friend ostream& operator<<(ostream &w,modint<mod>&&x){
		w<<x.num;
		return w;
	}
	friend istream& operator>>(istream &w,modint<mod>&x){
		w>>x.num;
		x.num%=mod;
		return w;

	}
	bool operator==(modint<mod>x){
		return num==x.num;
	}

};

template<int mod,class type>
modint<mod>operator+(type a,modint<mod>b){
	return modint<mod>(a)+b;
}
template<int mod,class type>
modint<mod>operator-(type a,modint<mod>b){
	return modint<mod>(a)-b;
}
template<int mod,class type>
modint<mod>operator*(type a,modint<mod>b){
	return modint<mod>(a)*b;
}
template<int mod,class type>
modint<mod>operator/(type a,modint<mod>b){
	return modint<mod>(a)/b;
}
#define int long long

template<class type,int N>
struct matrix{
	type a[N+2][N+2];
	int n;
	type* operator[](int pos){
		return a[pos];
	}
	matrix<type,N> operator*(matrix<type,N>b){
		matrix<type,N>ans;
		ans.n=n;
		for(int i=1;i<=n;i++){
			for(int j=1;j<=n;j++){
				for(int k=1;k<=n;k++){
					ans[i][j]+=a[i][k]*b[k][j];
				}
			}
		}
		return ans;
	}
};
template<class type>
type fp(type a,int b){
	if(b==0)return type();
	if(b==1)return a;
	type w=fp(a*a,b/2);
	if(b%2)return w*a;
	return w;
}
template<class type,int N>
struct backup_array{
	type name[N+5];
	vector<vector<pair<int,int>>>cc;
	void new_array(){
		cc.push_back(vector<pair<int,int>>());
	}
	backup_array(){
		cc.resize(1);
	}
	struct x{
		int id;
		type* name;
		vector<vector<pair<int,int>>> &cc;
		operator type(){
			return name[id];
		}
		type operator=(type w){
			cc.back().push_back({id,name[id]});
			name[id]=w;
			return w;
		}
	};
	x operator[](int pos){
		return {pos,name,cc};
	}
	void backup(){
		reverse(cc.back().begin(),cc.back().end());
		for(auto &x:cc.back()){
			name[x.first]=x.second;
		}
		cc.pop_back();
	}
};
template<class type,int N>
struct Math{
	type jc[N+5],inv[N+5],invjc[N+5];
	Math(){
		jc[0]=jc[1]=inv[1]=invjc[1]=invjc[0]=1;
		for(int i=2;i<=N;i++){
			jc[i]=jc[i-1]*type(i);
		}
		invjc[N]=type(1)/jc[N];
		for(int i=N-1;i>=2;i--){
			invjc[i]=invjc[i+1]*type(i+1);
		}
		for(int i=1;i<=N;i++){
			inv[i]=invjc[i]*jc[i-1];
		}
	}
	type binom(int a,int b){
		return jc[a]*invjc[b]*invjc[a-b];
	}
	type catalan(int n){
		return binom(2*n,n)/type(n+1);
	}
};
template<class type,int num,int maxnum>
struct pows{
	type w[maxnum+5];
	pows(){
		w[0]=type(1);
		for(int i=1;i<=maxnum;i++)w[i]=w[i-1]*type(num);
	}
	type operator[](int pos){
		return w[pos];
	}
};
#ifdef use_seg_tree
template<class type,class laz_type,int len>
struct segment_tree{
	type a[len<<2];
	laz_type laz[len<<2];
	void pushup(int now){
		PUSHUP_VALUE
	}
	void pushdown(int now,int l,int r){
		PUSHDOWN_VALUE
	}
	void build(int now,int l,int r){
		if(l+1==r){
			FIRST_VALUE
			return;
		}
		LAZ_CLEAR
		int mid=(l+r)>>1;
		build(now<<1,l,mid);
		build(now<<1|1,mid,r);
		pushup(now);
	}
	void do1(int now,int l,int r,int L,int R,...){
		if(l+1!=r)pushdown(now,l,r);
		if(R<=l||r<=L)return;
		if(L<=l&&r<=R){
			FULL_BLOCK_VALUE
			return;
		}
		int mid=(l+r)>>1;
		do1(now<<1,l,mid,L,R,...);
		do1(now<<1|1,mid,r,L,R,...);
		pushup(now);
	}
	void do1_one(int now,int l,int r,int p,...){
		if(l+1!=r)pushdown(now,l,r);
		if(l+1==r){
			DO1_VALUE
			return;
		}
		int mid=(l+r)>>1;
		if(p<mid)do1_one(now<<1,l,mid,p,...);
		else do1_one(now<<1|1,mid,r,p,...);
		pushup(now);
	}
	type qu1(int now,int l,int r,int L,int R){
		if(l+1!=r)pushdown(now,l,r);
		if(R<=l||r<=L)return BASE_VALUE
		if(L<=l&&r<=R)return a[now];
		int mid=(l+r)>>1;
		return RETURN_VALVE qu1(now<<1,l,mid,L,R)+qu1(now<<1|1,mid,r,L,R);
	}
	type qu1_one(int now,int l,int r,int p){
		if(l+1!=r)pushdown(now,l,r);
		if(l+1==r)return a[now];
		int mid=(l+r)>>1;
		if(p<mid)return qu1_one(now<<1,l,mid,p);
		else return qu1_one(now<<1|1,mid,r,p);

	}
};
#endif
//#define mod 998244353
//#define mint modint<mod>
//pows<mint,2,1000006>tp;
//Math<mint,1000006>math;
//vector<int>g[1000006]
signed main(){
	ios::sync_with_stdio(false);
	cin.tie(0);cout.tie(0);
	int t;
	cin>>t;
	while(t--){
		
		int n;
		cin>>n;
		if(n!=60){
			cout<<"-1\n";
			continue;
		}
		string s;
		cin>>s;
		string t;
		cin>>t;
		string p;
		cin>>p;
		p='#'+p;
		int ans=0;
		for(int i=0;i<=n;i++){
			for(int j=0;i+j<=n;j++){
				if(s[i]=='1'&&t[j]=='1'){
					int res=1;
					int k=n-i-j;
//					i ABC
//					j BCA
//					k CAB
					int na=0,nb=0,nc=0;
					for(int f=1;f<=n;f++){
						if(p[i]=='A'){
							if(!((na<i)||(i<=na&&na<i+k&&nc>=na+1-i)||(na>=i+k&&nc>=na+1-i))){
								res=0;
							}
								na++;
						} 
						if(p[i]=='B'){
							if(!((nb<j)||(j<=nb&&nb<j+i&&na>=nb+1-j)||(nb>=j+i&&na>=nb+1-j))){
								res=0;
							}
								nb++;
						} 
						if(p[i]=='C'){
							if(!((nc<k)||(k<=nc&&nc<k+j&&nb>=nc+1-k)||(nc>=k+j&&nb>=nc+1-k))){
								res=0;
							}
							nc++;
						} 
					}
					ans=max(ans,res);
				}
			}
		}
		cout<<ans<<'\n';
	}

	return 0;
}
}
bool en;
signed main(){
	#ifdef LOCAL_WRK
	cerr<<"[Static Memory : "<<fixed<<((&st)-(&en))/1048576.0<<"MB]"<<endl;
	#endif
	   return _wrk::main();
}





Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 0
Wrong Answer

Test #1:

score: 0
Wrong Answer
time: 1ms
memory: 3580kb

input:

60 1
1
11
11
ABC
2
111
111
CABABC
3
1111
1111
CAABBCBAC
4
11111
11111
BACBBACBACAC
5
111111
111111
CABCCBBAABCCBAA
6
1111111
1111111
ABABABCACBCBCCACBA
7
11111111
11111111
BCAABACBBCBBABCCAACAC
8
111111111
111111111
CCBCBBBCAABCBCAAAAACBCBA
9
1111111111
1111111111
CCCCACABCBABAABCCAABABBCBBA
10
1111...

output:

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

result:

points 0.0 the max n you choose to answer is 0

Subtask #2:

score: 0
Skipped

Dependency #1:

0%

Subtask #3:

score: 0
Wrong Answer

Test #22:

score: 0
Wrong Answer
time: 0ms
memory: 3580kb

input:

60 3
1
11
11
???
2
111
111
??????
3
1111
1111
?????????
4
11111
11111
????????????
5
111111
111111
???????????????
6
1111111
1111111
??????????????????
7
11111111
11111111
?????????????????????
8
111111111
111111111
????????????????????????
9
1111111111
1111111111
???????????????????????????
10
1111...

output:

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

result:

points 0.0 the max n you choose to answer is 0

Subtask #4:

score: 0
Skipped

Dependency #1:

0%

Subtask #5:

score: 0
Skipped

Dependency #1:

0%