QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#65737#4879. Standard Problemjapan022022#WA 4ms3520kbC++1410.6kb2022-12-03 15:32:402022-12-03 15:32:44

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2022-12-03 15:32:44]
  • 评测
  • 测评结果:WA
  • 用时:4ms
  • 内存:3520kb
  • [2022-12-03 15:32:40]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }


////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;


// T: monoid representing information of an interval.
//   T()  should return the identity.
//   T(S s)  should represent a single element of the array.
//   T::push(T &l, T &r)  should push the lazy update.
//   T::merge(const T &l, const T &r)  should merge two intervals.
template <class T> struct SegmentTreeRange {
  int logN, n;
  vector<T> ts;
  SegmentTreeRange() {}
  explicit SegmentTreeRange(int n_) {
    for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
    ts.resize(n << 1);
  }
  template <class S> explicit SegmentTreeRange(const vector<S> &ss) {
    const int n_ = ss.size();
    for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
    ts.resize(n << 1);
    for (int i = 0; i < n_; ++i) at(i) = T(ss[i]);
    build();
  }
  T &at(int i) {
    return ts[n + i];
  }
  void build() {
    for (int u = n; --u; ) merge(u);
  }

  inline void push(int u) {
    ts[u].push(ts[u << 1], ts[u << 1 | 1]);
  }
  inline void merge(int u) {
    ts[u].merge(ts[u << 1], ts[u << 1 | 1]);
  }

  // Applies T::f(args...) to [a, b).
  template <class F, class... Args>
  void ch(int a, int b, F f, Args &&... args) {
    assert(0 <= a); assert(a <= b); assert(b <= n);
    if (a == b) return;
    a += n; b += n;
    for (int h = logN; h; --h) {
      const int aa = a >> h, bb = b >> h;
      if (aa == bb) {
        if ((aa << h) != a || (bb << h) != b) push(aa);
      } else {
        if ((aa << h) != a) push(aa);
        if ((bb << h) != b) push(bb);
      }
    }
    for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
      if (aa & 1) (ts[aa++].*f)(args...);
      if (bb & 1) (ts[--bb].*f)(args...);
    }
    for (int h = 1; h <= logN; ++h) {
      const int aa = a >> h, bb = b >> h;
      if (aa == bb) {
        if ((aa << h) != a || (bb << h) != b) merge(aa);
      } else {
        if ((aa << h) != a) merge(aa);
        if ((bb << h) != b) merge(bb);
      }
    }
  }

  // Calculates the product for [a, b).
  T get(int a, int b) {
    assert(0 <= a); assert(a <= b); assert(b <= n);
    if (a == b) return T();
    a += n; b += n;
    for (int h = logN; h; --h) {
      const int aa = a >> h, bb = b >> h;
      if (aa == bb) {
        if ((aa << h) != a || (bb << h) != b) push(aa);
      } else {
        if ((aa << h) != a) push(aa);
        if ((bb << h) != b) push(bb);
      }
    }
    T prodL, prodR, t;
    for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
      if (aa & 1) { t.merge(prodL, ts[aa++]); prodL = t; }
      if (bb & 1) { t.merge(ts[--bb], prodR); prodR = t; }
    }
    t.merge(prodL, prodR);
    return t;
  }

  // Calculates T::f(args...) of a monoid type for [a, b).
  //   op(-, -)  should calculate the product.
  //   e()  should return the identity.
  template <class Op, class E, class F, class... Args>
#if __cplusplus >= 201402L
  auto
#else
  decltype((std::declval<T>().*F())())
#endif
  get(int a, int b, Op op, E e, F f, Args &&... args) {
    assert(0 <= a); assert(a <= b); assert(b <= n);
    if (a == b) return e();
    a += n; b += n;
    for (int h = logN; h; --h) {
      const int aa = a >> h, bb = b >> h;
      if (aa == bb) {
        if ((aa << h) != a || (bb << h) != b) push(aa);
      } else {
        if ((aa << h) != a) push(aa);
        if ((bb << h) != b) push(bb);
      }
    }
    auto prodL = e(), prodR = e();
    for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
      if (aa & 1) prodL = op(prodL, (ts[aa++].*f)(args...));
      if (bb & 1) prodR = op((ts[--bb].*f)(args...), prodR);
    }
    return op(prodL, prodR);
  }

  // Find min b s.t. T::f(args...) returns true,
  // when called for the partition of [a, b) from left to right.
  //   Returns n + 1 if there is no such b.
  template <class F, class... Args>
  int findRight(int a, F f, Args &&... args) {
    assert(0 <= a); assert(a <= n);
    if ((T().*f)(args...)) return a;
    if (a == n) return n + 1;
    a += n;
    for (int h = logN; h; --h) push(a >> h);
    for (; ; a >>= 1) if (a & 1) {
      if ((ts[a].*f)(args...)) {
        for (; a < n; ) {
          push(a);
          if (!(ts[a <<= 1].*f)(args...)) ++a;
        }
        return a - n + 1;
      }
      ++a;
      if (!(a & (a - 1))) return n + 1;
    }
  }

  // Find max a s.t. T::f(args...) returns true,
  // when called for the partition of [a, b) from right to left.
  //   Returns -1 if there is no such a.
  template <class F, class... Args>
  int findLeft(int b, F f, Args &&... args) {
    assert(0 <= b); assert(b <= n);
    if ((T().*f)(args...)) return b;
    if (b == 0) return -1;
    b += n;
    for (int h = logN; h; --h) push((b - 1) >> h);
    for (; ; b >>= 1) if ((b & 1) || b == 2) {
      if ((ts[b - 1].*f)(args...)) {
        for (; b <= n; ) {
          push(b - 1);
          if (!(ts[(b <<= 1) - 1].*f)(args...)) --b;
        }
        return b - n - 1;
      }
      --b;
      if (!(b & (b - 1))) return -1;
    }
  }
};

////////////////////////////////////////////////////////////////////////////////

constexpr Int INF = 1001001001001001001LL;

struct Node {
  // (<- lzA) += lzB
  Int mx, lzA, lzB;
  Mint way, lzWay;
  Node() : mx(-INF), lzA(-1), lzB(0), way(0), lzWay(0) {}
  void push(Node &l, Node &r) {
    if (~lzA) {
      l.change(lzA);
      r.change(lzA);
      lzA = -1;
    }
    if (lzB) {
      l.add(lzB);
      r.add(lzB);
      lzB = 0;
    }
    if (lzWay) {
      l.addWay(lzWay);
      r.addWay(lzWay);
      lzWay = 0;
    }
  }
  void merge(const Node &l, const Node &r) {
    mx = max(l.mx, r.mx);
    way = l.way + r.way;
  }
  void change(Int val) {
    mx = val;
    lzA = val;
    lzB = 0;
  }
  void add(Int val) {
    mx += val;
    lzB += val;
  }
  void addWay(const Mint &w) {
    way += w;
    lzWay += w;
  }
  bool check(Int tar) {
    return (mx >= tar);
  }
};


int N, M;
vector<int> L, R;
vector<Int> C;

int main() {
  for (int numCases; ~scanf("%d", &numCases); ) { for (int caseId = 1; caseId <= numCases; ++caseId) {
    scanf("%d%d", &N, &M);
    L.resize(N);
    R.resize(N);
    C.resize(N);
    for (int i = 0; i < N; ++i) {
      scanf("%d%d%lld", &L[i], &R[i], &C[i]);
      --L[i];
    }
    
    SegmentTreeRange<Node> seg(M);
    for (int x = 0; x < M; ++x) {
      seg.at(x).mx = 0;
      seg.at(x).way = 1;
    }
    seg.build();
    for (int i = 0; i < N; ++i) {
      seg.ch(L[i], R[i], &Node::add, C[i]);
      const auto res = seg.get(R[i] - 1, R[i]);
      const int pos0 = seg.findRight(R[i], &Node::check, res.mx) - 1;
      const int pos1 = seg.findRight(R[i], &Node::check, res.mx + 1) - 1;
      seg.ch(R[i], pos0, &Node::change, res.mx);
      seg.ch(pos0, pos1, &Node::addWay, res.way);
// for(int x=0;x<M;++x){const auto re=seg.get(x,x+1);cerr<<make_pair(re.mx,re.way)<<" ";}cerr<<endl;
    }
    
    const auto ans = seg.get(M - 1, M);
    printf("%lld %u\n", ans.mx, ans.way.x);
  }
#ifndef LOCAL
  break;
#endif
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3520kb

input:

2
3 4
1 2 1
2 3 1
2 2 1
2 5
1 4 3
2 5 3

output:

3 1
6 1

result:

ok 4 number(s): "3 1 6 1"

Test #2:

score: 0
Accepted
time: 4ms
memory: 3520kb

input:

30
3 3
1 3 1
1 3 1
1 3 1
3 3
1 2 1
1 3 1
1 3 1
3 3
2 2 1
1 3 1
1 3 1
3 3
1 3 1
1 2 1
1 3 1
3 3
2 3 1
1 2 1
1 3 1
3 3
2 2 1
1 3 1
1 3 1
3 3
2 2 1
1 2 1
1 3 1
3 3
1 3 1
2 3 1
1 3 1
3 3
2 3 1
1 3 1
2 2 1
3 3
1 2 1
1 2 1
1 2 1
3 3
1 3 1
1 3 1
1 3 1
3 3
1 3 1
1 2 1
1 3 1
3 3
2 3 1
1 2 1
1 3 1
3 3
1 3 1
1...

output:

3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
2 2
3 1
3 1
3 1
3 1
2 2
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1

result:

ok 60 numbers

Test #3:

score: -100
Wrong Answer
time: 3ms
memory: 3520kb

input:

20
5 5
1 5 1
1 5 1
1 4 1
1 5 1
1 5 1
5 5
2 4 1
1 5 1
1 5 1
2 4 1
2 4 1
5 5
2 4 1
1 5 1
1 5 1
2 5 1
1 3 1
5 5
1 5 1
1 5 1
2 3 1
1 5 1
1 4 1
5 5
1 4 1
1 4 1
2 5 1
1 3 1
2 4 1
5 5
2 4 1
3 3 1
1 3 1
2 4 1
4 4 1
5 5
3 3 1
1 4 1
3 3 1
2 5 1
2 5 1
5 5
2 4 1
2 3 1
4 4 1
2 4 1
2 4 1
5 5
3 3 1
3 3 1
2 4 1
1 4...

output:

5 1
5 1
5 1
5 1
5 1
5 1
5 1
5 1
4 1
5 1
5 1
5 1
5 1
5 1
4 2
5 1
5 1
5 1
5 1
5 1

result:

wrong answer 30th numbers differ - expected: '1', found: '2'