QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#65737 | #4879. Standard Problem | japan022022# | WA | 4ms | 3520kb | C++14 | 10.6kb | 2022-12-03 15:32:40 | 2022-12-03 15:32:44 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
// T: monoid representing information of an interval.
// T() should return the identity.
// T(S s) should represent a single element of the array.
// T::push(T &l, T &r) should push the lazy update.
// T::merge(const T &l, const T &r) should merge two intervals.
template <class T> struct SegmentTreeRange {
int logN, n;
vector<T> ts;
SegmentTreeRange() {}
explicit SegmentTreeRange(int n_) {
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
}
template <class S> explicit SegmentTreeRange(const vector<S> &ss) {
const int n_ = ss.size();
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
for (int i = 0; i < n_; ++i) at(i) = T(ss[i]);
build();
}
T &at(int i) {
return ts[n + i];
}
void build() {
for (int u = n; --u; ) merge(u);
}
inline void push(int u) {
ts[u].push(ts[u << 1], ts[u << 1 | 1]);
}
inline void merge(int u) {
ts[u].merge(ts[u << 1], ts[u << 1 | 1]);
}
// Applies T::f(args...) to [a, b).
template <class F, class... Args>
void ch(int a, int b, F f, Args &&... args) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return;
a += n; b += n;
for (int h = logN; h; --h) {
const int aa = a >> h, bb = b >> h;
if (aa == bb) {
if ((aa << h) != a || (bb << h) != b) push(aa);
} else {
if ((aa << h) != a) push(aa);
if ((bb << h) != b) push(bb);
}
}
for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
if (aa & 1) (ts[aa++].*f)(args...);
if (bb & 1) (ts[--bb].*f)(args...);
}
for (int h = 1; h <= logN; ++h) {
const int aa = a >> h, bb = b >> h;
if (aa == bb) {
if ((aa << h) != a || (bb << h) != b) merge(aa);
} else {
if ((aa << h) != a) merge(aa);
if ((bb << h) != b) merge(bb);
}
}
}
// Calculates the product for [a, b).
T get(int a, int b) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return T();
a += n; b += n;
for (int h = logN; h; --h) {
const int aa = a >> h, bb = b >> h;
if (aa == bb) {
if ((aa << h) != a || (bb << h) != b) push(aa);
} else {
if ((aa << h) != a) push(aa);
if ((bb << h) != b) push(bb);
}
}
T prodL, prodR, t;
for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
if (aa & 1) { t.merge(prodL, ts[aa++]); prodL = t; }
if (bb & 1) { t.merge(ts[--bb], prodR); prodR = t; }
}
t.merge(prodL, prodR);
return t;
}
// Calculates T::f(args...) of a monoid type for [a, b).
// op(-, -) should calculate the product.
// e() should return the identity.
template <class Op, class E, class F, class... Args>
#if __cplusplus >= 201402L
auto
#else
decltype((std::declval<T>().*F())())
#endif
get(int a, int b, Op op, E e, F f, Args &&... args) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return e();
a += n; b += n;
for (int h = logN; h; --h) {
const int aa = a >> h, bb = b >> h;
if (aa == bb) {
if ((aa << h) != a || (bb << h) != b) push(aa);
} else {
if ((aa << h) != a) push(aa);
if ((bb << h) != b) push(bb);
}
}
auto prodL = e(), prodR = e();
for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
if (aa & 1) prodL = op(prodL, (ts[aa++].*f)(args...));
if (bb & 1) prodR = op((ts[--bb].*f)(args...), prodR);
}
return op(prodL, prodR);
}
// Find min b s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from left to right.
// Returns n + 1 if there is no such b.
template <class F, class... Args>
int findRight(int a, F f, Args &&... args) {
assert(0 <= a); assert(a <= n);
if ((T().*f)(args...)) return a;
if (a == n) return n + 1;
a += n;
for (int h = logN; h; --h) push(a >> h);
for (; ; a >>= 1) if (a & 1) {
if ((ts[a].*f)(args...)) {
for (; a < n; ) {
push(a);
if (!(ts[a <<= 1].*f)(args...)) ++a;
}
return a - n + 1;
}
++a;
if (!(a & (a - 1))) return n + 1;
}
}
// Find max a s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from right to left.
// Returns -1 if there is no such a.
template <class F, class... Args>
int findLeft(int b, F f, Args &&... args) {
assert(0 <= b); assert(b <= n);
if ((T().*f)(args...)) return b;
if (b == 0) return -1;
b += n;
for (int h = logN; h; --h) push((b - 1) >> h);
for (; ; b >>= 1) if ((b & 1) || b == 2) {
if ((ts[b - 1].*f)(args...)) {
for (; b <= n; ) {
push(b - 1);
if (!(ts[(b <<= 1) - 1].*f)(args...)) --b;
}
return b - n - 1;
}
--b;
if (!(b & (b - 1))) return -1;
}
}
};
////////////////////////////////////////////////////////////////////////////////
constexpr Int INF = 1001001001001001001LL;
struct Node {
// (<- lzA) += lzB
Int mx, lzA, lzB;
Mint way, lzWay;
Node() : mx(-INF), lzA(-1), lzB(0), way(0), lzWay(0) {}
void push(Node &l, Node &r) {
if (~lzA) {
l.change(lzA);
r.change(lzA);
lzA = -1;
}
if (lzB) {
l.add(lzB);
r.add(lzB);
lzB = 0;
}
if (lzWay) {
l.addWay(lzWay);
r.addWay(lzWay);
lzWay = 0;
}
}
void merge(const Node &l, const Node &r) {
mx = max(l.mx, r.mx);
way = l.way + r.way;
}
void change(Int val) {
mx = val;
lzA = val;
lzB = 0;
}
void add(Int val) {
mx += val;
lzB += val;
}
void addWay(const Mint &w) {
way += w;
lzWay += w;
}
bool check(Int tar) {
return (mx >= tar);
}
};
int N, M;
vector<int> L, R;
vector<Int> C;
int main() {
for (int numCases; ~scanf("%d", &numCases); ) { for (int caseId = 1; caseId <= numCases; ++caseId) {
scanf("%d%d", &N, &M);
L.resize(N);
R.resize(N);
C.resize(N);
for (int i = 0; i < N; ++i) {
scanf("%d%d%lld", &L[i], &R[i], &C[i]);
--L[i];
}
SegmentTreeRange<Node> seg(M);
for (int x = 0; x < M; ++x) {
seg.at(x).mx = 0;
seg.at(x).way = 1;
}
seg.build();
for (int i = 0; i < N; ++i) {
seg.ch(L[i], R[i], &Node::add, C[i]);
const auto res = seg.get(R[i] - 1, R[i]);
const int pos0 = seg.findRight(R[i], &Node::check, res.mx) - 1;
const int pos1 = seg.findRight(R[i], &Node::check, res.mx + 1) - 1;
seg.ch(R[i], pos0, &Node::change, res.mx);
seg.ch(pos0, pos1, &Node::addWay, res.way);
// for(int x=0;x<M;++x){const auto re=seg.get(x,x+1);cerr<<make_pair(re.mx,re.way)<<" ";}cerr<<endl;
}
const auto ans = seg.get(M - 1, M);
printf("%lld %u\n", ans.mx, ans.way.x);
}
#ifndef LOCAL
break;
#endif
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3520kb
input:
2 3 4 1 2 1 2 3 1 2 2 1 2 5 1 4 3 2 5 3
output:
3 1 6 1
result:
ok 4 number(s): "3 1 6 1"
Test #2:
score: 0
Accepted
time: 4ms
memory: 3520kb
input:
30 3 3 1 3 1 1 3 1 1 3 1 3 3 1 2 1 1 3 1 1 3 1 3 3 2 2 1 1 3 1 1 3 1 3 3 1 3 1 1 2 1 1 3 1 3 3 2 3 1 1 2 1 1 3 1 3 3 2 2 1 1 3 1 1 3 1 3 3 2 2 1 1 2 1 1 3 1 3 3 1 3 1 2 3 1 1 3 1 3 3 2 3 1 1 3 1 2 2 1 3 3 1 2 1 1 2 1 1 2 1 3 3 1 3 1 1 3 1 1 3 1 3 3 1 3 1 1 2 1 1 3 1 3 3 2 3 1 1 2 1 1 3 1 3 3 1 3 1 1...
output:
3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 2 2 3 1 3 1 3 1 3 1 2 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
result:
ok 60 numbers
Test #3:
score: -100
Wrong Answer
time: 3ms
memory: 3520kb
input:
20 5 5 1 5 1 1 5 1 1 4 1 1 5 1 1 5 1 5 5 2 4 1 1 5 1 1 5 1 2 4 1 2 4 1 5 5 2 4 1 1 5 1 1 5 1 2 5 1 1 3 1 5 5 1 5 1 1 5 1 2 3 1 1 5 1 1 4 1 5 5 1 4 1 1 4 1 2 5 1 1 3 1 2 4 1 5 5 2 4 1 3 3 1 1 3 1 2 4 1 4 4 1 5 5 3 3 1 1 4 1 3 3 1 2 5 1 2 5 1 5 5 2 4 1 2 3 1 4 4 1 2 4 1 2 4 1 5 5 3 3 1 3 3 1 2 4 1 1 4...
output:
5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 4 1 5 1 5 1 5 1 5 1 5 1 4 2 5 1 5 1 5 1 5 1 5 1
result:
wrong answer 30th numbers differ - expected: '1', found: '2'