QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#656253 | #9476. 012 Grid | ucup-team008# | AC ✓ | 106ms | 48420kb | C++17 | 21.2kb | 2024-10-19 12:00:47 | 2024-10-19 12:00:48 |
Judging History
answer
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cstring>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <vector>
using namespace std;
// BEGIN NO SAD
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define lb lower_bound
#define ub upper_bound
typedef vector<int> vi;
#define f first
#define s second
#define derr if(0) cerr
void __print(int x) {cerr << x;}
void __print(long x) {cerr << x;}
void __print(long long x) {cerr << x;}
void __print(unsigned x) {cerr << x;}
void __print(unsigned long x) {cerr << x;}
void __print(unsigned long long x) {cerr << x;}
void __print(float x) {cerr << x;}
void __print(double x) {cerr << x;}
void __print(long double x) {cerr << x;}
void __print(char x) {cerr << '\'' << x << '\'';}
void __print(const char *x) {cerr << '\"' << x << '\"';}
void __print(const string &x) {cerr << '\"' << x << '\"';}
void __print(bool x) {cerr << (x ? "true" : "false");}
template<typename T, typename V>
void __print(const pair<T, V> &x) {cerr << '{'; __print(x.first); cerr << ", "; __print(x.second); cerr << '}';}
template<typename T>
void __print(const T &x) {int f = 0; cerr << '{'; for (auto &i: x) cerr << (f++ ? ", " : ""), __print(i); cerr << "}";}
void _print() {cerr << "]\n";}
template <typename T, typename... V>
void _print(T t, V... v) {__print(t); if (sizeof...(v)) cerr << ", "; _print(v...);}
#define debug(x...) cerr << "\e[91m"<<__func__<<":"<<__LINE__<<" [" << #x << "] = ["; _print(x); cerr << "\e[39m" << flush;
// END NO SAD
template<class Fun>
class y_combinator_result {
Fun fun_;
public:
template<class T>
explicit y_combinator_result(T &&fun): fun_(std::forward<T>(fun)) {}
template<class ...Args>
decltype(auto) operator()(Args &&...args) {
return fun_(std::ref(*this), std::forward<Args>(args)...);
}
};
template<class Fun>
decltype(auto) y_combinator(Fun &&fun) {
return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}
template<class T>
bool updmin(T& a, T b) {
if(b < a) {
a = b;
return true;
}
return false;
}
template<class T>
bool updmax(T& a, T b) {
if(b > a) {
a = b;
return true;
}
return false;
}
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<vector<ll>> matrix;
struct barrett_reduction {
unsigned mod;
uint64_t div;
barrett_reduction(unsigned m) : mod(m), div(-1LLU / m) {}
unsigned operator()(uint64_t a) const {
#ifdef __SIZEOF_INT128__
uint64_t q = uint64_t(__uint128_t(div) * a >> 64);
uint64_t r = a - q * mod;
return unsigned(r < mod ? r : r - mod);
#endif
return unsigned(a % mod);
}
};
template<const int &MOD, const barrett_reduction &barrett>
struct _b_int {
int val;
_b_int(int64_t v = 0) {
if (v < 0) v = v % MOD + MOD;
if (v >= MOD) v %= MOD;
val = int(v);
}
_b_int(uint64_t v) {
if (v >= uint64_t(MOD)) v %= MOD;
val = int(v);
}
_b_int(int v) : _b_int(int64_t(v)) {}
_b_int(unsigned v) : _b_int(uint64_t(v)) {}
static int inv_mod(int a, int m = MOD) {
// https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Example
int g = m, r = a, x = 0, y = 1;
while (r != 0) {
int q = g / r;
g %= r; swap(g, r);
x -= q * y; swap(x, y);
}
return x < 0 ? x + m : x;
}
explicit operator int() const { return val; }
explicit operator unsigned() const { return val; }
explicit operator int64_t() const { return val; }
explicit operator uint64_t() const { return val; }
explicit operator double() const { return val; }
explicit operator long double() const { return val; }
_b_int& operator+=(const _b_int &other) {
val -= MOD - other.val;
if (val < 0) val += MOD;
return *this;
}
_b_int& operator-=(const _b_int &other) {
val -= other.val;
if (val < 0) val += MOD;
return *this;
}
static unsigned fast_mod(uint64_t x) {
#if !defined(_WIN32) || defined(_WIN64)
return barrett(x);
#endif
// Optimized mod for Codeforces 32-bit machines.
// x must be less than 2^32 * MOD for this to work, so that x / MOD fits in an unsigned 32-bit int.
unsigned x_high = unsigned(x >> 32), x_low = unsigned(x);
unsigned quot, rem;
asm("divl %4\n"
: "=a" (quot), "=d" (rem)
: "d" (x_high), "a" (x_low), "r" (MOD));
return rem;
}
_b_int& operator*=(const _b_int &other) {
val = fast_mod(uint64_t(val) * other.val);
return *this;
}
_b_int& operator/=(const _b_int &other) {
return *this *= other.inv();
}
friend _b_int operator+(const _b_int &a, const _b_int &b) { return _b_int(a) += b; }
friend _b_int operator-(const _b_int &a, const _b_int &b) { return _b_int(a) -= b; }
friend _b_int operator*(const _b_int &a, const _b_int &b) { return _b_int(a) *= b; }
friend _b_int operator/(const _b_int &a, const _b_int &b) { return _b_int(a) /= b; }
_b_int& operator++() {
val = val == MOD - 1 ? 0 : val + 1;
return *this;
}
_b_int& operator--() {
val = val == 0 ? MOD - 1 : val - 1;
return *this;
}
_b_int operator++(int) { _b_int before = *this; ++*this; return before; }
_b_int operator--(int) { _b_int before = *this; --*this; return before; }
_b_int operator-() const {
return val == 0 ? 0 : MOD - val;
}
friend bool operator==(const _b_int &a, const _b_int &b) { return a.val == b.val; }
friend bool operator!=(const _b_int &a, const _b_int &b) { return a.val != b.val; }
friend bool operator<(const _b_int &a, const _b_int &b) { return a.val < b.val; }
friend bool operator>(const _b_int &a, const _b_int &b) { return a.val > b.val; }
friend bool operator<=(const _b_int &a, const _b_int &b) { return a.val <= b.val; }
friend bool operator>=(const _b_int &a, const _b_int &b) { return a.val >= b.val; }
_b_int inv() const {
return inv_mod(val);
}
_b_int pow(int64_t p) const {
if (p < 0)
return inv().pow(-p);
_b_int a = *this, result = 1;
while (p > 0) {
if (p & 1)
result *= a;
p >>= 1;
if (p > 0)
a *= a;
}
return result;
}
friend ostream& operator<<(ostream &os, const _b_int &m) {
return os << m.val;
}
friend istream& operator>>(istream &is, _b_int &m) {
int64_t x;
is >> x;
m = x;
return is;
}
};
int MOD = 998244353;
barrett_reduction barrett(MOD);
using mnum = _b_int<MOD, barrett>;
template<typename float_t>
struct fast_complex {
// credit to neal
float_t x, y;
fast_complex(float_t _x = 0, float_t _y = 0) : x(_x), y(_y) {}
float_t real() const {
return x;
}
void real(float_t _x) {
x = _x;
}
float_t imag() const {
return y;
}
void imag(float_t _y) {
y = _y;
}
fast_complex<float_t>& operator+=(const fast_complex<float_t> &other) {
x += other.x;
y += other.y;
return *this;
}
fast_complex<float_t>& operator-=(const fast_complex<float_t> &other) {
x -= other.x;
y -= other.y;
return *this;
}
fast_complex<float_t> operator+(const fast_complex<float_t> &other) const {
return fast_complex<float_t>(*this) += other;
}
fast_complex<float_t> operator-(const fast_complex<float_t> &other) const {
return fast_complex<float_t>(*this) -= other;
}
fast_complex<float_t> operator*(const fast_complex<float_t> &other) const {
return {x * other.x - y * other.y, x * other.y + other.x * y};
}
};
template<typename float_t>
fast_complex<float_t> fast_conj(const fast_complex<float_t> &c) {
return {c.x, -c.y};
}
template<typename float_t>
fast_complex<float_t> fast_polar(float_t magnitude, float_t angle) {
return {magnitude * cos(angle), magnitude * sin(angle)};
}
template<typename float_t>
ostream& operator<<(ostream &stream, const fast_complex<float_t> &c) {
return stream << '(' << c.x << ", " << c.y << ')';
}
namespace FFT {
typedef double float_t;
const float_t ONE = 1;
const float_t PI = acos(-ONE);
vector<fast_complex<float_t>> roots;
vector<int> bit_reverse;
bool is_power_of_two(int n) {
return (n & (n - 1)) == 0;
}
int round_up_power_two(int n) {
assert(n > 0);
while (n & (n - 1))
n = (n | (n - 1)) + 1;
return n;
}
// Given n (a power of two), finds k such that n == 1 << k.
int get_length(int n) {
assert(is_power_of_two(n));
return __builtin_ctz(n);
}
// Rearranges the indices to be sorted by lowest bit first, then second lowest, etc., rather than highest bit first.
// This makes even-odd div-conquer much easier.
template<typename fast_complex_array>
void bit_reorder(int n, fast_complex_array &&values) {
if ((int) bit_reverse.size() != n) {
bit_reverse.assign(n, 0);
int length = get_length(n);
for (int i = 0; i < n; i++)
bit_reverse[i] = (bit_reverse[i >> 1] >> 1) + ((i & 1) << (length - 1));
}
for (int i = 0; i < n; i++)
if (i < bit_reverse[i])
swap(values[i], values[bit_reverse[i]]);
}
void prepare_roots(int n) {
if ((int) roots.size() >= n)
return;
if (roots.empty())
roots = {{0, 0}, {1, 0}};
int length = get_length(roots.size());
roots.resize(n);
// The roots array is set up such that for a given power of two n >= 2, roots[n / 2] through roots[n - 1] are
// the first half of the n-th roots of unity.
while (1 << length < n) {
double min_angle = 2 * PI / (1 << (length + 1));
for (int i = 0; i < 1 << (length - 1); i++) {
int index = (1 << (length - 1)) + i;
roots[2 * index] = roots[index];
roots[2 * index + 1] = fast_polar(ONE, min_angle * (2 * i + 1));
}
length++;
}
}
template<typename fast_complex_array>
void fft_recursive(int n, fast_complex_array &&values, int depth = 0) {
if (n <= 1)
return;
if (depth == 0) {
assert(is_power_of_two(n));
prepare_roots(n);
bit_reorder(n, values);
}
n /= 2;
fft_recursive(n, values, depth + 1);
fft_recursive(n, values + n, depth + 1);
for (int i = 0; i < n; i++) {
const fast_complex<float_t> &even = values[i];
fast_complex<float_t> odd = values[n + i] * roots[n + i];
values[n + i] = even - odd;
values[i] = even + odd;
}
}
// Iterative version of fft_recursive above.
template<typename fast_complex_array>
void fft_iterative(int N, fast_complex_array &&values) {
assert(is_power_of_two(N));
prepare_roots(N);
bit_reorder(N, values);
for (int n = 1; n < N; n *= 2)
for (int start = 0; start < N; start += 2 * n)
for (int i = 0; i < n; i++) {
const fast_complex<float_t> &even = values[start + i];
fast_complex<float_t> odd = values[start + n + i] * roots[n + i];
values[start + n + i] = even - odd;
values[start + i] = even + odd;
}
}
inline fast_complex<float_t> extract(int N, const vector<fast_complex<float_t>> &values, int index, int side) {
if (side == -1) {
// Return the product of 0 and 1.
int other = (N - index) & (N - 1);
return (fast_conj(values[other] * values[other]) - values[index] * values[index]) * fast_complex<float_t>(0, 0.25);
}
int other = (N - index) & (N - 1);
int sign = side == 0 ? +1 : -1;
fast_complex<float_t> multiplier = side == 0 ? fast_complex<float_t>(0.5, 0) : fast_complex<float_t>(0, -0.5);
return multiplier * fast_complex<float_t>(values[index].real() + values[other].real() * sign,
values[index].imag() - values[other].imag() * sign);
}
void invert_fft(int N, vector<fast_complex<float_t>> &values) {
assert(N >= 2);
for (int i = 0; i < N; i++)
values[i] = fast_conj(values[i]) * (ONE / N);
for (int i = 0; i < N / 2; i++) {
fast_complex<float_t> first = values[i] + values[N / 2 + i];
fast_complex<float_t> second = (values[i] - values[N / 2 + i]) * roots[N / 2 + i];
values[i] = first + second * fast_complex<float_t>(0, 1);
}
fft_recursive(N / 2, values.begin());
for (int i = N - 1; i >= 0; i--)
values[i] = i % 2 == 0 ? values[i / 2].real() : values[i / 2].imag();
}
const int FFT_CUTOFF = 150;
const double SPLIT_CUTOFF = 2e15;
const int SPLIT_BASE = 1 << 15;
template<typename T_out, typename T_in>
vector<T_out> square(const vector<T_in> &input) {
int n = input.size();
// Brute force when n is small enough.
if (n < 1.5 * FFT_CUTOFF) {
vector<T_out> result(2 * n - 1);
for (int i = 0; i < n; i++) {
result[2 * i] += (T_out) input[i] * input[i];
for (int j = i + 1; j < n; j++)
result[i + j] += (T_out) 2 * input[i] * input[j];
}
return result;
}
int N = round_up_power_two(n);
assert(N >= 2);
prepare_roots(2 * N);
vector<fast_complex<float_t>> values(N, 0);
for (int i = 0; i < n; i += 2)
values[i / 2] = fast_complex<float_t>(input[i], i + 1 < n ? input[i + 1] : 0);
fft_iterative(N, values.begin());
for (int i = 0; i <= N / 2; i++) {
int j = (N - i) & (N - 1);
fast_complex<float_t> even = extract(N, values, i, 0);
fast_complex<float_t> odd = extract(N, values, i, 1);
fast_complex<float_t> aux = even * even + odd * odd * roots[N + i] * roots[N + i];
fast_complex<float_t> tmp = even * odd;
values[i] = aux - fast_complex<float_t>(0, 2) * tmp;
values[j] = fast_conj(aux) - fast_complex<float_t>(0, 2) * fast_conj(tmp);
}
for (int i = 0; i < N; i++)
values[i] = fast_conj(values[i]) * (ONE / N);
fft_recursive(N, values.begin());
vector<T_out> result(2 * n - 1);
for (int i = 0; i < (int) result.size(); i++) {
float_t value = i % 2 == 0 ? values[i / 2].real() : values[i / 2].imag();
result[i] = is_integral<T_out>::value ? round(value) : value;
}
return result;
}
template<typename T_out, typename T_in>
vector<T_out> multiply(const vector<T_in> &left, const vector<T_in> &right) {
if (left == right)
return square<T_out>(left);
int n = left.size();
int m = right.size();
// Brute force when either n or m is small enough.
if (min(n, m) < FFT_CUTOFF) {
vector<T_out> result(n + m - 1);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
result[i + j] += (T_out) left[i] * right[j];
return result;
}
int N = round_up_power_two(n + m - 1);
vector<fast_complex<float_t>> values(N, 0);
for (int i = 0; i < n; i++)
values[i].real(left[i]);
for (int i = 0; i < m; i++)
values[i].imag(right[i]);
fft_iterative(N, values.begin());
for (int i = 0; i <= N / 2; i++) {
int j = (N - i) & (N - 1);
fast_complex<float_t> product_i = extract(N, values, i, -1);
values[i] = product_i;
values[j] = fast_conj(product_i);
}
invert_fft(N, values);
vector<T_out> result(n + m - 1);
for (int i = 0; i < (int) result.size(); i++)
result[i] = is_integral<T_out>::value ? round(values[i].real()) : values[i].real();
return result;
}
template<typename T>
vector<T> mod_multiply(const vector<T> &left, const vector<T> &right, T mod, bool split = false) {
int n = left.size();
int m = right.size();
for (int i = 0; i < n; i++)
assert(0 <= left[i] && left[i] < mod);
for (int i = 0; i < m; i++)
assert(0 <= right[i] && right[i] < mod);
// Brute force when either n or m is small enough. Brute force up to higher values when split = true.
if (min(n, m) < (split ? 2 : 1) * FFT_CUTOFF) {
const uint64_t ULL_BOUND = numeric_limits<uint64_t>::max() - (uint64_t) mod * mod;
vector<uint64_t> result(n + m - 1);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
result[i + j] += (uint64_t) left[i] * right[j];
if (result[i + j] > ULL_BOUND)
result[i + j] %= mod;
}
for (int i = 0; i < (int) result.size(); i++)
if (result[i] >= (uint64_t) mod)
result[i] %= mod;
return vector<T>(result.begin(), result.end());
}
if (!split) {
const vector<uint64_t> &product = multiply<uint64_t>(left, right);
vector<T> result(n + m - 1);
for (int i = 0; i < (int) result.size(); i++)
result[i] = product[i] % mod;
return result;
}
int N = round_up_power_two(n + m - 1);
vector<fast_complex<float_t>> left_fft(N, 0), right_fft(N, 0);
for (int i = 0; i < n; i++) {
left_fft[i].real(left[i] % SPLIT_BASE);
left_fft[i].imag(left[i] / SPLIT_BASE);
}
fft_iterative(N, left_fft.begin());
if (left == right) {
copy(left_fft.begin(), left_fft.end(), right_fft.begin());
} else {
for (int i = 0; i < m; i++) {
right_fft[i].real(right[i] % SPLIT_BASE);
right_fft[i].imag(right[i] / SPLIT_BASE);
}
fft_iterative(N, right_fft.begin());
}
vector<fast_complex<float_t>> product(N);
vector<T> result(n + m - 1);
for (int exponent = 0; exponent <= 2; exponent++) {
uint64_t multiplier = 1;
for (int k = 0; k < exponent; k++)
multiplier = multiplier * SPLIT_BASE % mod;
fill(product.begin(), product.end(), 0);
for (int x = 0; x < 2; x++)
for (int y = 0; y < 2; y++)
if (x + y == exponent)
for (int i = 0; i < N; i++)
product[i] += extract(N, left_fft, i, x) * extract(N, right_fft, i, y);
invert_fft(N, product);
for (int i = 0; i < (int) result.size(); i++) {
uint64_t value = round(product[i].real());
result[i] = (result[i] + value % mod * multiplier) % mod;
}
}
return result;
}
}
const int SZ = 5e5;
mnum facs[SZ];
mnum ifacs[SZ];
mnum nck(int n, int k) {
if(k < 0 || k > n) return 0;
return facs[n]*ifacs[k]*ifacs[n-k];
}
void solve() {
facs[0] = 1;
for(int i = 1; i < SZ; i++) facs[i] = facs[i-1]*i;
ifacs[SZ-1] = 1/facs[SZ-1];
for(int i = SZ-2; i >= 0; i--) ifacs[i] = ifacs[i+1]*(i+1);
int n, m;
cin >> n >> m;
auto f = [&](int r, int c) -> mnum {
mnum ret = nck(r+c-2, r-1);
ret *= facs[r+c-1]*ifacs[r]*ifacs[c];
return ret;
};
mnum ret = f(n, m) + 2;
for(int i = 1; i < n; i++) ret += (n-i+1)*f(i, m);
for(int i = 1; i < m; i++) ret += (m-i+1)*f(n, i);
vector<ll> rifac(n), cifac(m);
for(int i = 1; i < n; i++) rifac[i] = (ifacs[i] * ifacs[i-1]).val;
for(int i = 1; i < m; i++) cifac[i] = (ifacs[i] * ifacs[i-1]).val;
vector<ll> conv = FFT::mod_multiply(rifac, cifac, ll(MOD), true);
for(int i = 2; i < sz(conv); i++) ret += 2 * mnum(int64_t(conv[i])) * facs[i-2] * facs[i-1];
cout << ret << "\n";
}
// what would chika do
// are there edge cases?
// did you actually sort the thing instead of just thinking it?
// integer overflow?
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
solve();
}
詳細信息
Test #1:
score: 100
Accepted
time: 3ms
memory: 7540kb
input:
2 2
output:
11
result:
ok "11"
Test #2:
score: 0
Accepted
time: 6ms
memory: 7480kb
input:
20 23
output:
521442928
result:
ok "521442928"
Test #3:
score: 0
Accepted
time: 82ms
memory: 48420kb
input:
200000 200000
output:
411160917
result:
ok "411160917"
Test #4:
score: 0
Accepted
time: 6ms
memory: 7688kb
input:
8 3
output:
2899
result:
ok "2899"
Test #5:
score: 0
Accepted
time: 3ms
memory: 7480kb
input:
10 9
output:
338037463
result:
ok "338037463"
Test #6:
score: 0
Accepted
time: 3ms
memory: 7684kb
input:
3 3
output:
64
result:
ok "64"
Test #7:
score: 0
Accepted
time: 6ms
memory: 7752kb
input:
9 4
output:
39733
result:
ok "39733"
Test #8:
score: 0
Accepted
time: 6ms
memory: 7432kb
input:
36 33
output:
545587245
result:
ok "545587245"
Test #9:
score: 0
Accepted
time: 3ms
memory: 7688kb
input:
35 39
output:
62117944
result:
ok "62117944"
Test #10:
score: 0
Accepted
time: 3ms
memory: 7544kb
input:
48 10
output:
264659761
result:
ok "264659761"
Test #11:
score: 0
Accepted
time: 6ms
memory: 7536kb
input:
46 30
output:
880000821
result:
ok "880000821"
Test #12:
score: 0
Accepted
time: 3ms
memory: 7476kb
input:
25 24
output:
280799864
result:
ok "280799864"
Test #13:
score: 0
Accepted
time: 3ms
memory: 7484kb
input:
17 10
output:
624958192
result:
ok "624958192"
Test #14:
score: 0
Accepted
time: 8ms
memory: 8576kb
input:
4608 9241
output:
322218996
result:
ok "322218996"
Test #15:
score: 0
Accepted
time: 8ms
memory: 8536kb
input:
3665 6137
output:
537704652
result:
ok "537704652"
Test #16:
score: 0
Accepted
time: 8ms
memory: 8632kb
input:
4192 6186
output:
971816887
result:
ok "971816887"
Test #17:
score: 0
Accepted
time: 8ms
memory: 8628kb
input:
4562 4403
output:
867628411
result:
ok "867628411"
Test #18:
score: 0
Accepted
time: 8ms
memory: 8488kb
input:
8726 3237
output:
808804305
result:
ok "808804305"
Test #19:
score: 0
Accepted
time: 4ms
memory: 8588kb
input:
5257 8166
output:
488829288
result:
ok "488829288"
Test #20:
score: 0
Accepted
time: 8ms
memory: 8512kb
input:
8013 7958
output:
215666893
result:
ok "215666893"
Test #21:
score: 0
Accepted
time: 8ms
memory: 8516kb
input:
8837 5868
output:
239261227
result:
ok "239261227"
Test #22:
score: 0
Accepted
time: 8ms
memory: 8632kb
input:
8917 5492
output:
706653412
result:
ok "706653412"
Test #23:
score: 0
Accepted
time: 8ms
memory: 8532kb
input:
9628 5378
output:
753685501
result:
ok "753685501"
Test #24:
score: 0
Accepted
time: 95ms
memory: 47572kb
input:
163762 183794
output:
141157510
result:
ok "141157510"
Test #25:
score: 0
Accepted
time: 50ms
memory: 27316kb
input:
83512 82743
output:
114622013
result:
ok "114622013"
Test #26:
score: 0
Accepted
time: 49ms
memory: 26724kb
input:
84692 56473
output:
263907717
result:
ok "263907717"
Test #27:
score: 0
Accepted
time: 18ms
memory: 17868kb
input:
31827 74195
output:
200356808
result:
ok "200356808"
Test #28:
score: 0
Accepted
time: 106ms
memory: 47692kb
input:
189921 163932
output:
845151158
result:
ok "845151158"
Test #29:
score: 0
Accepted
time: 42ms
memory: 27784kb
input:
27157 177990
output:
847356039
result:
ok "847356039"
Test #30:
score: 0
Accepted
time: 42ms
memory: 27492kb
input:
136835 39390
output:
962822638
result:
ok "962822638"
Test #31:
score: 0
Accepted
time: 49ms
memory: 26724kb
input:
118610 18795
output:
243423874
result:
ok "243423874"
Test #32:
score: 0
Accepted
time: 44ms
memory: 26876kb
input:
122070 19995
output:
531055604
result:
ok "531055604"
Test #33:
score: 0
Accepted
time: 39ms
memory: 28128kb
input:
20031 195670
output:
483162363
result:
ok "483162363"
Test #34:
score: 0
Accepted
time: 77ms
memory: 48392kb
input:
199992 199992
output:
262099623
result:
ok "262099623"
Test #35:
score: 0
Accepted
time: 104ms
memory: 48196kb
input:
200000 199992
output:
477266520
result:
ok "477266520"
Test #36:
score: 0
Accepted
time: 102ms
memory: 48404kb
input:
199999 199996
output:
165483205
result:
ok "165483205"
Test #37:
score: 0
Accepted
time: 6ms
memory: 7752kb
input:
1 1
output:
3
result:
ok "3"
Test #38:
score: 0
Accepted
time: 8ms
memory: 9424kb
input:
1 100000
output:
8828237
result:
ok "8828237"
Test #39:
score: 0
Accepted
time: 9ms
memory: 9308kb
input:
100000 2
output:
263711286
result:
ok "263711286"
Test #40:
score: 0
Accepted
time: 6ms
memory: 7512kb
input:
50 50
output:
634767411
result:
ok "634767411"
Extra Test:
score: 0
Extra Test Passed