QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#653751 | #9429. Subarray | ucup-team004 | TL | 0ms | 3556kb | C++23 | 14.4kb | 2024-10-18 20:35:07 | 2024-10-18 20:35:16 |
Judging History
answer
#include <bits/stdc++.h>
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned;
template<class T>
constexpr T power(T a, i64 b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
template<int P>
struct MInt {
int x;
constexpr MInt() : x{} {}
constexpr MInt(i64 x) : x{norm(x % getMod())} {}
static int Mod;
constexpr static int getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(int Mod_) {
Mod = Mod_;
}
constexpr int norm(int x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr int val() const {
return x;
}
explicit constexpr operator int() const {
return x;
}
constexpr MInt operator-() const {
MInt res;
res.x = norm(getMod() - x);
return res;
}
constexpr MInt inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MInt &operator*=(MInt rhs) & {
x = 1LL * x * rhs.x % getMod();
return *this;
}
constexpr MInt &operator+=(MInt rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MInt &operator-=(MInt rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MInt &operator/=(MInt rhs) & {
return *this *= rhs.inv();
}
friend constexpr MInt operator*(MInt lhs, MInt rhs) {
MInt res = lhs;
res *= rhs;
return res;
}
friend constexpr MInt operator+(MInt lhs, MInt rhs) {
MInt res = lhs;
res += rhs;
return res;
}
friend constexpr MInt operator-(MInt lhs, MInt rhs) {
MInt res = lhs;
res -= rhs;
return res;
}
friend constexpr MInt operator/(MInt lhs, MInt rhs) {
MInt res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
i64 v;
is >> v;
a = MInt(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
return os << a.val();
}
friend constexpr bool operator==(MInt lhs, MInt rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MInt lhs, MInt rhs) {
return lhs.val() != rhs.val();
}
};
template<>
int MInt<0>::Mod = 1;
template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();
constexpr int P = 998244353;
using Z = MInt<P>;
std::vector<int> rev;
template<int P>
std::vector<MInt<P>> roots{0, 1};
template<int P>
constexpr MInt<P> findPrimitiveRoot() {
MInt<P> i = 2;
int k = __builtin_ctz(P - 1);
while (true) {
if (power(i, (P - 1) / 2) != 1) {
break;
}
i += 1;
}
return power(i, (P - 1) >> k);
}
template<int P>
constexpr MInt<P> primitiveRoot = findPrimitiveRoot<P>();
template<>
constexpr MInt<998244353> primitiveRoot<998244353> {31};
template<int P>
constexpr void dft(std::vector<MInt<P>> &a) {
int n = a.size();
if (int(rev.size()) != n) {
int k = __builtin_ctz(n) - 1;
rev.resize(n);
for (int i = 0; i < n; i++) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
}
}
for (int i = 0; i < n; i++) {
if (rev[i] < i) {
std::swap(a[i], a[rev[i]]);
}
}
if (roots<P>.size() < n) {
int k = __builtin_ctz(roots<P>.size());
roots<P>.resize(n);
while ((1 << k) < n) {
auto e = power(primitiveRoot<P>, 1 << (__builtin_ctz(P - 1) - k - 1));
for (int i = 1 << (k - 1); i < (1 << k); i++) {
roots<P>[2 * i] = roots<P>[i];
roots<P>[2 * i + 1] = roots<P>[i] * e;
}
k++;
}
}
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j++) {
MInt<P> u = a[i + j];
MInt<P> v = a[i + j + k] * roots<P>[k + j];
a[i + j] = u + v;
a[i + j + k] = u - v;
}
}
}
}
template<int P>
constexpr void idft(std::vector<MInt<P>> &a) {
int n = a.size();
std::reverse(a.begin() + 1, a.end());
dft(a);
MInt<P> inv = (1 - P) / n;
for (int i = 0; i < n; i++) {
a[i] *= inv;
}
}
template<int P = 998244353>
struct Poly : public std::vector<MInt<P>> {
using Value = MInt<P>;
Poly() : std::vector<Value>() {}
explicit constexpr Poly(int n) : std::vector<Value>(n) {}
explicit constexpr Poly(const std::vector<Value> &a) : std::vector<Value>(a) {}
constexpr Poly(const std::initializer_list<Value> &a) : std::vector<Value>(a) {}
template<class InputIt, class = std::_RequireInputIter<InputIt>>
explicit constexpr Poly(InputIt first, InputIt last) : std::vector<Value>(first, last) {}
template<class F>
explicit constexpr Poly(int n, F f) : std::vector<Value>(n) {
for (int i = 0; i < n; i++) {
(*this)[i] = f(i);
}
}
constexpr Poly shift(int k) const {
if (k >= 0) {
auto b = *this;
b.insert(b.begin(), k, 0);
return b;
} else if (this->size() <= -k) {
return Poly();
} else {
return Poly(this->begin() + (-k), this->end());
}
}
constexpr Poly trunc(int k) const {
Poly f = *this;
f.resize(k);
return f;
}
constexpr friend Poly operator+(const Poly &a, const Poly &b) {
Poly res(std::max(a.size(), b.size()));
for (int i = 0; i < a.size(); i++) {
res[i] += a[i];
}
for (int i = 0; i < b.size(); i++) {
res[i] += b[i];
}
return res;
}
constexpr friend Poly operator-(const Poly &a, const Poly &b) {
Poly res(std::max(a.size(), b.size()));
for (int i = 0; i < a.size(); i++) {
res[i] += a[i];
}
for (int i = 0; i < b.size(); i++) {
res[i] -= b[i];
}
return res;
}
constexpr friend Poly operator-(const Poly &a) {
std::vector<Value> res(a.size());
for (int i = 0; i < int(res.size()); i++) {
res[i] = -a[i];
}
return Poly(res);
}
constexpr friend Poly operator*(Poly a, Poly b) {
if (a.size() == 0 || b.size() == 0) {
return Poly();
}
if (a.size() < b.size()) {
std::swap(a, b);
}
int n = 1, tot = a.size() + b.size() - 1;
while (n < tot) {
n *= 2;
}
if (((P - 1) & (n - 1)) != 0 || b.size() < 128) {
Poly c(a.size() + b.size() - 1);
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++) {
c[i + j] += a[i] * b[j];
}
}
return c;
}
a.resize(n);
b.resize(n);
dft(a);
dft(b);
for (int i = 0; i < n; ++i) {
a[i] *= b[i];
}
idft(a);
a.resize(tot);
return a;
}
constexpr friend Poly operator*(Value a, Poly b) {
for (int i = 0; i < int(b.size()); i++) {
b[i] *= a;
}
return b;
}
constexpr friend Poly operator*(Poly a, Value b) {
for (int i = 0; i < int(a.size()); i++) {
a[i] *= b;
}
return a;
}
constexpr friend Poly operator/(Poly a, Value b) {
for (int i = 0; i < int(a.size()); i++) {
a[i] /= b;
}
return a;
}
constexpr Poly &operator+=(Poly b) {
return (*this) = (*this) + b;
}
constexpr Poly &operator-=(Poly b) {
return (*this) = (*this) - b;
}
constexpr Poly &operator*=(Poly b) {
return (*this) = (*this) * b;
}
constexpr Poly &operator*=(Value b) {
return (*this) = (*this) * b;
}
constexpr Poly &operator/=(Value b) {
return (*this) = (*this) / b;
}
constexpr Poly deriv() const {
if (this->empty()) {
return Poly();
}
Poly res(this->size() - 1);
for (int i = 0; i < this->size() - 1; ++i) {
res[i] = (i + 1) * (*this)[i + 1];
}
return res;
}
constexpr Poly integr() const {
Poly res(this->size() + 1);
for (int i = 0; i < this->size(); ++i) {
res[i + 1] = (*this)[i] / (i + 1);
}
return res;
}
constexpr Poly inv(int m) const {
Poly x{(*this)[0].inv()};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{2} - trunc(k) * x)).trunc(k);
}
return x.trunc(m);
}
constexpr Poly log(int m) const {
return (deriv() * inv(m)).integr().trunc(m);
}
constexpr Poly exp(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x * (Poly{1} - x.log(k) + trunc(k))).trunc(k);
}
return x.trunc(m);
}
constexpr Poly pow(int k, int m) const {
int i = 0;
while (i < this->size() && (*this)[i] == 0) {
i++;
}
if (i == this->size() || 1LL * i * k >= m) {
return Poly(m);
}
Value v = (*this)[i];
auto f = shift(-i) * v.inv();
return (f.log(m - i * k) * k).exp(m - i * k).shift(i * k) * power(v, k);
}
constexpr Poly sqrt(int m) const {
Poly x{1};
int k = 1;
while (k < m) {
k *= 2;
x = (x + (trunc(k) * x.inv(k)).trunc(k)) * CInv<2, P>;
}
return x.trunc(m);
}
constexpr Poly mulT(Poly b) const {
if (b.size() == 0) {
return Poly();
}
int n = b.size();
std::reverse(b.begin(), b.end());
return ((*this) * b).shift(-(n - 1));
}
constexpr std::vector<Value> eval(std::vector<Value> x) const {
if (this->size() == 0) {
return std::vector<Value>(x.size(), 0);
}
const int n = std::max(x.size(), this->size());
std::vector<Poly> q(4 * n);
std::vector<Value> ans(x.size());
x.resize(n);
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
q[p] = Poly{1, -x[l]};
} else {
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
q[p] = q[2 * p] * q[2 * p + 1];
}
};
build(1, 0, n);
std::function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) {
if (r - l == 1) {
if (l < int(ans.size())) {
ans[l] = num[0];
}
} else {
int m = (l + r) / 2;
work(2 * p, l, m, num.mulT(q[2 * p + 1]).trunc(m - l));
work(2 * p + 1, m, r, num.mulT(q[2 * p]).trunc(r - m));
}
};
work(1, 0, n, mulT(q[1].inv(n)));
return ans;
}
};
template<int P = 998244353>
Poly<P> berlekampMassey(const Poly<P> &s) {
Poly<P> c;
Poly<P> oldC;
int f = -1;
for (int i = 0; i < s.size(); i++) {
auto delta = s[i];
for (int j = 1; j <= c.size(); j++) {
delta -= c[j - 1] * s[i - j];
}
if (delta == 0) {
continue;
}
if (f == -1) {
c.resize(i + 1);
f = i;
} else {
auto d = oldC;
d *= -1;
d.insert(d.begin(), 1);
MInt<P> df1 = 0;
for (int j = 1; j <= d.size(); j++) {
df1 += d[j - 1] * s[f + 1 - j];
}
assert(df1 != 0);
auto coef = delta / df1;
d *= coef;
Poly<P> zeros(i - f - 1);
zeros.insert(zeros.end(), d.begin(), d.end());
d = zeros;
auto temp = c;
c += d;
if (i - temp.size() > f - oldC.size()) {
oldC = temp;
f = i;
}
}
}
c *= -1;
c.insert(c.begin(), 1);
return c;
}
template<int P = 998244353>
MInt<P> linearRecurrence(Poly<P> p, Poly<P> q, i64 n) {
int m = q.size() - 1;
while (n > 0) {
auto newq = q;
for (int i = 1; i <= m; i += 2) {
newq[i] *= -1;
}
auto newp = p * newq;
newq = q * newq;
for (int i = 0; i < m; i++) {
p[i] = newp[i * 2 + n % 2];
}
for (int i = 0; i <= m; i++) {
q[i] = newq[i * 2];
}
n /= 2;
}
return p[0] / q[0];
}
void solve() {
int n;
std::cin >> n;
std::vector<int> a(n);
for (int i = 0; i < n; i++) {
std::cin >> a[i];
}
std::vector<int> l(n, -1), r(n, n);
std::vector<int> stk;
Poly<P> ans(n + 1);
for (int i = 0; i < n; i++) {
while (!stk.empty() && a[i] >= a[stk.back()]) {
r[stk.back()] = i;
stk.pop_back();
}
if (!stk.empty()) {
l[i] = stk.back();
}
stk.push_back(i);
}
std::vector<bool> vis(n);
for (int i = 0; i < n; i++) {
if (vis[i]) {
continue;
}
Poly<P> v;
v.push_back(i - l[i]);
for (int j = i; j < n && a[j] == a[i]; j = r[j]) {
vis[j] = true;
v.push_back(r[j] - j);
}
v = v.mulT(v);
ans += v;
}
Z out = 0;
for (int i = 1; i <= n; i++) {
out += i * ans[i] * ans[i];
}
std::cout << out << "\n";
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int t;
std::cin >> t;
while (t--) {
solve();
}
return 0;
}
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 3556kb
input:
3 11 1 1 2 1 2 2 3 3 2 3 1 3 2024 5 26 3 1000000000 1000000000 1000000000
output:
2564 36 20
result:
ok 3 lines
Test #2:
score: -100
Time Limit Exceeded
input:
2522 12 642802746 634074578 642802746 634074578 642802746 634074578 634074578 642802746 740396295 634074578 740396295 634074578 16 305950462 400920468 400920468 305950462 400920468 305950462 400920468 400920468 400920468 400920468 305950462 305950462 400920468 305950462 305950462 305950462 2 4405082...
output:
3610 7545 9 1 50 1006 16170 5972 3117 540 540 4417 12885 336 3185 83 9272 27 1794 2776 1793 196 27 1377 8783 19723 5385 1864 3478 7101 1 431 825 4534 9900 162 21644 6 36 14088 306 9 57 1719 72 9 4637 68 16583 17701 19390 16282 5440 1 6 1716 19541 3823 2033 24 825 429 1911 11787 11388 12255 12175 126...