QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#650262 | #4770. Binomial coefficients | SGColin# | AC ✓ | 38ms | 4256kb | C++20 | 1.8kb | 2024-10-18 14:18:06 | 2024-10-18 14:18:07 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
inline ll rd() {
ll x = 0;
bool f = 0;
char c = getchar();
for (; !isdigit(c); c = getchar()) f |= (c == '-');
for (; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return f ? -x : x;
}
#define eb emplace_back
#define all(s) (s).begin(), (s).end()
#define rep(i, a, b) for (int i = (a); i <= (b); ++i)
#define per(i, a, b) for (int i = (a); i >= (b); --i)
double fac[31];
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
inline void work() {
ll w = rd();
vector<pll> ans;
auto check = [&](ll n, ll m) {
vector<ll> tmp, tmp2;
tmp.eb(w);
rep(i, 1, m) tmp.eb(i);
rep(i, 1, m) {
tmp2.clear();
ll cur = n - i + 1;
for (auto x : tmp) {
ll g = gcd(x, cur);
cur /= g; x /= g;
if (x) tmp2.eb(x);
}
if (cur != 1) return;
swap(tmp, tmp2);
}
for (auto x : tmp) if (x != 1) return;
ans.eb(n, m); ans.eb(n, n - m);
};
rep(i, 1, 30) {
double bound = pow(w * fac[i], 1.0 / i);
ll L = max(i * 2ll, (ll)bound - 20);
ll R = bound + 20;
// cout << i << " : " << L << " " << R << endl;
for (ll j = L; j <= R; ++j) check(j, i);
}
sort(all(ans));
ans.erase(unique(all(ans)), ans.end());
printf("%d\n", (int)ans.size());
bool first = true;
for (auto [x, y] : ans) {
if (!first) putchar(' ');
first = false;
printf("(%lld,%lld)", x, y);
}
puts("");
}
int main() {
fac[0] = 1;
rep(i, 1, 30) fac[i] = fac[i - 1] * i;
per(t, rd(), 1) work();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 4256kb
input:
2 2 15
output:
1 (2,1) 4 (6,2) (6,4) (15,1) (15,14)
result:
ok 4 lines
Test #2:
score: 0
Accepted
time: 38ms
memory: 4088kb
input:
100 2 3 4 5 6 7 8 9 10 15 120 3003 24310 495918532948104 1000000000000000 210 1540 2701 7140 11628 48620 614386 705432 817190 885115 4200651 4610166 5311735 5918520 6299475 6666891 6876486 7023974 7610851 8002000 8948565 9016381 9411291 9695406 30421755 1676056044 9075135300 101766230790 13784652882...
output:
1 (2,1) 2 (3,1) (3,2) 2 (4,1) (4,3) 2 (5,1) (5,4) 3 (4,2) (6,1) (6,5) 2 (7,1) (7,6) 2 (8,1) (8,7) 2 (9,1) (9,8) 4 (5,2) (5,3) (10,1) (10,9) 4 (6,2) (6,4) (15,1) (15,14) 6 (10,3) (10,7) (16,2) (16,14) (120,1) (120,119) 8 (14,6) (14,8) (15,5) (15,10) (78,2) (78,76) (3003,1) (3003,3002) 6 (17,8) (17,9)...
result:
ok 200 lines