QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#646214 | #8022. Walker | kans2298 | WA | 27ms | 4036kb | C++17 | 4.9kb | 2024-10-16 21:43:48 | 2024-10-16 21:43:49 |
Judging History
answer
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <numeric>
#include <stdexcept>
#include<bits/stdc++.h>
using namespace std;
using i64 = long long;
typedef i64 i128;
struct Fraction {
i128 num; // 分子
i128 den; // 分母
Fraction(i128 num = 0, i128 den = 1) : num(num), den(den) {
normalize();
}
void normalize() {
if (den == 0) {
throw runtime_error("Denominator is zero");
}
i128 n1=num,n2=den;
if (n1<0) n1=-n1;
if (n2<0) n2=-n2;
i128 g = gcd(n1,n2);
num /= g;
den /= g;
if (den < 0) {
num = -num;
den = -den;
}
}
Fraction operator+(const Fraction &other) const {
i128 n = num * other.den + other.num * den;
i128 d = den * other.den;
return Fraction(n, d);
}
Fraction operator-(const Fraction &other) const {
i128 n = num * other.den - other.num * den;
i128 d = den * other.den;
return Fraction(n, d);
}
Fraction operator*(const Fraction &other) const {
i128 n = num * other.num;
i128 d = den * other.den;
return Fraction(n, d);
}
Fraction operator/(const Fraction &other) const {
if (other.num == 0) {
throw runtime_error("Division by zero");
}
i128 n = num * other.den;
i128 d = den * other.num;
return Fraction(n, d);
}
bool operator<(const Fraction &other) const {
return num * other.den < other.num * den;
}
bool operator<=(const Fraction &other) const {
return num * other.den <= other.num * den;
}
bool operator==(const Fraction &other) const {
return num == other.num && den == other.den;
}
bool operator>(const Fraction &other) const {
return other < *this;
}
bool operator>=(const Fraction &other) const {
return other <= *this;
}
long double to_long_double() const {
return (long double)num / (long double)den;
}
};
int main() {
int ti, t;
//freopen("input.in","r",stdin);
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> t;
for (ti = 1; ti <= t; ++ti) {
double n_, p1_, p2_, n1_, n2_;
cin >> n_ >> p1_ >> n1_ >> p2_ >> n2_;
i64 n = n_ * 1000, p1 = p1_ * 1000, p2 = p2_ * 1000, n1 = n1_ * 1000, n2 = n2_ * 1000;
if (!(p1 <= p2)) {
swap(p1, p2);
swap(n1, n2);
}
Fraction ans1(1e9, 1);
ans1 = min(ans1, Fraction(n + min(p1, n - p1), n1));
ans1 = min(ans1, Fraction(n + min(p2, n - p2), n2));
auto check1 = [](i64 n, i64 p1, i64 p2, i64 n1, i64 n2) -> Fraction {
Fraction d;
d = Fraction(2 * n * n1 - p2 * n1 + n2 * p1, 2 * n2 + n1);
if ((d - Fraction(p1, 1)) <= Fraction(p1, 1) && Fraction(n - p2, 1) <= (Fraction(p2, 1) - d)) {
return d;
}
d = Fraction(n * n1 + p2 * n1 + n2 * p1, 2 * (n1 + n2));
if ((d - Fraction(p1, 1)) <= Fraction(p1, 1) && (Fraction(p2, 1) - d) <= Fraction(n - p2, 1)) {
return d;
}
d = Fraction(2 * n * n1 - p2 * n1 - n2 * p1, n1 + n2);
if (Fraction(p1, 1) <= (d - Fraction(p1, 1)) && Fraction(n - p2, 1) <= (Fraction(p2, 1) - d)) {
return d;
}
d = Fraction(n * n1 + p2 * n1 - n2 * p1, 2 * n1 + n2);
if (Fraction(p1, 1) <= (d - Fraction(p1, 1)) && (Fraction(p2, 1) - d) <= Fraction(n - p2, 1)) {
return d;
}
return Fraction(-1, 1);
};
Fraction door = check1(n, p1, p2, n1, n2);
Fraction T(1e9, 1);
if (p1 == p2) {
Fraction t1 = max(Fraction(p1, n1), Fraction(n - p1, n2));
Fraction t2 = max(Fraction(p1, n2), Fraction(n - p1, n1));
T = min(T, min(t1, t2));
}
if (door > Fraction(0, 1) && Fraction(p1, 1) <= door && door <= Fraction(p2, 1)) {
T = min(T, (door + min(door - Fraction(p1, 1), Fraction(p1, 1))) / Fraction(n1, 1));
}
{
door = Fraction(p1, 1);
Fraction tA = Fraction(p1, n1);
Fraction tB = Fraction(n - p1 + min(n - p2, p2 - p1), n2);
T = min(T, max(tA, tB));
}
{
door = Fraction(p2, 1);
Fraction tA = Fraction(p2 + min(p1, p2 - p1), n1);
Fraction tB = Fraction(n - p2, n2);
T = min(T, max(tA, tB));
}
{
Fraction tA = Fraction(n - p1, n1);
Fraction tB = Fraction(p2, n2);
T = min(T, max(tA, tB));
}
long double result = min(ans1, T).to_long_double();
cout << fixed << setprecision(8) << result << "\n";
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3864kb
input:
2 10000.0 1.0 0.001 9999.0 0.001 4306.063 4079.874 0.607 1033.423 0.847
output:
5001000.00000000 3827.83700138
result:
ok 2 numbers
Test #2:
score: 0
Accepted
time: 0ms
memory: 3808kb
input:
1 10.0 1.0 10.0 9.0 0.1
output:
1.10000000
result:
ok found '1.1000000', expected '1.1000000', error '0.0000000'
Test #3:
score: 0
Accepted
time: 0ms
memory: 3812kb
input:
1 10.0 8.0 10.0 9.0 0.1
output:
1.20000000
result:
ok found '1.2000000', expected '1.2000000', error '0.0000000'
Test #4:
score: 0
Accepted
time: 0ms
memory: 3752kb
input:
1 10.0 8.0 0.1 9.0 10
output:
1.10000000
result:
ok found '1.1000000', expected '1.1000000', error '0.0000000'
Test #5:
score: 0
Accepted
time: 0ms
memory: 4028kb
input:
1 10.0 2.0 0.1 3.0 10
output:
1.30000000
result:
ok found '1.3000000', expected '1.3000000', error '0.0000000'
Test #6:
score: 0
Accepted
time: 0ms
memory: 3864kb
input:
1 10.0 9.0 0.1 8.0 10.0
output:
1.20000000
result:
ok found '1.2000000', expected '1.2000000', error '0.0000000'
Test #7:
score: 0
Accepted
time: 0ms
memory: 3816kb
input:
1 10.0 4.0 0.1 6.0 0.1
output:
60.00000000
result:
ok found '60.0000000', expected '60.0000000', error '0.0000000'
Test #8:
score: 0
Accepted
time: 0ms
memory: 4036kb
input:
1 10.0 4.5 0.1 6.0 0.1
output:
57.50000000
result:
ok found '57.5000000', expected '57.5000000', error '0.0000000'
Test #9:
score: 0
Accepted
time: 0ms
memory: 3944kb
input:
1 10.0 1.0 1.0 8.0 1.0
output:
6.50000000
result:
ok found '6.5000000', expected '6.5000000', error '0.0000000'
Test #10:
score: 0
Accepted
time: 0ms
memory: 3904kb
input:
1 10.0 3.0 2.0 7.0 1.0
output:
4.60000000
result:
ok found '4.6000000', expected '4.6000000', error '0.0000000'
Test #11:
score: 0
Accepted
time: 0ms
memory: 4032kb
input:
1 10.0 6.0 2.0 7.0 1.0
output:
3.66666667
result:
ok found '3.6666667', expected '3.6666667', error '0.0000000'
Test #12:
score: 0
Accepted
time: 0ms
memory: 3808kb
input:
1 10.0 1.0 1.0 9.0 1.0
output:
6.00000000
result:
ok found '6.0000000', expected '6.0000000', error '0.0000000'
Test #13:
score: 0
Accepted
time: 0ms
memory: 3864kb
input:
1 10000.0 1.0 0.001 1.0 0.001
output:
9999000.00000000
result:
ok found '9999000.0000000', expected '9999000.0000000', error '0.0000000'
Test #14:
score: 0
Accepted
time: 0ms
memory: 4032kb
input:
1 10.0 5.0 1.0 5.0 1.5
output:
5.00000000
result:
ok found '5.0000000', expected '5.0000000', error '0.0000000'
Test #15:
score: -100
Wrong Answer
time: 27ms
memory: 3908kb
input:
10000 4306.063 4079.874 0.607 1033.423 0.847 8967.336 8026.500 0.398 283.019 0.876 9568.147 4481.616 0.405 800.114 0.684 9867.264 6184.040 0.312 9853.164 0.641 3344.364 730.612 0.539 1305.868 0.947 9336.180 3672.113 0.773 432.686 0.312 1468.243 59.762 0.840 1438.446 0.827 1355.133 1096.314 0.373 109...
output:
3827.83700138 7999.36499215 12559.33580247 15371.55070203 2637.69851952 9931.04151754 934.49430114 2939.17962466 5754.03288987 2847.42715700 10975.32362822 2180.27860697 23747.04545455 6278.10355487 872.39770554 10734.39564428 1005.07702889 20225.16309013 9878.00994575 22899.25925926 12241.08592593 ...
result:
wrong answer 427th numbers differ - expected: '890.0298273', found: '890.0282575', error = '0.0000018'