QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#643882#7. 主旋律maspy100 ✓148ms6072kbC++2025.1kb2024-10-16 05:18:412024-10-16 05:18:41

Judging History

你现在查看的是最新测评结果

  • [2024-10-16 05:18:41]
  • 评测
  • 测评结果:100
  • 用时:148ms
  • 内存:6072kb
  • [2024-10-16 05:18:41]
  • 提交

answer

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "/home/maspy/compro/library/setfunc/subset_convolution.hpp"

#line 2 "/home/maspy/compro/library/setfunc/ranked_zeta.hpp"

template <typename T, int LIM>
vc<array<T, LIM + 1>> ranked_zeta(const vc<T>& f) {
  int n = topbit(len(f));
  assert(n <= LIM);
  assert(len(f) == 1 << n);
  vc<array<T, LIM + 1>> Rf(1 << n);
  for (int s = 0; s < (1 << n); ++s) Rf[s][popcnt(s)] = f[s];
  for (int i = 0; i < n; ++i) {
    int w = 1 << i;
    for (int p = 0; p < (1 << n); p += 2 * w) {
      for (int s = p; s < p + w; ++s) {
        int t = s | 1 << i;
        for (int d = 0; d <= n; ++d) Rf[t][d] += Rf[s][d];
      }
    }
  }
  return Rf;
}

template <typename T, int LIM>
vc<T> ranked_mobius(vc<array<T, LIM + 1>>& Rf) {
  int n = topbit(len(Rf));
  assert(len(Rf) == 1 << n);
  for (int i = 0; i < n; ++i) {
    int w = 1 << i;
    for (int p = 0; p < (1 << n); p += 2 * w) {
      for (int s = p; s < p + w; ++s) {
        int t = s | 1 << i;
        for (int d = 0; d <= n; ++d) Rf[t][d] -= Rf[s][d];
      }
    }
  }
  vc<T> f(1 << n);
  for (int s = 0; s < (1 << n); ++s) f[s] = Rf[s][popcnt(s)];
  return f;
}
#line 4 "/home/maspy/compro/library/setfunc/subset_convolution.hpp"

template <typename T, int LIM = 20>
vc<T> subset_convolution_square(const vc<T>& A) {
  auto RA = ranked_zeta<T, LIM>(A);
  int n = topbit(len(RA));
  FOR(s, len(RA)) {
    auto& f = RA[s];
    FOR_R(d, n + 1) {
      T x = 0;
      FOR(i, d + 1) x += f[i] * f[d - i];
      f[d] = x;
    }
  }
  return ranked_mobius<T, LIM>(RA);
}

template <typename T, int LIM = 20>
vc<T> subset_convolution(const vc<T>& A, const vc<T>& B) {
  if (A == B) return subset_convolution_square(A);
  auto RA = ranked_zeta<T, LIM>(A);
  auto RB = ranked_zeta<T, LIM>(B);
  int n = topbit(len(RA));
  FOR(s, len(RA)) {
    auto &f = RA[s], &g = RB[s];
    FOR_R(d, n + 1) {
      T x = 0;
      FOR(i, d + 1) x += f[i] * g[d - i];
      f[d] = x;
    }
  }
  return ranked_mobius<T, LIM>(RA);
}
#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1004535809) return {21, 836905998};
    if (mod == 1045430273) return {20, 363};
    if (mod == 1051721729) return {20, 330};
    if (mod == 1053818881) return {20, 2789};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "/home/maspy/compro/library/setfunc/sps_composition.hpp"

// sum_i f_i/i! s^i, s^i is subset-convolution
template <typename mint, int LIM>
vc<mint> sps_composition_egf(vc<mint>& f, vc<mint>& s) {
  const int N = topbit(len(s));
  assert(len(s) == (1 << N) && s[0] == mint(0));
  if (len(f) > N) f.resize(N + 1);
  int D = len(f) - 1;
  using ARR = array<mint, LIM + 1>;
  vvc<ARR> zs(N);
  FOR(i, N) {
    zs[i]
        = ranked_zeta<mint, LIM>({s.begin() + (1 << i), s.begin() + (2 << i)});
  }

  // dp : (d/dt)^df(s) (d=D,D-1,...)
  vc<mint> dp(1 << (N - D));
  dp[0] = f[D];
  FOR_R(d, D) {
    vc<mint> newdp(1 << (N - d));
    newdp[0] = f[d];
    vc<ARR> zdp = ranked_zeta<mint, LIM>(dp);
    FOR(i, N - d) {
      // zs[1<<i:2<<i], zdp[0:1<<i]
      vc<ARR> znewdp(1 << i);
      FOR(k, 1 << i) {
        FOR(p, i + 1) FOR(q, i - p + 1) {
          znewdp[k][p + q] += zdp[k][p] * zs[i][k][q];
        }
      }
      auto x = ranked_mobius<mint, LIM>(znewdp);
      copy(all(x), newdp.begin() + (1 << i));
    }
    swap(dp, newdp);
  }
  return dp;
}

// sum_i f_i s^i, s^i is subset-convolution
template <typename mint, int LIM>
vc<mint> sps_composition_poly(vc<mint> f, vc<mint> s) {
  const int N = topbit(len(s));
  assert(len(s) == (1 << N));
  if (f.empty()) return vc<mint>(1 << N, mint(0));
  // convert to egf problem
  int D = min<int>(len(f) - 1, N);
  vc<mint> g(D + 1);
  mint c = s[0];
  s[0] = 0;
  // (x+c)^i
  vc<mint> pow(D + 1);
  pow[0] = 1;
  FOR(i, len(f)) {
    FOR(j, D + 1) g[j] += f[i] * pow[j];
    FOR_R(j, D + 1) pow[j] = pow[j] * c + (j == 0 ? mint(0) : pow[j - 1]);
  }
  // to egf
  mint factorial = 1;
  FOR(j, D + 1) g[j] *= factorial, factorial *= mint(j + 1);
  return sps_composition_egf<mint, LIM>(g, s);
}
#line 3 "/home/maspy/compro/library/setfunc/sps_log.hpp"

// exp の逆手順で計算する
template <typename mint, int LIM>
vc<mint> sps_log(vc<mint>& dp) {
  const int N = topbit(len(dp));
  assert(len(dp) == (1 << N) && dp[0] == mint(1));
  vc<mint> s(1 << N);
  FOR_R(i, N) {
    vc<mint> a = {dp.begin() + (1 << i), dp.begin() + (2 << i)};
    vc<mint> b = {dp.begin(), dp.begin() + (1 << i)};
    auto RA = ranked_zeta<mint, LIM>(a);
    auto RB = ranked_zeta<mint, LIM>(b);
    FOR(s, 1 << i) {
      auto &f = RA[s], &g = RB[s];
      // assert(g[0] == mint(1));
      FOR(d, i + 1) { FOR(i, d) f[d] -= f[i] * g[d - i]; }
    }
    a = ranked_mobius<mint, LIM>(RA);
    copy(all(a), s.begin() + (1 << i));
  }
  return s;
}
#line 7 "main.cpp"

using mint = modint107;

/*
A digraph
B no source component
C strong
D strong^k/k!,weight (-1)^k,exp(-C)

B[u]=D[s]A[t]pow(2,edge(s->t))
A,B→D→C
pow(3,n)?

set,set edge count
半分ずつにわけて前計算してしまう
*/

const int K = 8;
u8 edge[2][2][1 << K][1 << K];

void solve() {
  LL(N, M);
  vc<int> TO(N);
  FOR(M) {
    INT(a, b);
    --a, --b;
    TO[a] |= 1 << b;
  }

  FOR(a, 2) {
    FOR(i, K) {
      int v = K * a + i;
      int out = (v >= N ? 0 : TO[v]);
      FOR(s, 1 << i) {
        FOR(t, 1 << K) {
          edge[a][0][s | 1 << i][t] = edge[a][0][s][t] + popcnt(out & t);
          edge[a][1][s | 1 << i][t] = edge[a][1][s][t] + popcnt(out >> 8 & t);
        }
      }
    }
  }

  auto get = [&](int a, int b) -> int {
    int ans = 0;
    ans += edge[0][0][a & 255][b & 255];
    ans += edge[0][1][a & 255][b >> 8 & 255];
    ans += edge[1][0][a >> 8 & 255][b & 255];
    ans += edge[1][1][a >> 8 & 255][b >> 8 & 255];
    return ans;
  };

  vc<mint> POW(1000, 1);
  FOR(i, 1, 1000) POW[i] = POW[i - 1] + POW[i - 1];

  vc<mint> A(1 << N);
  FOR(s, 1 << N) A[s] = POW[get(s, s)];

  // B[u]=D[s]A[t]pow(2,edge(s->t))
  vc<mint> D(1 << N);
  D[0] = 1;
  FOR(s, 1, 1 << N) {
    FOR_subset(t, s) { D[s] -= D[t] * A[s - t] * POW[get(t, s - t)]; }
  }

  vc<mint> C = sps_log<mint, 15>(D);
  FOR(i, 1, 1 << N) C[i] = -C[i];
  mint ANS = C.back();
  print(ANS);
}

signed main() { solve(); }

詳細信息


Pretests


Final Tests

Test #1:

score: 10
Accepted
time: 1ms
memory: 3856kb

input:

5 15
4 3
4 2
2 5
2 1
1 2
5 1
3 2
4 1
1 4
5 4
3 4
5 3
2 3
1 5
3 1

output:

9390

result:

ok single line: '9390'

Test #2:

score: 10
Accepted
time: 1ms
memory: 4252kb

input:

5 18
4 3
4 2
2 5
2 1
1 2
5 1
3 2
4 1
1 4
5 4
3 4
5 3
2 3
1 5
3 1
1 3
5 2
2 4

output:

100460

result:

ok single line: '100460'

Test #3:

score: 10
Accepted
time: 1ms
memory: 4064kb

input:

8 35
5 1
8 7
7 8
7 6
6 1
2 5
6 5
8 2
7 2
7 5
3 1
6 3
2 3
5 2
8 5
8 3
6 8
2 1
1 6
2 6
7 3
2 4
3 5
3 2
3 7
7 1
8 4
3 4
3 6
6 4
2 7
4 6
6 7
7 4
8 1

output:

299463717

result:

ok single line: '299463717'

Test #4:

score: 10
Accepted
time: 1ms
memory: 3848kb

input:

8 40
5 1
8 7
7 8
7 6
6 1
2 5
6 5
8 2
7 2
7 5
3 1
6 3
2 3
5 2
8 5
8 3
6 8
2 1
1 6
2 6
7 3
2 4
3 5
3 2
3 7
7 1
8 4
3 4
3 6
6 4
2 7
4 6
6 7
7 4
8 1
1 2
4 8
5 8
4 3
5 7

output:

21156439

result:

ok single line: '21156439'

Test #5:

score: 10
Accepted
time: 1ms
memory: 4028kb

input:

8 45
5 1
8 7
7 8
7 6
6 1
2 5
6 5
8 2
7 2
7 5
3 1
6 3
2 3
5 2
8 5
8 3
6 8
2 1
1 6
2 6
7 3
2 4
3 5
3 2
3 7
7 1
8 4
3 4
3 6
6 4
2 7
4 6
6 7
7 4
8 1
1 2
4 8
5 8
4 3
5 7
2 8
1 5
3 8
1 3
4 1

output:

426670664

result:

ok single line: '426670664'

Test #6:

score: 10
Accepted
time: 2ms
memory: 4036kb

input:

10 65
5 10
1 8
7 8
6 2
5 7
9 2
4 7
3 7
1 6
3 10
7 9
8 4
7 1
5 2
1 7
4 2
8 3
8 1
3 9
8 2
2 10
4 3
9 10
5 3
3 8
3 4
6 10
4 8
4 5
5 8
9 5
9 6
10 2
10 5
6 1
2 1
9 4
7 10
5 6
10 7
10 8
5 9
9 7
9 8
4 10
8 9
7 2
2 7
10 1
7 3
6 8
7 6
9 1
6 5
2 4
6 3
2 9
8 10
10 9
8 5
4 1
6 9
2 3
1 3
1 9

output:

931896041

result:

ok single line: '931896041'

Test #7:

score: 10
Accepted
time: 2ms
memory: 4288kb

input:

10 70
5 10
1 8
7 8
6 2
5 7
9 2
4 7
3 7
1 6
3 10
7 9
8 4
7 1
5 2
1 7
4 2
8 3
8 1
3 9
8 2
2 10
4 3
9 10
5 3
3 8
3 4
6 10
4 8
4 5
5 8
9 5
9 6
10 2
10 5
6 1
2 1
9 4
7 10
5 6
10 7
10 8
5 9
9 7
9 8
4 10
8 9
7 2
2 7
10 1
7 3
6 8
7 6
9 1
6 5
2 4
6 3
2 9
8 10
10 9
8 5
4 1
6 9
2 3
1 3
1 9
5 4
1 5
5 1
10 4
10 6

output:

303656759

result:

ok single line: '303656759'

Test #8:

score: 10
Accepted
time: 148ms
memory: 6072kb

input:

15 130
7 10
9 12
4 6
1 10
14 9
4 8
8 9
4 3
15 9
3 9
1 8
2 15
8 4
13 7
3 5
14 13
6 2
14 6
8 3
4 2
8 13
9 2
6 13
12 11
6 4
11 8
15 5
3 8
10 8
15 7
15 6
12 15
8 12
13 9
12 9
8 15
11 6
6 7
10 4
2 8
11 12
7 9
7 12
14 1
5 8
10 9
3 7
7 13
11 9
11 10
1 5
1 3
2 1
2 7
10 1
10 15
7 14
5 6
6 1
15 10
5 15
15 8
5...

output:

717458968

result:

ok single line: '717458968'

Test #9:

score: 10
Accepted
time: 146ms
memory: 6008kb

input:

15 140
7 10
9 12
4 6
1 10
14 9
4 8
8 9
4 3
15 9
3 9
1 8
2 15
8 4
13 7
3 5
14 13
6 2
14 6
8 3
4 2
8 13
9 2
6 13
12 11
6 4
11 8
15 5
3 8
10 8
15 7
15 6
12 15
8 12
13 9
12 9
8 15
11 6
6 7
10 4
2 8
11 12
7 9
7 12
14 1
5 8
10 9
3 7
7 13
11 9
11 10
1 5
1 3
2 1
2 7
10 1
10 15
7 14
5 6
6 1
15 10
5 15
15 8
5...

output:

459157220

result:

ok single line: '459157220'

Test #10:

score: 10
Accepted
time: 140ms
memory: 6008kb

input:

15 150
7 10
9 12
4 6
1 10
14 9
4 8
8 9
4 3
15 9
3 9
1 8
2 15
8 4
13 7
3 5
14 13
6 2
14 6
8 3
4 2
8 13
9 2
6 13
12 11
6 4
11 8
15 5
3 8
10 8
15 7
15 6
12 15
8 12
13 9
12 9
8 15
11 6
6 7
10 4
2 8
11 12
7 9
7 12
14 1
5 8
10 9
3 7
7 13
11 9
11 10
1 5
1 3
2 1
2 7
10 1
10 15
7 14
5 6
6 1
15 10
5 15
15 8
5...

output:

663282473

result:

ok single line: '663282473'