QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#643857 | #7963. 多折较差验证 | hos_lyric# | WA | 1784ms | 143048kb | C++14 | 7.5kb | 2024-10-16 03:11:39 | 2024-10-16 03:11:40 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
// T: monoid representing information of an interval.
// T() should return the identity.
// T(S s) should represent a single element of the array.
// T::pull(const T &l, const T &r) should pull two intervals.
template <class T> struct SegmentTreePoint {
int logN, n;
vector<T> ts;
SegmentTreePoint() : logN(0), n(0) {}
explicit SegmentTreePoint(int n_) {
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
}
template <class S> explicit SegmentTreePoint(const vector<S> &ss) {
const int n_ = ss.size();
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
for (int i = 0; i < n_; ++i) at(i) = T(ss[i]);
build();
}
T &at(int i) {
return ts[n + i];
}
void build() {
for (int u = n; --u; ) pull(u);
}
inline void pull(int u) {
ts[u].pull(ts[u << 1], ts[u << 1 | 1]);
}
// Changes the value of point a to s.
template <class S> void change(int a, const S &s) {
assert(0 <= a); assert(a < n);
ts[a += n] = T(s);
for (; a >>= 1; ) pull(a);
}
// Applies T::f(args...) to point a.
template <class F, class... Args>
void ch(int a, F f, Args &&... args) {
assert(0 <= a); assert(a < n);
(ts[a += n].*f)(args...);
for (; a >>= 1; ) pull(a);
}
// Calculates the product for [a, b).
T get(int a, int b) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return T();
T prodL, prodR, t;
for (a += n, b += n; a < b; a >>= 1, b >>= 1) {
if (a & 1) { t.pull(prodL, ts[a++]); prodL = t; }
if (b & 1) { t.pull(ts[--b], prodR); prodR = t; }
}
t.pull(prodL, prodR);
return t;
}
// Calculates T::f(args...) of a monoid type for [a, b).
// op(-, -) should calculate the product.
// e() should return the identity.
template <class Op, class E, class F, class... Args>
#if __cplusplus >= 201402L
auto
#else
decltype((std::declval<T>().*F())())
#endif
get(int a, int b, Op op, E e, F f, Args &&... args) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return e();
auto prodL = e(), prodR = e();
for (a += n, b += n; a < b; a >>= 1, b >>= 1) {
if (a & 1) prodL = op(prodL, (ts[a++].*f)(args...));
if (b & 1) prodR = op((ts[--b].*f)(args...), prodR);
}
return op(prodL, prodR);
}
// Find min b s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from left to right.
// Returns n + 1 if there is no such b.
template <class F, class... Args>
int findRight(int a, F f, Args &&... args) {
assert(0 <= a); assert(a <= n);
if ((T().*f)(args...)) return a;
if (a == n) return n + 1;
a += n;
for (; ; a >>= 1) if (a & 1) {
if ((ts[a].*f)(args...)) {
for (; a < n; ) {
if (!(ts[a <<= 1].*f)(args...)) ++a;
}
return a - n + 1;
}
++a;
if (!(a & (a - 1))) return n + 1;
}
}
// Find max a s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from right to left.
// Returns -1 if there is no such a.
template <class F, class... Args>
int findLeft(int b, F f, Args &&... args) {
assert(0 <= b); assert(b <= n);
if ((T().*f)(args...)) return b;
if (b == 0) return -1;
b += n;
for (; ; b >>= 1) if ((b & 1) || b == 2) {
if ((ts[b - 1].*f)(args...)) {
for (; b <= n; ) {
if (!(ts[(b <<= 1) - 1].*f)(args...)) --b;
}
return b - n - 1;
}
--b;
if (!(b & (b - 1))) return -1;
}
}
}; // SegmentTreePoint<T>
////////////////////////////////////////////////////////////////////////////////
constexpr int INF = 1001001001;
struct NodeMin {
int mn;
NodeMin() : mn(+INF) {}
NodeMin(int val) : mn(val) {}
void pull(const NodeMin &l, const NodeMin &r) {
mn = min(l.mn, r.mn);
}
void ch(int val) {
mn = val;
}
void chmin(int val) {
if (mn > val) mn = val;
}
bool test(int tar) const {
return (mn <= tar);
}
};
struct NodeMax {
int mx;
NodeMax() : mx(-INF) {}
NodeMax(int val) : mx(val) {}
void pull(const NodeMax &l, const NodeMax &r) {
mx = max(l.mx, r.mx);
}
void ch(int val) {
mx = val;
}
void chmax(int val) {
if (mx < val) mx = val;
}
bool test(int tar) const {
return (mx >= tar);
}
};
////////////////////////////////////////////////////////////////////////////////
int N;
char S[5010];
pair<int, int> dp[5010][5010];
int main() {
for (; ~scanf("%d", &N); ) {
scanf("%s", S);
vector<int> rads(N, 0);
for (int i = 0; i < N; ++i) {
for (int l = i - 1, r = i + 1; 0 <= l && r < N && S[l] != S[r]; --l, ++r) {
++rads[i];
}
}
// cerr<<"rads = "<<rads<<endl;
SegmentTreePoint<NodeMax> segL(N), segR(N);
for (int i = 0; i < N; ++i) {
segL.at(i) = rads[i] - i;
segR.at(i) = rads[i] + i;
}
segL.build();
segR.build();
for (int l = 0; l <= N; ++l) for (int r = l; r <= N; ++r) {
dp[l][r] = make_pair(INF, INF);
}
for (int i = 0; i <= N; ++i) {
dp[i][i] = make_pair(0, 0);
}
for (int l = N; --l >= 0; ) {
for (int r = l + 1; r <= N; ++r) {
/*
for (int m = (l + r - 1) / 2; --m >= l; ) if (rads[m] >= m - l) {
chmin(dp[l][r], make_pair(dp[m + 1][r].first + 1, dp[m + 1][r].second + ((r - (m + 1)) - (m - l))));
break;
}
for (int m = (l + r) / 2; m < r; ++m) if (rads[m] >= r - (m + 1)) {
chmin(dp[l][r], make_pair(dp[l][m].first + 1, dp[l][m].second + ((m - l) - (r - (m + 1)))));
break;
}
*/
{
const int m = segL.findLeft((l + r - 1) / 2 + 1, &NodeMax::test, -l);
if (l <= m) {
chmin(dp[l][r], make_pair(dp[m + 1][r].first + 1, dp[m + 1][r].second + ((r - (m + 1)) - (m - l))));
}
}
{
const int m = segR.findRight((l + r) / 2, &NodeMax::test, r) - 1;
if (m < r) {
chmin(dp[l][r], make_pair(dp[l][m].first + 1, dp[l][m].second + ((m - l) - (r - (m + 1)))));
}
}
}
}
printf("%d %d\n", dp[0][N].first, dp[0][N].second);
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1601ms
memory: 136932kb
input:
5000 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^...
output:
5000 12497500
result:
ok single line: '5000 12497500'
Test #2:
score: -100
Wrong Answer
time: 1784ms
memory: 143048kb
input:
4991 ^^vv^v^^^^vvv^^^^^^vvvv^^^^^^^vv^^^^^^^^v^^^^^^v^^^v^^v^^^v^^^^^v^^v^^^^^^^^vv^^^^^^^^^^vvvvvvv^v^^^^^v^v^^^^^v^^^^^^^^^^^v^^^^^vv^v^^^^^v^^^^vvv^^^v^^^^v^^^^^vv^^v^^^^^^^v^^^^^^^^^v^v^^^v^^v^^^^^v^^^vv^v^^^v^^^v^v^v^^^^v^^^vv^^^^vv^^v^^v^^^^^^^v^^^^^^v^^^^v^^^^^^v^^v^v^^^^^^^^v^^^^^v^^^v^v^^^^...
output:
2750 6912790
result:
wrong answer 1st lines differ - expected: '2748 6735487', found: '2750 6912790'