QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#641842 | #8052. Dot Product | maspy | AC ✓ | 536ms | 19636kb | C++20 | 27.0kb | 2024-10-15 01:36:36 | 2024-10-15 01:36:36 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 1 "/home/maspy/compro/library/ds/bit_vector.hpp"
struct Bit_Vector {
int n;
bool prepared = 0;
vc<pair<u64, u32>> dat;
Bit_Vector(int n) : n(n) { dat.assign((n + 127) >> 6, {0, 0}); }
void set(int i) {
assert(!prepared);
dat[i >> 6].fi |= u64(1) << (i & 63);
}
void reset() {
fill(all(dat), pair<u64, u32>{0, 0});
prepared = 0;
}
void build() {
prepared = 1;
FOR(i, len(dat) - 1) dat[i + 1].se = dat[i].se + popcnt(dat[i].fi);
}
// [0, k) 内の 1 の個数
bool operator[](int i) { return dat[i >> 6].fi >> (i & 63) & 1; }
int count_prefix(int k, bool f = true) {
assert(prepared);
auto [a, b] = dat[k >> 6];
int ret = b + popcnt(a & ((u64(1) << (k & 63)) - 1));
return (f ? ret : k - ret);
}
int count(int L, int R, bool f = true) { return count_prefix(R, f) - count_prefix(L, f); }
string to_string() {
string ans;
FOR(i, n) ans += '0' + (dat[i / 64].fi >> (i % 64) & 1);
return ans;
}
};
#line 1 "/home/maspy/compro/library/ds/index_compression.hpp"
template <typename T>
struct Index_Compression_DISTINCT_SMALL {
static_assert(is_same_v<T, int>);
int mi, ma;
vc<int> dat;
vc<int> build(vc<int> X) {
mi = 0, ma = -1;
if (!X.empty()) mi = MIN(X), ma = MAX(X);
dat.assign(ma - mi + 2, 0);
for (auto& x: X) dat[x - mi + 1]++;
FOR(i, len(dat) - 1) dat[i + 1] += dat[i];
for (auto& x: X) { x = dat[x - mi]++; }
FOR_R(i, 1, len(dat)) dat[i] = dat[i - 1];
dat[0] = 0;
return X;
}
int operator()(ll x) { return dat[clamp<ll>(x - mi, 0, ma - mi + 1)]; }
};
template <typename T>
struct Index_Compression_SAME_SMALL {
static_assert(is_same_v<T, int>);
int mi, ma;
vc<int> dat;
vc<int> build(vc<int> X) {
mi = 0, ma = -1;
if (!X.empty()) mi = MIN(X), ma = MAX(X);
dat.assign(ma - mi + 2, 0);
for (auto& x: X) dat[x - mi + 1] = 1;
FOR(i, len(dat) - 1) dat[i + 1] += dat[i];
for (auto& x: X) { x = dat[x - mi]; }
return X;
}
int operator()(ll x) { return dat[clamp<ll>(x - mi, 0, ma - mi + 1)]; }
};
template <typename T>
struct Index_Compression_SAME_LARGE {
vc<T> dat;
vc<int> build(vc<T> X) {
vc<int> I = argsort(X);
vc<int> res(len(X));
for (auto& i: I) {
if (!dat.empty() && dat.back() == X[i]) {
res[i] = len(dat) - 1;
} else {
res[i] = len(dat);
dat.eb(X[i]);
}
}
dat.shrink_to_fit();
return res;
}
int operator()(T x) { return LB(dat, x); }
};
template <typename T>
struct Index_Compression_DISTINCT_LARGE {
vc<T> dat;
vc<int> build(vc<T> X) {
vc<int> I = argsort(X);
vc<int> res(len(X));
for (auto& i: I) { res[i] = len(dat), dat.eb(X[i]); }
dat.shrink_to_fit();
return res;
}
int operator()(T x) { return LB(dat, x); }
};
template <typename T, bool SMALL>
using Index_Compression_DISTINCT =
typename std::conditional<SMALL, Index_Compression_DISTINCT_SMALL<T>,
Index_Compression_DISTINCT_LARGE<T>>::type;
template <typename T, bool SMALL>
using Index_Compression_SAME =
typename std::conditional<SMALL, Index_Compression_SAME_SMALL<T>,
Index_Compression_SAME_LARGE<T>>::type;
// SAME: [2,3,2] -> [0,1,0]
// DISTINCT: [2,2,3] -> [0,2,1]
// (x): lower_bound(X,x) をかえす
template <typename T, bool SAME, bool SMALL>
using Index_Compression =
typename std::conditional<SAME, Index_Compression_SAME<T, SMALL>,
Index_Compression_DISTINCT<T, SMALL>>::type;
#line 2 "/home/maspy/compro/library/alg/monoid/add.hpp"
template <typename E>
struct Monoid_Add {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 4 "/home/maspy/compro/library/ds/wavelet_matrix/wavelet_matrix.hpp"
// 静的メソッドinverseの存在をチェックするテンプレート
template <typename, typename = std::void_t<>>
struct has_inverse : std::false_type {};
template <typename T>
struct has_inverse<T, std::void_t<decltype(T::inverse(std::declval<typename T::value_type>()))>> : std::true_type {};
struct Dummy_Data_Structure {
using MX = Monoid_Add<bool>;
void build(const vc<bool>& A) {}
};
template <typename Y, bool SMALL_Y, typename SEGTREE = Dummy_Data_Structure>
struct Wavelet_Matrix {
using Mono = typename SEGTREE::MX;
using T = typename Mono::value_type;
static_assert(Mono::commute);
int n, log, K;
Index_Compression<Y, true, SMALL_Y> IDX;
vc<Y> ItoY;
vc<int> mid;
vc<Bit_Vector> bv;
vc<SEGTREE> seg;
Wavelet_Matrix() {}
Wavelet_Matrix(const vc<Y>& A) { build(A); }
Wavelet_Matrix(const vc<Y>& A, vc<T>& SUM_Data) { build(A, SUM_Data); }
template <typename F>
Wavelet_Matrix(int n, F f) {
build(n, f);
}
template <typename F>
void build(int m, F f) {
vc<Y> A(m);
vc<T> S(m);
for (int i = 0; i < m; ++i) tie(A[i], S[i]) = f(i);
build(A, S);
}
void build(const vc<Y>& A) { build(A, vc<T>(len(A), Mono::unit())); }
void build(const vc<Y>& A, vc<T> S) {
n = len(A);
vc<int> B = IDX.build(A);
K = 0;
for (auto& x: B) chmax(K, x + 1);
ItoY.resize(K);
FOR(i, n) ItoY[B[i]] = A[i];
log = 0;
while ((1 << log) < K) ++log;
mid.resize(log), bv.assign(log, Bit_Vector(n));
vc<int> B0(n), B1(n);
vc<T> S0(n), S1(n);
seg.resize(log + 1);
seg[log].build(S);
for (int d = log - 1; d >= 0; --d) {
int p0 = 0, p1 = 0;
for (int i = 0; i < n; ++i) {
bool f = (B[i] >> d & 1);
if (!f) { B0[p0] = B[i], S0[p0] = S[i], p0++; }
if (f) { bv[d].set(i), B1[p1] = B[i], S1[p1] = S[i], p1++; }
}
swap(B, B0), swap(S, S0);
move(B1.begin(), B1.begin() + p1, B.begin() + p0);
move(S1.begin(), S1.begin() + p1, S.begin() + p0);
mid[d] = p0, bv[d].build(), seg[d].build(S);
}
}
// [L,R) x [0,y)
int prefix_count(int L, int R, Y y) {
int p = IDX(y);
if (L == R || p == 0) return 0;
if (p == K) return R - L;
int cnt = 0;
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
if (p >> d & 1) cnt += r0 - l0, L = l1, R = r1;
if (!(p >> d & 1)) L = l0, R = r0;
}
return cnt;
}
// [L,R) x [y1,y2)
int count(int L, int R, Y y1, Y y2) { return prefix_count(L, R, y2) - prefix_count(L, R, y1); }
// [L,R) x [0,y)
pair<int, T> prefix_count_and_prod(int L, int R, Y y) {
int p = IDX(y);
if (p == 0) return {0, Mono::unit()};
if (p == K) return {R - L, seg[log].prod(L, R)};
int cnt = 0;
T t = Mono::unit();
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
if (p >> d & 1) { cnt += r0 - l0, t = Mono::op(t, seg[d].prod(l0, r0)), L = l1, R = r1; }
if (!(p >> d & 1)) L = l0, R = r0;
}
return {cnt, t};
}
// [L,R) x [y1,y2)
pair<int, T> count_and_prod(int L, int R, Y y1, Y y2) {
if constexpr (has_inverse<Mono>::value) {
auto [c1, t1] = prefix_count_and_prod(L, R, y1);
auto [c2, t2] = prefix_count_and_prod(L, R, y2);
return {c2 - c1, Mono::op(Mono::inverse(t1), t2)};
}
int lo = IDX(y1), hi = IDX(y2), cnt = 0;
T t = Mono::unit();
auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void {
assert(b - a == (1 << d));
if (hi <= a || b <= lo) return;
if (lo <= a && b <= hi) {
cnt += R - L, t = Mono::op(t, seg[d].prod(L, R));
return;
}
--d;
int c = (a + b) / 2;
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
dfs(dfs, d, l0, r0, a, c), dfs(dfs, d, l1, r1, c, b);
};
dfs(dfs, log, L, R, 0, 1 << log);
return {cnt, t};
}
// [L,R) x [y1,y2)
T prefix_prod(int L, int R, Y y) { return prefix_count_and_prod(L, R, y).se; }
// [L,R) x [y1,y2)
T prod(int L, int R, Y y1, Y y2) { return count_and_prod(L, R, y1, y2).se; }
T prod_all(int L, int R) { return seg[log].prod(L, R); }
Y kth(int L, int R, int k) {
assert(0 <= k && k < R - L);
int p = 0;
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
if (k < r0 - l0) {
L = l0, R = r0;
} else {
k -= r0 - l0, L = l1, R = r1, p |= 1 << d;
}
}
return ItoY[p];
}
// y 以上最小 OR infty<Y>
Y next(int L, int R, Y y) {
int k = IDX(y);
int p = K;
auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void {
if (p <= a || L == R || b <= k) return;
if (d == 0) {
chmin(p, a);
return;
}
--d;
int c = (a + b) / 2;
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
dfs(dfs, d, l0, r0, a, c), dfs(dfs, d, l1, r1, c, b);
};
dfs(dfs, log, L, R, 0, 1 << log);
return (p == K ? infty<Y> : ItoY[p]);
}
// y 以下最大 OR -infty<T>
Y prev(int L, int R, Y y) {
int k = IDX(y + 1);
int p = -1;
auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void {
if (b - 1 <= p || L == R || k <= a) return;
if (d == 0) {
chmax(p, a);
return;
}
--d;
int c = (a + b) / 2;
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
dfs(dfs, d, l1, r1, c, b), dfs(dfs, d, l0, r0, a, c);
};
dfs(dfs, log, L, R, 0, 1 << log);
return (p == -1 ? -infty<Y> : ItoY[p]);
}
Y median(bool UPPER, int L, int R) {
assert(0 <= L && L < R && R <= n);
int k = (UPPER ? (R - L) / 2 : (R - L - 1) / 2);
return kth(L, R, k);
}
pair<Y, T> kth_value_and_prod(int L, int R, int k) {
assert(0 <= k && k <= R - L);
if (k == R - L) return {infty<Y>, seg[log].prod(L, R)};
int p = 0;
T t = Mono::unit();
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
if (k < r0 - l0) {
L = l0, R = r0;
} else {
t = Mono::op(t, seg[d].prod(l0, r0)), k -= r0 - l0, L = l1, R = r1, p |= 1 << d;
}
}
t = Mono::op(t, seg[0].prod(L, L + k));
return {ItoY[p], t};
}
T prod_index_range(int L, int R, int k1, int k2) {
static_assert(has_inverse<Mono>::value);
T t1 = kth_value_and_prod(L, R, k1).se;
T t2 = kth_value_and_prod(L, R, k2).se;
return Mono::op(Mono::inverse(t1), t2);
}
// [L,R) x [0,y) での check(cnt, prod) が true となる最大の (cnt,prod)
template <typename F>
pair<int, T> max_right(F check, int L, int R) {
int cnt = 0;
T t = Mono::unit();
assert(check(0, Mono::unit()));
if (check(R - L, seg[log].prod(L, R))) { return {R - L, seg[log].prod(L, R)}; }
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
int cnt1 = cnt + r0 - l0;
T t1 = Mono::op(t, seg[d].prod(l0, r0));
if (check(cnt1, t1)) {
cnt = cnt1, t = t1, L = l1, R = r1;
} else {
L = l0, R = r0;
}
}
return {cnt, t};
}
void set(int i, T t) {
assert(0 <= i && i < n);
int L = i, R = i + 1;
seg[log].set(L, t);
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
if (l0 < r0) L = l0, R = r0;
if (l0 == r0) L = l1, R = r1;
seg[d].set(L, t);
}
}
void multiply(int i, T t) {
assert(0 <= i && i < n);
int L = i, R = i + 1;
seg[log].multiply(L, t);
for (int d = log - 1; d >= 0; --d) {
int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0);
int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0;
if (l0 < r0) L = l0, R = r0;
if (l0 == r0) L = l1, R = r1;
seg[d].multiply(L, t);
}
}
void add(int i, T t) { multiply(i, t); }
};
#line 4 "main.cpp"
bool check(vc<int> A) {
vc<int> X(len(A));
FOR(i, len(A)) X[i] = (1 + i) * A[i];
bool ok = 1;
FOR(i, len(A) - 1) if (X[i] > X[i + 1]) ok = 0;
return ok;
}
bool mycheck(vc<int> A) {
FOR(i, len(A)) {
ll x = abs(i + 1 - A[i]);
if (x >= 2) return 0;
}
return 1;
}
void solve() {
LL(N);
VEC(int, A, N);
Wavelet_Matrix<int, false> WM(A);
vc<int> pos(N + 1, -1);
FOR(i, N) pos[A[i]] = i;
// i,i+1 の swap だけ回避できる
//
vi dp(N + 1, infty<ll>);
dp[0] = 0;
FOR(i, N) {
// i+1 を置く
// i+1 の左にある i+1 より大きいもの
{
int p = pos[i + 1];
ll cost = WM.count(0, p, i + 1, N + 1);
chmin(dp[i + 1], dp[i] + cost);
}
// i+2, i+1 を書く
if (i + 2 <= N) {
int p = pos[i + 2];
int q = pos[i + 1];
ll cost = WM.count(0, p, i + 2, N + 1);
cost += WM.count(0, q, i + 1, N + 1);
if (p < q) --cost;
chmin(dp[i + 2], dp[i] + cost);
}
}
print(dp[N]);
}
signed main() {
INT(T);
FOR(T) solve();
return 0;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3552kb
input:
4 3 3 1 2 4 4 3 2 1 5 2 1 5 4 3 1 1
output:
1 4 2 0
result:
ok 4 number(s): "1 4 2 0"
Test #2:
score: 0
Accepted
time: 87ms
memory: 3928kb
input:
100000 4 3 4 2 1 5 5 4 1 3 2 4 3 1 4 2 4 4 2 1 3 4 1 3 2 4 4 4 2 3 1 4 3 2 1 4 5 1 2 3 4 5 5 5 2 3 1 4 5 1 3 5 4 2 5 4 3 2 1 5 5 3 4 2 1 5 5 5 4 3 2 1 4 3 4 2 1 5 4 2 5 1 3 5 4 1 5 2 3 4 3 4 1 2 4 2 1 3 4 5 4 3 2 5 1 4 4 2 1 3 5 3 1 5 2 4 4 4 1 2 3 5 1 5 2 4 3 5 4 1 3 5 2 5 4 2 3 5 1 5 1 2 3 4 5 5 4...
output:
4 6 2 2 0 3 2 0 4 2 4 4 8 4 4 4 3 0 5 2 2 2 3 4 4 0 5 1 6 3 6 2 1 4 1 2 5 0 2 3 5 3 1 1 0 0 2 2 1 1 6 5 0 5 5 0 4 1 3 4 0 0 1 7 2 6 2 2 5 5 2 3 6 2 0 2 1 4 3 2 0 5 2 5 4 2 4 1 2 3 3 2 2 5 2 0 0 6 1 6 6 0 1 4 1 4 3 4 1 2 2 1 6 2 4 1 3 0 2 1 1 6 4 3 4 1 4 6 2 5 0 2 3 2 2 4 5 7 2 1 2 4 6 4 4 5 6 0 1 3 ...
result:
ok 100000 numbers
Test #3:
score: 0
Accepted
time: 86ms
memory: 4000kb
input:
62500 7 1 2 4 3 6 5 7 7 7 3 2 1 6 5 4 7 3 5 4 6 7 1 2 8 4 2 1 8 3 6 7 5 8 8 4 6 1 3 5 7 2 7 1 6 4 3 2 5 7 8 2 1 3 5 7 4 8 6 8 8 2 4 1 6 3 5 7 7 1 7 5 6 4 2 3 7 3 2 1 7 4 5 6 7 7 5 3 4 1 6 2 7 2 5 3 1 4 7 6 8 4 1 6 5 8 7 3 2 7 2 1 5 4 7 3 6 8 4 2 8 1 7 5 6 3 8 2 1 6 5 4 3 8 7 7 6 3 5 4 7 2 1 8 8 5 6 ...
output:
0 9 9 6 14 5 2 8 11 4 12 3 11 3 11 4 13 15 8 10 10 14 12 10 9 9 5 9 5 12 10 13 11 13 10 8 6 9 14 3 4 10 13 21 7 9 15 11 2 8 5 8 7 8 7 17 8 1 12 15 8 6 14 13 8 9 7 12 16 7 14 11 7 10 2 10 10 13 9 13 8 18 17 7 17 8 5 10 9 12 18 4 5 8 9 2 6 11 3 11 13 7 4 19 4 13 16 7 10 11 11 18 7 5 9 13 10 7 8 8 14 9...
result:
ok 62500 numbers
Test #4:
score: 0
Accepted
time: 96ms
memory: 3804kb
input:
50000 10 3 1 2 10 6 8 5 4 7 9 10 8 3 9 2 10 4 5 1 7 6 9 6 8 4 9 5 7 1 3 2 9 6 7 9 3 8 5 2 1 4 10 7 10 1 2 6 5 3 9 4 8 10 1 10 4 3 2 9 7 8 5 6 9 1 5 3 4 9 6 7 2 8 10 4 7 2 8 3 6 9 5 10 1 9 6 4 9 1 8 5 2 3 7 10 5 1 7 8 10 3 9 6 2 4 9 4 8 6 3 9 7 5 2 1 9 9 1 7 6 2 3 8 5 4 10 5 7 2 1 4 3 6 8 9 10 10 9 7...
output:
10 22 23 23 18 16 8 17 17 19 21 17 8 22 19 19 9 17 32 12 19 28 9 20 21 27 10 9 17 13 20 18 17 22 26 25 20 19 9 19 26 12 14 7 14 24 19 9 16 16 24 18 18 23 15 30 16 9 25 23 16 23 10 16 13 21 20 21 26 21 26 20 6 25 14 22 22 16 14 23 12 18 24 20 12 14 12 11 16 23 15 6 19 15 22 13 15 13 17 13 14 22 12 13...
result:
ok 50000 numbers
Test #5:
score: 0
Accepted
time: 193ms
memory: 4084kb
input:
5000 94 69 86 59 9 67 89 24 63 14 18 16 11 19 46 23 40 4 55 53 61 30 3 78 29 15 74 32 41 51 13 77 47 66 92 57 45 42 21 62 43 26 1 84 75 71 54 73 36 39 48 88 8 80 64 58 10 60 76 17 70 25 37 38 6 72 91 7 20 68 2 35 44 90 79 50 93 81 94 27 33 5 52 28 82 56 87 31 22 83 34 65 85 49 12 97 44 97 28 56 95 6...
output:
1959 2580 1998 2158 2176 2196 1976 2170 1856 2130 2056 1864 1802 2138 1898 1902 2465 2442 2180 2505 2281 2135 2441 2570 2376 2448 2296 2393 1926 2064 2341 2473 2031 2289 2063 2202 2113 2580 1787 2106 2000 2462 1784 1789 2260 1934 2117 2344 2428 2210 2157 2115 2343 2548 2493 2161 2079 2284 2310 2099 ...
result:
ok 5000 numbers
Test #6:
score: 0
Accepted
time: 273ms
memory: 4156kb
input:
500 959 670 618 579 212 780 557 380 412 672 951 777 921 684 768 99 952 140 122 139 919 623 17 911 18 880 790 625 505 307 747 801 754 783 146 757 263 285 228 719 640 199 193 105 234 847 842 348 159 823 577 466 954 850 851 643 802 819 317 826 55 617 690 604 229 570 254 759 575 498 240 397 736 864 415 ...
output:
228796 197927 207066 195802 234013 226390 227806 210077 222517 210911 235915 243652 239088 221085 239815 232724 229159 225962 246468 225698 247998 194708 235417 237194 205416 231487 206280 207787 216193 224206 242111 223196 209206 245074 211845 228906 246116 249415 241752 215609 206190 221459 222390...
result:
ok 500 numbers
Test #7:
score: 0
Accepted
time: 347ms
memory: 4096kb
input:
50 9597 2421 5801 7761 5556 4158 3033 4751 9284 3326 1858 2849 8472 5917 6077 4438 1948 5294 3028 4716 8042 2671 5305 5076 6924 5569 8173 6362 2160 3095 7385 1374 3167 8128 551 2363 1371 5799 3273 1366 5050 7680 198 5577 1236 2843 1127 5381 3029 6977 4823 702 8077 528 526 7027 4278 7947 6058 5005 90...
output:
23041936 20791070 20560711 20793660 23672434 20769348 23972180 22642287 22305166 22772174 23928405 22017477 24064164 23093739 24522067 20357382 24328268 21899881 20915966 21115138 20908959 21284093 22950774 20384100 21102605 23636118 21279692 21578304 22894986 24522463 22167550 23372016 22250714 204...
result:
ok 50 numbers
Test #8:
score: 0
Accepted
time: 440ms
memory: 7188kb
input:
5 92316 4486 51971 40435 31486 22840 51804 19355 35116 71427 50525 34461 46690 44101 15605 33166 25846 90319 50846 8819 36285 58519 23478 20717 14434 37378 37454 60063 17182 70164 59883 45000 84942 58799 11505 13371 52739 66680 30438 67677 41266 53940 34428 79533 55092 76616 54423 21642 25614 48002 ...
output:
2135607119 2495202510 2408080975 2151285466 2323263800
result:
ok 5 number(s): "2135607119 2495202510 2408080975 2151285466 2323263800"
Test #9:
score: 0
Accepted
time: 488ms
memory: 18648kb
input:
1 471631 424496 112701 456051 347801 218724 312785 85999 325031 220919 219326 327801 239646 431816 121964 216653 223784 147176 29672 466026 412872 269415 238525 365823 442104 346534 297299 298496 242174 296754 297691 105566 80641 204310 21696 170588 199258 59123 336907 57422 387873 209433 272911 261...
output:
55601147812
result:
ok 1 number(s): "55601147812"
Test #10:
score: 0
Accepted
time: 96ms
memory: 3900kb
input:
100000 5 1 4 2 3 5 5 5 1 3 4 2 5 3 2 4 1 5 5 1 4 5 3 2 5 5 2 3 4 1 5 5 4 2 1 3 5 5 1 2 4 3 5 4 5 3 1 2 5 2 4 5 1 3 5 1 2 4 3 5 5 1 5 2 3 4 5 5 2 3 1 4 5 3 1 2 4 5 5 1 3 2 4 5 5 4 3 2 1 5 5 1 4 3 2 5 5 2 5 4 1 3 5 5 4 3 2 1 5 4 1 5 3 2 5 3 1 2 5 4 5 2 4 5 1 3 5 2 1 3 4 5 5 5 2 3 4 1 5 5 4 2 3 1 5 2 1...
output:
1 4 3 4 5 6 4 7 3 0 2 4 1 0 4 2 4 8 5 1 3 0 5 7 0 5 4 0 2 4 1 1 5 0 0 5 0 5 3 3 0 4 6 4 4 1 3 4 1 1 2 2 0 0 4 5 2 2 5 5 8 0 2 1 5 2 5 8 3 4 6 3 6 5 5 4 6 7 4 0 1 3 3 4 4 4 2 4 3 5 2 6 2 6 2 5 4 1 2 1 3 5 2 4 4 3 1 4 0 3 6 2 3 2 2 6 5 4 3 5 4 4 2 7 5 2 5 4 2 3 3 5 4 5 2 6 5 0 4 1 2 3 5 2 5 1 4 1 6 4 ...
result:
ok 100000 numbers
Test #11:
score: 0
Accepted
time: 436ms
memory: 6360kb
input:
5 100000 56449 21738 74917 44834 36187 96576 37204 28451 3444 13029 66039 8955 51445 30706 27229 37159 66052 16691 70389 29935 44984 3648 75082 73600 76621 28345 5298 37940 49412 85260 92029 18185 84398 10233 79227 98312 96649 30680 65206 38879 75397 26951 11294 58085 37297 97167 59252 44104 4058 37...
output:
2501939630 2497324750 2494452786 2503094933 2490340697
result:
ok 5 number(s): "2501939630 2497324750 2494452786 2503094933 2490340697"
Test #12:
score: 0
Accepted
time: 536ms
memory: 19636kb
input:
1 500000 424496 175348 456051 347801 218724 312785 90971 325031 220919 219326 327801 239646 431816 92753 216653 223784 12744 57478 466026 412872 269415 238525 365823 442104 346534 297299 298496 242174 296754 297691 89046 132550 204310 59418 121482 199258 47499 336907 151917 387873 209433 272911 2611...
output:
62502680693
result:
ok 1 number(s): "62502680693"
Extra Test:
score: 0
Extra Test Passed