QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#639893 | #7860. Graph of Maximum Degree 3 | maspy | AC ✓ | 221ms | 53416kb | C++20 | 27.9kb | 2024-10-13 23:32:08 | 2024-10-13 23:32:08 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 836905998};
if (mod == 1045430273) return {20, 363};
if (mod == 1051721729) return {20, 330};
if (mod == 1053818881) return {20, 2789};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "/home/maspy/compro/library/ds/unionfind/unionfind.hpp"
struct UnionFind {
int n, n_comp;
vc<int> dat; // par or (-size)
UnionFind(int n = 0) { build(n); }
void build(int m) {
n = m, n_comp = m;
dat.assign(n, -1);
}
void reset() { build(n); }
int operator[](int x) {
while (dat[x] >= 0) {
int pp = dat[dat[x]];
if (pp < 0) { return dat[x]; }
x = dat[x] = pp;
}
return x;
}
ll size(int x) {
x = (*this)[x];
return -dat[x];
}
bool merge(int x, int y) {
x = (*this)[x], y = (*this)[y];
if (x == y) return false;
if (-dat[x] < -dat[y]) swap(x, y);
dat[x] += dat[y], dat[y] = x, n_comp--;
return true;
}
vc<int> get_all() {
vc<int> A(n);
FOR(i, n) A[i] = (*this)[i];
return A;
}
};
#line 2 "/home/maspy/compro/library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "/home/maspy/compro/library/enumerate/triangle.hpp"
template <typename Gr, typename F>
void enumerate_triangle(Gr& G, F query) {
int N = G.N;
Graph<int, 1> H(N);
set<pair<int, int>> done;
auto add = [&](int a, int b) -> void {
pair<int, int> p = {a, b};
if (done.count(p)) return;
done.insert(p);
H.add(a, b);
};
for (auto&& e: G.edges) {
// 注意:次数比較だけだと DAG にならず、サイクルができてしまう
if (mp(G.deg(e.frm), e.frm) < mp(G.deg(e.to), e.to))
add(e.frm, e.to);
else
add(e.to, e.frm);
}
H.build();
vc<bool> table(N);
FOR(a, N) {
for (auto&& e: H[a]) { table[e.to] = 1; }
for (auto&& e: H[a]) {
int b = e.to;
for (auto&& f: H[b]) {
int c = f.to;
if (table[c]) query(a, b, c);
}
}
for (auto&& e: H[a]) { table[e.to] = 0; }
}
}
#line 7 "main.cpp"
using mint = modint998;
mint solve_connected(Graph<int, 0> G) {
ll N = G.N;
mint ANS = 0;
if (N <= 4) {
FOR(s, 1, 1 << N) {
vc<int> V;
FOR(i, N) if (s >> i & 1) V.eb(i);
Graph<int, 0> H = G.rearrange(V);
int n = H.N;
UnionFind uf1(n), uf2(n);
for (auto& e: H.edges) {
if (e.cost == 0) uf1.merge(e.frm, e.to);
if (e.cost == 1) uf2.merge(e.frm, e.to);
}
if (uf1.n_comp == 1 && uf2.n_comp == 1) ANS += 1;
}
return ANS;
}
// 1 点
ANS += N;
// 2 点
map<pair<int, int>, int> MP;
for (auto& e: G.edges) {
int a = e.frm, b = e.to;
if (a > b) swap(a, b);
pair<int, int> p = {a, b};
MP[p] |= 1 << e.cost;
}
for (auto& [a, b]: MP)
if (b == 3) ANS += 1;
auto get = [&](int x, int y) -> int {
if (x > y) swap(x, y);
pair<int, int> p = {x, y};
return MP[p];
};
// 4 点以上はない
// 3 点
FOR(v, N) {
vc<int> nbd;
for (auto& e: G[v]) nbd.eb(e.to);
UNIQUE(nbd);
FOR(j, len(nbd)) FOR(i, j) {
int x = nbd[i], y = nbd[j];
int vx = get(v, x);
int vy = get(v, y);
int xy = get(x, y);
if (xy != 0 && v > min(x, y)) continue;
UnionFind uf1(3), uf2(3);
if (vx & 1) uf1.merge(0, 1);
if (vy & 1) uf1.merge(0, 2);
if (xy & 1) uf1.merge(1, 2);
if (vx & 2) uf2.merge(0, 1);
if (vy & 2) uf2.merge(0, 2);
if (xy & 2) uf2.merge(1, 2);
if (uf1.n_comp == 1 && uf2.n_comp == 1) ANS += 1;
}
}
return ANS;
}
void solve() {
LL(N, M);
Graph<int, 0> G(N);
G.read_graph(M, 1);
UnionFind uf(N);
for (auto& e: G.edges) uf.merge(e.frm, e.to);
vvc<int> vs(N);
FOR(v, N) vs[uf[v]].eb(v);
mint ANS = 0;
for (auto& V: vs) {
if (V.empty()) continue;
Graph<int, 0> H = G.rearrange(V);
ANS += solve_connected(H);
}
print(ANS);
}
signed main() { solve(); }
这程序好像有点Bug,我给组数据试试?
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 3556kb
input:
3 4 1 2 0 1 3 1 2 3 0 2 3 1
output:
5
result:
ok 1 number(s): "5"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3504kb
input:
4 6 1 2 0 2 3 0 3 4 0 1 4 1 2 4 1 1 3 1
output:
5
result:
ok 1 number(s): "5"
Test #3:
score: 0
Accepted
time: 1ms
memory: 3840kb
input:
20 28 9 6 1 9 6 0 3 8 0 8 4 0 3 8 1 3 4 1 2 13 0 13 1 0 19 1 0 2 1 1 2 19 1 13 19 1 14 15 1 14 15 0 7 12 0 12 17 0 20 17 0 7 17 1 7 20 1 12 20 1 16 18 0 18 10 0 5 10 0 16 10 1 16 5 1 18 5 1 4 6 0 9 11 0
output:
27
result:
ok 1 number(s): "27"
Test #4:
score: 0
Accepted
time: 1ms
memory: 3704kb
input:
100 150 93 23 0 23 81 0 76 81 0 93 81 1 93 76 1 23 76 1 100 65 0 65 56 0 19 56 0 100 56 1 100 19 1 65 19 1 2 98 0 2 98 1 26 63 0 63 90 0 26 63 1 26 90 1 6 11 0 11 67 0 6 11 1 6 67 1 37 89 0 89 64 0 25 64 0 37 64 1 37 25 1 89 25 1 84 10 0 10 29 0 75 29 0 84 29 1 84 75 1 10 75 1 7 70 1 7 70 0 28 92 0 ...
output:
141
result:
ok 1 number(s): "141"
Test #5:
score: 0
Accepted
time: 100ms
memory: 15660kb
input:
100000 133680 36843 86625 0 86625 63051 0 35524 63051 0 36843 63051 1 36843 35524 1 86625 35524 1 55797 82715 0 55797 82715 1 70147 35104 0 35104 91732 0 70147 35104 1 70147 91732 1 94917 70395 0 70395 68250 0 24100 68250 0 94917 68250 1 94917 24100 1 70395 24100 1 83033 18450 1 83033 18450 0 34462 ...
output:
144604
result:
ok 1 number(s): "144604"
Test #6:
score: 0
Accepted
time: 97ms
memory: 15348kb
input:
100000 133388 86620 74346 0 74346 19047 0 54911 19047 0 86620 19047 1 86620 54911 1 74346 54911 1 23715 93094 0 93094 91208 0 63189 91208 0 23715 91208 1 23715 63189 1 93094 63189 1 99337 41426 1 99337 41426 0 83742 45546 0 45546 73862 0 83742 45546 1 83742 73862 1 85256 2812 0 2812 59368 0 85918 59...
output:
144348
result:
ok 1 number(s): "144348"
Test #7:
score: 0
Accepted
time: 86ms
memory: 14916kb
input:
100000 150000 86541 24385 0 24385 75745 0 52353 75745 0 86541 75745 1 86541 52353 1 24385 52353 1 89075 78015 0 89075 78015 1 52519 74846 0 74846 12045 0 73265 12045 0 52519 12045 1 52519 73265 1 74846 73265 1 17884 63159 0 63159 47308 0 56073 47308 0 17884 47308 1 17884 56073 1 63159 56073 1 72134 ...
output:
144639
result:
ok 1 number(s): "144639"
Test #8:
score: 0
Accepted
time: 84ms
memory: 15496kb
input:
100000 150000 91951 68612 1 91951 68612 0 18361 92673 0 92673 52678 0 86520 52678 0 18361 52678 1 18361 86520 1 92673 86520 1 58779 2421 0 58779 2421 1 66622 6461 0 6461 96943 0 66622 6461 1 66622 96943 1 27201 480 1 27201 480 0 19082 3895 0 3895 17796 0 3117 17796 0 19082 17796 1 19082 3117 1 3895 ...
output:
144471
result:
ok 1 number(s): "144471"
Test #9:
score: 0
Accepted
time: 77ms
memory: 15620kb
input:
100000 150000 43756 3552 0 3552 90269 0 43756 3552 1 43756 90269 1 11104 36935 1 11104 36935 0 11648 5480 0 5480 45320 0 11648 5480 1 11648 45320 1 19216 85746 0 19216 85746 1 68825 11173 0 11173 43155 0 68825 11173 1 68825 43155 1 27349 75259 0 27349 75259 1 1704 24478 0 24478 5980 0 1704 24478 1 1...
output:
144217
result:
ok 1 number(s): "144217"
Test #10:
score: 0
Accepted
time: 87ms
memory: 16148kb
input:
99999 149998 51151 43399 0 51151 43399 1 45978 28343 0 28343 9008 0 85724 9008 0 45978 9008 1 45978 85724 1 28343 85724 1 79446 12915 0 12915 65925 0 28869 65925 0 79446 65925 1 79446 28869 1 12915 28869 1 82642 95556 0 95556 68817 0 68334 68817 0 82642 68817 1 82642 68334 1 95556 68334 1 61212 7638...
output:
144219
result:
ok 1 number(s): "144219"
Test #11:
score: 0
Accepted
time: 89ms
memory: 16192kb
input:
100000 149999 26736 28785 0 28785 37945 0 26736 28785 1 26736 37945 1 1240 74368 0 74368 45022 0 1240 74368 1 1240 45022 1 40673 1276 0 1276 56395 0 40673 1276 1 40673 56395 1 35181 63341 0 63341 35131 0 60120 35131 0 35181 35131 1 35181 60120 1 63341 60120 1 99363 36973 0 99363 36973 1 85717 77683 ...
output:
144380
result:
ok 1 number(s): "144380"
Test #12:
score: 0
Accepted
time: 83ms
memory: 15776kb
input:
100000 150000 63695 11044 0 11044 34978 0 56531 34978 0 63695 34978 1 63695 56531 1 11044 56531 1 72139 3715 0 3715 21024 0 96696 21024 0 72139 21024 1 72139 96696 1 3715 96696 1 54670 49014 0 54670 49014 1 7670 61055 0 61055 38409 0 7670 61055 1 7670 38409 1 83399 50676 0 50676 98893 0 60069 98893 ...
output:
144559
result:
ok 1 number(s): "144559"
Test #13:
score: 0
Accepted
time: 0ms
memory: 3872kb
input:
1 0
output:
1
result:
ok 1 number(s): "1"
Test #14:
score: 0
Accepted
time: 31ms
memory: 9784kb
input:
100000 0
output:
100000
result:
ok 1 number(s): "100000"
Test #15:
score: 0
Accepted
time: 120ms
memory: 15560kb
input:
100000 150000 95066 31960 0 31960 89758 0 10935 89758 0 95066 89758 1 95066 10935 1 31960 10935 1 48016 97823 0 97823 10871 0 23454 10871 0 48016 10871 1 48016 23454 1 97823 23454 1 73749 35525 0 35525 54232 0 42182 54232 0 73749 54232 1 73749 42182 1 35525 42182 1 75405 71341 0 71341 70032 0 3284 7...
output:
125000
result:
ok 1 number(s): "125000"
Test #16:
score: 0
Accepted
time: 0ms
memory: 3608kb
input:
4 6 1 2 0 1 2 1 1 3 0 2 4 1 3 4 0 3 4 1
output:
7
result:
ok 1 number(s): "7"
Test #17:
score: 0
Accepted
time: 42ms
memory: 13308kb
input:
99998 115940 40840 40839 0 28249 28248 0 24785 24783 0 36536 36534 1 71904 71901 1 62023 62021 0 34737 34740 1 18430 18434 0 27506 27505 1 4665 4664 1 36578 36577 1 99311 99314 1 43484 43482 0 26457 26459 1 99698 99695 0 10170 10172 1 98176 98179 1 47786 47785 1 56529 56531 1 86896 86895 1 78204 782...
output:
104913
result:
ok 1 number(s): "104913"
Test #18:
score: 0
Accepted
time: 36ms
memory: 13560kb
input:
99996 126880 57665 57662 0 73031 73028 0 78744 78741 1 36913 36914 0 88139 88138 1 89276 89278 0 66433 66436 1 91069 91070 0 63929 63930 0 89625 89627 0 56400 56399 1 69226 69223 1 88433 88432 1 43807 43810 0 37146 37145 0 43789 43792 1 68123 68124 1 17957 17954 1 82804 82805 0 59808 59804 1 73840 7...
output:
103597
result:
ok 1 number(s): "103597"
Test #19:
score: 0
Accepted
time: 44ms
memory: 13800kb
input:
99996 128661 40089 40092 1 43861 43862 1 75629 75628 0 19597 19598 0 15151 15154 0 95642 95641 0 80320 80317 1 57255 57254 0 35316 35314 0 44675 44676 1 38847 38850 0 50886 50883 1 7617 7615 0 52310 52311 0 71474 71478 1 60036 60035 1 12009 12012 1 72347 72348 1 80343 80345 0 58804 58806 1 11386 113...
output:
103531
result:
ok 1 number(s): "103531"
Test #20:
score: 0
Accepted
time: 33ms
memory: 12312kb
input:
85086 109171 68997 68998 1 24077 24074 0 81830 81829 0 6102 6100 0 16851 16850 0 44103 44101 0 35639 35637 0 46162 46161 1 70373 70372 1 2625 2624 0 50990 50989 0 52220 52219 1 3452 3453 0 21915 21916 0 19561 19564 1 2616 2615 1 59039 59040 1 72589 72590 1 40147 40148 0 83359 83360 1 4274 4275 1 736...
output:
96534
result:
ok 1 number(s): "96534"
Test #21:
score: 0
Accepted
time: 0ms
memory: 3756kb
input:
6 9 1 2 0 1 2 1 1 3 0 2 3 1 3 4 0 4 5 0 4 6 1 5 6 0 5 6 1
output:
10
result:
ok 1 number(s): "10"
Test #22:
score: 0
Accepted
time: 60ms
memory: 13152kb
input:
99998 115940 91307 35051 0 41850 19274 0 35587 78894 0 26695 91651 1 79179 482 1 26680 7283 0 51999 18100 1 97541 51977 0 31565 24059 1 48770 33590 1 79885 37272 1 16578 79254 1 23825 66223 0 51722 3968 1 30481 33229 0 86577 14556 1 63261 87530 1 17567 19857 1 48438 12110 1 68610 47458 1 88373 92315...
output:
104913
result:
ok 1 number(s): "104913"
Test #23:
score: 0
Accepted
time: 60ms
memory: 13684kb
input:
99996 126880 31926 32431 0 89751 77638 0 81312 90949 1 9164 78061 0 79960 37357 1 15044 53165 0 46804 58840 1 96661 32396 0 93436 39774 0 81650 97489 0 28285 25380 1 51642 75847 1 38686 99309 1 65477 46389 0 17012 64436 0 39535 20467 1 55466 34797 1 56580 52438 1 88447 46598 0 94878 81598 1 36359 71...
output:
103597
result:
ok 1 number(s): "103597"
Test #24:
score: 0
Accepted
time: 65ms
memory: 13768kb
input:
99996 128661 68631 18634 1 39185 98747 1 93688 3993 0 63831 49896 0 88466 11249 0 76247 13150 0 44166 89827 1 14706 98796 0 55609 32463 0 96040 11481 1 15800 28436 0 35644 61568 1 90823 7941 0 16497 32517 0 70520 2507 1 36824 37963 1 43899 12185 1 16439 35062 1 22697 5663 0 22986 20940 1 93694 62377...
output:
103531
result:
ok 1 number(s): "103531"
Test #25:
score: 0
Accepted
time: 48ms
memory: 12232kb
input:
85086 109171 54967 52668 1 64243 48915 0 78737 27043 0 69272 84477 0 11191 72192 0 56490 36228 0 52083 25417 0 58946 51014 1 57855 26735 1 83625 46445 0 72878 43133 0 77230 69968 1 7791 38318 0 14928 27213 0 5215 50302 1 75864 25928 1 11582 54867 1 53793 83950 1 70191 16278 0 69499 3665 1 45931 3663...
output:
96534
result:
ok 1 number(s): "96534"
Test #26:
score: 0
Accepted
time: 127ms
memory: 43320kb
input:
100000 150000 99933 55358 0 90416 2554 0 64997 12630 0 43499 35304 0 43164 38359 0 82333 47941 0 15092 76350 1 6401 82373 0 90467 57736 1 72290 58218 0 64844 79192 0 71055 40232 1 54743 65698 0 19204 38062 1 1490 24882 0 18848 1970 1 18829 25405 0 93396 54676 1 5241 60149 0 26699 39910 1 70898 82827...
output:
150000
result:
ok 1 number(s): "150000"
Test #27:
score: 0
Accepted
time: 119ms
memory: 38788kb
input:
100000 130000 15237 21286 1 60817 70086 1 62915 43855 1 23616 97040 1 54175 84281 1 22498 80217 1 58904 98534 0 88649 79847 0 46299 28927 1 90160 25868 1 59368 62900 1 93860 42461 1 2630 7547 1 54787 84637 1 6577 95373 1 62108 8000 1 14358 53523 1 85474 77621 1 68271 30113 1 26333 71197 1 78110 6040...
output:
130000
result:
ok 1 number(s): "130000"
Test #28:
score: 0
Accepted
time: 96ms
memory: 33440kb
input:
65534 98300 42421 54323 0 45888 19783 0 11682 46414 0 41620 27016 0 62650 43400 1 24787 17246 0 38437 37760 0 51438 27810 0 5194 36179 0 42153 44739 0 38012 47581 0 64561 26437 0 30761 19033 0 29631 18563 0 10689 6913 0 9438 48319 0 18569 39847 0 21454 526 0 59916 36345 0 2577 7295 0 22843 14281 0 4...
output:
81918
result:
ok 1 number(s): "81918"
Test #29:
score: 0
Accepted
time: 99ms
memory: 33600kb
input:
65534 98300 44683 25158 1 35394 27103 0 11618 63123 1 26627 62829 1 63124 18531 1 38195 27395 0 30743 3378 1 52310 58855 0 59905 3467 0 60227 44700 0 4466 13169 0 11289 35510 1 45259 23426 1 55348 47991 1 48231 26070 1 48525 16062 1 57931 14114 1 27522 12180 0 12757 20313 1 42080 63292 0 26595 51845...
output:
81918
result:
ok 1 number(s): "81918"
Test #30:
score: 0
Accepted
time: 101ms
memory: 33508kb
input:
65534 98300 13270 32154 0 55961 42311 1 28791 53182 1 59289 50275 1 8038 50111 1 26166 35350 1 11126 60403 1 39908 858 0 59214 30194 1 35679 36357 1 3720 42580 1 24721 42253 1 39094 30603 1 6697 51066 0 3419 63371 1 64362 40934 1 51257 14082 1 63044 59478 1 20968 167 1 30514 42744 1 41849 32144 1 16...
output:
81918
result:
ok 1 number(s): "81918"
Test #31:
score: 0
Accepted
time: 97ms
memory: 32860kb
input:
100000 98302 61966 27142 0 53993 68970 0 34298 58099 1 63874 66725 0 14229 34649 0 2188 81478 0 11724 47884 0 19350 71019 0 61938 51579 0 35352 84486 0 84906 82998 0 14543 39824 0 48746 90624 0 40191 40994 1 47705 23039 0 62784 79792 0 15245 88212 0 92737 95500 0 94811 43930 1 69757 74299 0 53560 49...
output:
116384
result:
ok 1 number(s): "116384"
Test #32:
score: 0
Accepted
time: 102ms
memory: 32664kb
input:
100000 98302 63951 83046 0 49356 1318 1 76776 11042 0 10897 51960 0 91740 36201 1 79579 70160 0 48233 7988 1 77589 73526 0 64917 41777 1 25721 24712 1 40519 61024 0 44493 67177 0 33335 24084 0 3709 42347 0 79762 84853 0 19590 61141 0 77360 58976 0 72886 44054 0 26544 51830 0 5866 45365 0 76622 26661...
output:
124574
result:
ok 1 number(s): "124574"
Test #33:
score: 0
Accepted
time: 104ms
memory: 32724kb
input:
100000 98302 88683 65853 1 85733 28420 1 76008 55360 1 49391 24933 1 87657 14404 1 90800 58622 1 75122 69522 1 22879 73168 1 9291 55797 0 50874 91259 1 86132 9922 1 39521 5711 1 75332 50647 1 14679 89034 1 15252 65542 1 26783 18217 1 11499 26206 1 10487 12140 1 69139 5819 1 62356 90026 1 82272 78670...
output:
116384
result:
ok 1 number(s): "116384"
Test #34:
score: 0
Accepted
time: 208ms
memory: 51352kb
input:
96000 144000 69465 78015 0 70940 79248 0 21267 22945 0 42324 69262 0 92079 61298 0 14312 89231 0 76879 64390 0 9515 87921 0 72921 56907 0 77360 7365 0 5845 31109 0 50706 19916 0 29274 5084 0 27393 91084 0 89690 81434 0 81818 17371 0 59817 87334 0 40802 63933 0 34255 67445 0 84919 73480 0 6355 64057 ...
output:
96000
result:
ok 1 number(s): "96000"
Test #35:
score: 0
Accepted
time: 219ms
memory: 51508kb
input:
98000 147000 64116 52839 0 58466 64469 1 68501 33965 1 35430 29683 1 18936 7790 1 11024 87600 0 87090 27191 1 3526 40531 1 8967 64385 0 74728 9321 1 14888 6420 0 27780 41446 0 56978 5452 0 13425 79329 1 87611 32959 0 3067 17931 0 22989 82933 1 24468 5242 0 47124 59392 1 79914 93411 1 87124 90315 1 7...
output:
98000
result:
ok 1 number(s): "98000"
Test #36:
score: 0
Accepted
time: 221ms
memory: 52244kb
input:
100000 150000 56602 2395 1 82739 49727 1 27928 35973 1 98253 71027 1 35442 98024 1 18060 72579 1 86277 73382 1 47014 51013 1 65310 17335 1 54892 30774 1 77960 822 1 47490 41910 1 62706 85890 1 71056 13146 1 34092 33865 1 58748 46635 1 21972 37259 1 51199 31504 1 43608 87941 1 90790 42330 1 50214 189...
output:
100000
result:
ok 1 number(s): "100000"
Test #37:
score: 0
Accepted
time: 210ms
memory: 50204kb
input:
95000 142500 89254 6524 0 87399 92742 0 50117 8349 0 76363 58825 0 52190 83971 0 6795 20007 0 79651 49566 0 10970 79953 0 11980 53524 0 7467 38087 0 32096 9083 0 17827 38927 0 79988 23057 0 17001 32129 0 56030 42010 0 77569 59418 0 70155 41087 0 27648 77230 0 21167 61067 0 56132 86455 0 80647 19119 ...
output:
95000
result:
ok 1 number(s): "95000"
Test #38:
score: 0
Accepted
time: 215ms
memory: 52752kb
input:
97000 145500 94330 53090 1 74854 79436 0 31002 6670 1 20802 11748 0 23526 78897 0 2600 84830 0 19572 95411 1 87783 55713 0 20454 22602 1 30751 12787 0 67094 60165 0 9477 19434 1 91443 58645 0 49984 1623 0 44709 41427 0 1043 24331 1 79185 42581 0 25102 27915 0 67200 90145 1 25416 40396 1 35961 3087 0...
output:
97000
result:
ok 1 number(s): "97000"
Test #39:
score: 0
Accepted
time: 218ms
memory: 53416kb
input:
99000 148500 63457 58943 1 22274 81761 1 72574 63452 1 67950 79564 1 42979 37610 1 30695 97830 1 33234 77173 1 84106 7156 1 40075 39589 1 41001 66646 1 68993 48814 1 19560 49612 1 80409 70249 1 5995 75043 1 78335 53789 1 87696 94760 1 32934 22366 1 64938 22623 1 49846 19013 1 96854 6968 1 6539 63262...
output:
99000
result:
ok 1 number(s): "99000"
Extra Test:
score: 0
Extra Test Passed