QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#639220 | #6599. The Grand Tournament | asitshouldbe | AC ✓ | 267ms | 4460kb | C++17 | 30.2kb | 2024-10-13 18:20:26 | 2024-10-13 18:20:31 |
Judging History
answer
#include <bits/stdc++.h>
#define pi acos(-1.0)
//#define double long double
using namespace std;
const double eps = 1e-8,inf=1e12;
const int N=1e3+10;
int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0) return -1;
else return 1;
}
int dsgn(double x,double y)
{
if(fabs(x-y)<eps) return 0;
if(x<y) return -1;
else return 1;
}
inline double sqr(double x){return x*x;}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y){x = _x;y = _y;}
void input(){cin>>x>>y;}
bool operator == (Point b)const{
return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;
}
bool operator < (Point b)const{
return sgn(x-b.x)== 0?sgn(y-b.y)<0:x<b.x;
}
Point operator -(const Point &b)const{return Point(x-b.x,y-b.y);}
Point operator +(const Point &b)const{return Point(x+b.x,y+b.y);}
//叉积
double operator ^(const Point &b)const{return x*b.y - y*b.x;}
//点积
double operator *(const Point &b)const{return x*b.x + y*b.y;}
//数乘
Point operator *(const double &k)const{
return Point(x*k,y*k);
}
Point operator /(const double &k)const{
return Point(x/k,y/k);
}
//返回长度
double len(){return hypot(x,y);}
//返回长度的平方
double len2(){return x*x + y*y;}
//返回两点的距离
double distance(Point p){return hypot(x-p.x,y-p.y);}
int distance2(Point p){return (x-p.x)*(x-p.x)+(y-p.y)*(y-p.y);}
//`计算pa 和 pb 的夹角 就是求这个点看a,b 所成的夹角`
//`测试 LightOJ1203`
double rad(Point a,Point b){
Point p = *this;
return fabs(atan2( fabs((a-p)^(b-p)),(a-p)*(b-p) ));
}
//`绕着p点逆时针旋转angle`
Point rotate(Point p,double angle)
{
Point v = (*this) - p;
double c = cos(angle), s = sin(angle);
return Point(p.x + v.x*c - v.y*s,p.y + v.x*s + v.y*c);
}
//`化为长度为r的向量`
Point trunc(double r){
double l = len();
if(!sgn(l))return *this;
r /= l;
return Point(x*r,y*r);
}
//`逆时针旋转90度`
Point rotleft(){return Point(-y,x);}
//`顺时针旋转90度`;
Point rotright(){return Point(y,-x);}
};
//`AB X AC`
double cross(Point A,Point B,Point C){return (B-A)^(C-A);}
//`AB*AC`
double dot(Point A,Point B,Point C){return (B-A)*(C-A);}
struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){s = _s;e = _e;}
bool operator ==(Line v){
return (s == v.s)&&(e == v.e);
}
//`根据一个点和倾斜角angle确定直线,0<=angle<pi`
Line(Point p,double angle){
s = p;
if(sgn(angle-pi/2) == 0){e = (s + Point(0,1));}
else{e = (s + Point(1,tan(angle)));}
}
//ax+by+c=0
Line(double a,double b,double c){
if(sgn(a) == 0){
s = Point(0,-c/b);
e = Point(1,-c/b);
}
else if(sgn(b) == 0){
s = Point(-c/a,0);
e = Point(-c/a,1);
}
else{
s = Point(0,-c/b);
e = Point(1,(-c-a)/b);
}
}
void input(){s.input();e.input();}
void adjust(){if(e < s)swap(s,e);}
//求线段长度
double length(){return s.distance(e);}
//`返回直线倾斜角 0<=angle<pi`
double angle(){
double k = atan2(e.y-s.y,e.x-s.x);
//if(sgn(k) < 0)k += pi;
//if(sgn(k-pi) == 0)k -= pi;
return k;
}
bool operator <(Line& v){
return sgn(angle()-v.angle())==0?((e-s)^(v.e-s))<0:angle()<v.angle();
}
//`点和直线关系`
int relation(Point p){
int c = sgn((p-s)^(e-s));
if(c < 0)return 1; //`1 在左侧`
else if(c > 0)return 2; //`2 在右侧`
else return 3; //`3 在直线上`
}
//`点在线段上的判断`
bool pointonseg(Point p){
return sgn((p-s)^(e-s)) == 0 && sgn((p-s)*(p-e)) <= 0;
}
//`两向量平行(对应直线平行或重合)`
bool parallel(Line v){
return sgn((e-s)^(v.e-v.s)) == 0;
}
//`两向量正交`
bool orthogonal(Line v){
return sgn((e-s)*(v.e-v.s)) == 0;
}
//`两直线关系`
int linecrossline(Line v){
if((*this).parallel(v)) //`0 平行`
return v.relation(s)==3; //`1 重合`
if((*this).orthogonal(v)) return 3; //`3 正交`
else return 2; //`2 相交`
}
//`两线段相交判断`
int segcrossseg(Line v){
int d1 = sgn((e-s)^(v.s-s));
int d2 = sgn((e-s)^(v.e-s));
int d3 = sgn((v.e-v.s)^(s-v.s));
int d4 = sgn((v.e-v.s)^(e-v.s));
if( (d1^d2)==-2 && (d3^d4)==-2 )return 2; //`2 规范相交`
return (d1==0 && sgn((v.s-s)*(v.s-e))<=0) || //`1 非规范相交`
(d2==0 && sgn((v.e-s)*(v.e-e))<=0) || //`0 不相交`
(d3==0 && sgn((s-v.s)*(s-v.e))<=0) ||
(d4==0 && sgn((e-v.s)*(e-v.e))<=0);
}
int check(Line v)
{
int d1 = sgn((e-s)^(v.s-s));
int d2 = sgn((e-s)^(v.e-s));
int d3 = sgn((v.e-v.s)^(s-v.s));
int d4 = sgn((v.e-v.s)^(e-v.s));
if((d1^d2)==-2 && (d3^d4)==-2)return 0;
bool f=(d1==0&&sgn((v.s-s)*(v.s-e))<=0)||(d2==0 && sgn((v.e-s)*(v.e-e))<=0)||(d3==0 && sgn((s-v.s)*(s-v.e))<=0) ||(d4==0 && sgn((e-v.s)*(e-v.e))<=0);
if(!f) return 0;
if(e==v.e&&s==v.s) return 1; //完全重合
if(e==v.e||e==v.s||s==v.e||s==v.s)
{
if((*this).parallel(v))
{
if(e==v.e&&((*this).pointonseg(v.s)||v.pointonseg(s))) return 3;//端点重合部分重合
if(e==v.s&&((*this).pointonseg(v.e)||v.pointonseg(s))) return 3;
if(s==v.e&&((*this).pointonseg(v.s)||v.pointonseg(e))) return 3;
if(s==v.s&&((*this).pointonseg(v.e)||v.pointonseg(e))) return 3;
else return 0;
}
return 2; //端点重合
}
int a1=(*this).pointonseg(v.s);
int a2=(*this).pointonseg(v.e);
int a3=v.pointonseg(e);
int a4=v.pointonseg(s);
// if((a1||a2)&&(a3||a4)) return 4;
// if(a1&&a2) return 4;
// if(a3&&a4) return 4;
// return 0;
if(a1+a2+a3+a4==1) return 0;
return 4;
}
//`直线和线段相交判断`
int linecrossseg(Line v){
int d1 = sgn((e-s)^(v.s-s));
int d2 = sgn((e-s)^(v.e-s));
if((d1^d2)==-2) return 2; //`2 规范相交`
return (d1==0||d2==0); //`1 非规范相交 0 不相交`
}
//`求两直线的交点 要保证两直线不平行或重合`
Point crosspoint(Line l)
{
Point u=e-s,v=l.e-l.s;
double t=(s-l.s)^v/(v^u);
return s+u*t;
}
//`返回点p在直线上的投影`
Point lineprog(Point p){
Point u=e-s,v=p-s;
return s + u*(u*v/u.len2());
}
//点到直线的距离
double dispointtoline(Point p){
return fabs((p-s)^(e-s))/length();
}
//点到线段的距离
double dispointtoseg(Point p){
if(sgn((p-s)*(e-s))<0 || sgn((p-e)*(s-e))<0)
return min(p.distance(s),p.distance(e));
return dispointtoline(p);
}
//`返回线段到线段的距离 前提是两线段不相交,相交距离就是0了`
double dissegtoseg(Line v){
return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v.dispointtoseg(s),v.dispointtoseg(e)));
}
//`返回点p关于直线的对称点`
Point symmetrypoint(Point p){
Point pro = lineprog(p);
return pro*2-p;
}
};
struct circle{
Point p;//圆心
double r;//半径
circle(){}
circle(Point _p,double _r){p = _p;r = _r;}
circle(double x,double y,double _r){p = Point(x,y);r = _r;}
//`三角形的外接圆`
//`需要Point的+ / rotate() 以及Line的crosspoint()`
//`利用两条边的中垂线得到圆心`
//`测试:UVA12304`
circle(Point a,Point b,Point c){
Line u = Line((a+b)/2,((a+b)/2)+((b-a).rotleft()));
Line v = Line((b+c)/2,((b+c)/2)+((c-b).rotleft()));
p = u.crosspoint(v);
r = p.distance(a);
}
//`三角形的内切圆`
//`参数bool t没有作用,只是为了和上面外接圆函数区别`
//`测试:UVA12304`
circle(Point a,Point b,Point c,bool t){
Line u,v;
double m = atan2(b.y-a.y,b.x-a.x), n = atan2(c.y-a.y,c.x-a.x);
u.s = a;
u.e = u.s + Point(cos((n+m)/2),sin((n+m)/2));
v.s = b;
m = atan2(a.y-b.y,a.x-b.x) , n = atan2(c.y-b.y,c.x-b.x);
v.e = v.s + Point(cos((n+m)/2),sin((n+m)/2));
p = u.crosspoint(v);
r = Line(a,b).dispointtoseg(p);
}
//输入
void input(){p.input();cin>>r;}
bool operator == (circle v){
return (p==v.p) && sgn(r-v.r)==0;
}
bool operator < (circle v)const{
return ((p<v.p)||((p==v.p)&&sgn(r-v.r)<0));
}
//面积
double area(){return pi*r*r;}
//周长
double circumference(){return 2*pi*r;}
//`点和圆的关系`
int relation(Point b){
double dst = b.distance(p);
if(sgn(dst-r) < 0)return 2; //`2 圆内`
else if(sgn(dst-r)==0)return 1; //`1 圆上`
return 0; //`0 圆外`
}
//`线段和圆的关系 比较的是圆心到线段的距离和半径的关系`
int relationseg(Line v){
double dst = v.dispointtoseg(p);
if(sgn(dst-r) < 0)return 2; //`2 相交`
else if(sgn(dst-r) == 0)return 1; //`1 相切`
return 0; //`0 相离`
}
//`直线和圆的关系 比较的是圆心到直线的距离和半径的关系`
int relationline(Line v){
double dst = v.dispointtoline(p);
if(sgn(dst-r) < 0)return 2; //`2 相交`
else if(sgn(dst-r) == 0)return 1; //`1 相切`
return 0; //`0 相离`
}
//`两圆的关系 需要Point的distance`
//`测试:UVA12304`
int relationcircle(circle v){
double d = p.distance(v.p);
if(sgn(d-r-v.r) > 0)return 5; //`5 相离`
if(sgn(d-r-v.r) == 0)return 4; //`4 外切`
double l = fabs(r-v.r);
if(sgn(d-r-v.r)<0 && sgn(d-l)>0)return 3; //`3 相交`
if(sgn(d-l)==0)return 2; //`2 内切`
if(sgn(d-l)<0)return 1; //`1 内含`
}
//`求两个圆的交点 需要relationcircle`
//`测试:UVA12304`
int pointcrosscircle(circle v,Point &p1,Point &p2){
int rel = relationcircle(v);
if(rel == 1 || rel == 5)return 0; //`0 无交点`
double d = p.distance(v.p);
double l = (d*d+r*r-v.r*v.r)/(2*d);
double h = sqrt(r*r-l*l);
Point tmp = p + (v.p-p).trunc(l);
p1 = tmp + ((v.p-p).rotleft().trunc(h));
p2 = tmp + ((v.p-p).rotright().trunc(h));
if(rel == 2 || rel == 4) return 1; //`1 一个交点`
return 2; //`2 两个交点`
}
//`求直线和圆的交点,返回交点个数`
int pointcrossline(Line v,Point &p1,Point &p2){
if(!(*this).relationline(v))return 0;
Point a = v.lineprog(p);
double d = v.dispointtoline(p);
d = sqrt(r*r-d*d);
if(sgn(d) == 0){
p1 = a;
p2 = a;
return 1;
}
p1 = a + (v.e-v.s).trunc(d);
p2 = a - (v.e-v.s).trunc(d);
return 2;
}
//`得到过a,b两点,半径为r1的两个圆`
int gercircle(Point a,Point b,double r1,circle &c1,circle &c2){
circle x(a,r1),y(b,r1);
int t = x.pointcrosscircle(y,c1.p,c2.p);
if(!t)return 0;
c1.r = c2.r = r;
return t; //`返回圆的个数`
}
//`得到与直线u相切,过点q,半径为r1的圆`
//`测试:UVA12304`
int getcircle(Line u,Point q,double r1,circle &c1,circle &c2){
double dis = u.dispointtoline(q);
if(sgn(dis-r1*2)>0)return 0;
if(sgn(dis) == 0){
c1.p = q + ((u.e-u.s).rotleft().trunc(r1));
c2.p = q + ((u.e-u.s).rotright().trunc(r1));
c1.r = c2.r = r1;
return 2;
}
Line u1 = Line((u.s + (u.e-u.s).rotleft().trunc(r1)),(u.e + (u.e-u.s).rotleft().trunc(r1)));
Line u2 = Line((u.s + (u.e-u.s).rotright().trunc(r1)),(u.e + (u.e-u.s).rotright().trunc(r1)));
circle cc = circle(q,r1);
Point p1,p2;
if(!cc.pointcrossline(u1,p1,p2))cc.pointcrossline(u2,p1,p2);
c1 = circle(p1,r1);
if(p1 == p2){
c2 = c1;
return 1;
}
c2 = circle(p2,r1);
return 2;
}
//`同时与直线u,v相切,半径为r1的圆`
//`测试:UVA12304`
int getcircle(Line u,Line v,double r1,circle &c1,circle &c2,circle &c3,circle &c4){
if(u.parallel(v))return 0;//两直线平行
Line u1 = Line(u.s + (u.e-u.s).rotleft().trunc(r1),u.e + (u.e-u.s).rotleft().trunc(r1));
Line u2 = Line(u.s + (u.e-u.s).rotright().trunc(r1),u.e + (u.e-u.s).rotright().trunc(r1));
Line v1 = Line(v.s + (v.e-v.s).rotleft().trunc(r1),v.e + (v.e-v.s).rotleft().trunc(r1));
Line v2 = Line(v.s + (v.e-v.s).rotright().trunc(r1),v.e + (v.e-v.s).rotright().trunc(r1));
c1.r = c2.r = c3.r = c4.r = r1;
c1.p = u1.crosspoint(v1);
c2.p = u1.crosspoint(v2);
c3.p = u2.crosspoint(v1);
c4.p = u2.crosspoint(v2);
return 4;
}
//`同时与不相交圆cx,cy相切,半径为r1的圆`
//`测试:UVA12304`
int getcircle(circle cx,circle cy,double r1,circle &c1,circle &c2){
circle x(cx.p,r1+cx.r),y(cy.p,r1+cy.r);
int t = x.pointcrosscircle(y,c1.p,c2.p);
if(!t)return 0;
c1.r = c2.r = r1;
return t; //`返回圆的个数`
}
//`过一点作圆的切线(先判断点和圆的关系)`
//`测试:UVA12304`
int tangentline(Point q,Line &u,Line &v){
int x = relation(q);
if(x == 2)return 0;
if(x == 1){
u = Line(q,q + (q-p).rotleft());
v = u;
return 1;
}
double d = p.distance(q);
double l = r*r/d;
double h = sqrt(r*r-l*l);
u = Line(q,p + ((q-p).trunc(l) + (q-p).rotleft().trunc(h)));
v = Line(q,p + ((q-p).trunc(l) + (q-p).rotright().trunc(h)));
return 2; //`返回切线的个数`
}
int tangentpoint(Point q,Point &u,Point &v){
int x = relation(q);
if(x == 2)return 0;
if(x == 1){
u = q;v = u;
return 1;
}
double d = p.distance(q);
double l = r*r/d;
double h = sqrt(r*r-l*l);
u = p + ((q-p).trunc(l) + (q-p).rotleft().trunc(h));
v = p + ((q-p).trunc(l) + (q-p).rotright().trunc(h));
return 2; //`返回切点的个数`
}
//`求两圆相交的面积`
double areacircle(circle v){
int rel = relationcircle(v);
if(rel >= 4)return 0.0;
if(rel <= 2)return min(area(),v.area());
double d = p.distance(v.p);
double hf = (r+v.r+d)/2.0;
double ss = 2*sqrt(hf*(hf-r)*(hf-v.r)*(hf-d));
double a1 = acos((r*r+d*d-v.r*v.r)/(2.0*r*d));
a1 = a1*r*r;
double a2 = acos((v.r*v.r+d*d-r*r)/(2.0*v.r*d));
a2 = a2*v.r*v.r;
return a1+a2-ss;
}
//`求圆和三角形pab的相交面积`
//`测试:POJ3675 HDU3982 HDU2892`
double areatriangle(Point a,Point b){
if(sgn((p-a)^(p-b)) == 0)return 0.0;
Point q[5];
int len = 0;
q[len++] = a;
Line l(a,b);
Point p1,p2;
if(pointcrossline(l,q[1],q[2])==2){
if(sgn((a-q[1])*(b-q[1]))<0)q[len++] = q[1];
if(sgn((a-q[2])*(b-q[2]))<0)q[len++] = q[2];
}
q[len++] = b;
if(len == 4 && sgn((q[0]-q[1])*(q[2]-q[1]))>0)swap(q[1],q[2]);
double res = 0;
for(int i = 0;i < len-1;i++){
if(relation(q[i])==0||relation(q[i+1])==0){
double arg = p.rad(q[i],q[i+1]);
res += r*r*arg/2.0;
}
else res += fabs((q[i]-p)^(q[i+1]-p))/2.0;
}
return res;
}
//`两圆公切线`
Point getpoint(double rad){return Point(p.x+r*cos(rad),p.y+r*sin(rad));}
int conmontangent(circle v,vector<Point> &p1,vector<Point> &p2)
{
bool flag=0;
if(r<v.r) swap(*this,v),flag=1;
double d=p.distance(v.p),rd=r-v.r,rs=r+v.r;
if(sgn(d-rd)<0) return 0;
if(sgn(d)==0) return -1;
double rad=Line(p,v.p).angle();
if(sgn(d-rd)==0)
{
p1.push_back(getpoint(rad)),p2.push_back(getpoint(rad));
return 1; //`一条外公切线`
}
double rad1=acos(rd/d);
p1.push_back(getpoint(rad+rad1)),p2.push_back(v.getpoint(rad+rad1));
p1.push_back(getpoint(rad-rad1)),p2.push_back(v.getpoint(rad-rad1));
if(sgn(d-rs)==0)
{
p1.push_back(getpoint(rad)),p2.push_back(getpoint(rad));
if(flag) swap(p1,p2);
return 3; //`两条外公切线 一条内公切线`
}
else if(sgn(d-rs)>0)
{
double rad2=acos(rs/d);
p1.push_back(getpoint(rad+rad2)),p2.push_back(v.getpoint(rad+rad2-pi));
p1.push_back(getpoint(rad-rad2)),p2.push_back(v.getpoint(rad-rad2+pi));
if(flag) swap(p1,p2);
return 4; //`两条外公切线 两条内公切线`
}
else
{
if(flag) swap(p1,p2);
return 2; //`两条外公切线`
}
}
};
struct polygon{
int n;
Point p[N];
Line l[N];
void input(int _n){
n = _n;
for(int i = 0;i < n;i++)
p[i].input();
}
void add(Point q){p[n++] = q;}
void getline(){
for(int i = 0;i < n;i++){
l[i] = Line(p[i],p[(i+1)%n]);
}
}
struct cmp{
Point p;
cmp(const Point &p0){p = p0;}
bool operator()(const Point &aa,const Point &bb){
Point a = aa, b = bb;
int d = sgn((a-p)^(b-p));
if(d == 0){
return sgn(a.distance(p)-b.distance(p)) < 0;
}
return d > 0;
}
};
//`进行极角排序 mi为极点`
//`需要重载号好Point的 < 操作符(min函数要用) `
void norm(Point mi){
//Point mi = p[0];
//for(int i = 1;i < n;i++)mi = min(mi,p[i]);
sort(p,p+n,cmp(mi));
}
//`得到凸包`
//`得到的凸包里面的点编号是0-n-1的`
//`两种凸包的方法`
//`注意如果有影响,要特判下所有点共点,或者共线的特殊情况`
//`测试 LightOJ1203 LightOJ1239`
void andrew(polygon &convex){
sort(p,p+n);
int &top = convex.n;
top = 0;
for(int i = 0;i < n;i++){
while(top>=2&&sgn(cross(convex.p[top-2],convex.p[top-1],p[i]))<=0) top--;
convex.p[top++] = p[i];
}
int temp = top;
for(int i = n-2;i >= 0;i--){
while(top>temp&&sgn(cross(convex.p[top-2],convex.p[top-1],p[i]))<=0) top--;
convex.p[top++] = p[i];
}
top--;
}
//`判断是不是凸的`
bool isconvex(){
bool s[5];
memset(s,false,sizeof(s));
for(int i = 0;i < n;i++){
int j = (i+1)%n,k = (j+1)%n;
s[sgn((p[j]-p[i])^(p[k]-p[i]))+1] = true;
if(s[0] && s[2])return false;
}
return true;
}
//`判断点和任意多边形的关系`
int relationpoint(Point q){
for(int i = 0;i < n;i++){
if(p[i] == q)return 3; //` 3 点上`
}
getline();
for(int i = 0;i < n;i++){
if(l[i].pointonseg(q))return 2; //` 2 边上`
}
int cnt = 0;
for(int i = 0;i < n;i++){
int j = (i+1)%n;
int k = sgn((q-p[j])^(p[i]-p[j]));
int u = sgn(p[i].y-q.y);
int v = sgn(p[j].y-q.y);
if(k > 0 && u < 0 && v >= 0)cnt++;
if(k < 0 && v < 0 && u >= 0)cnt--;
} //` 1 内部`
return cnt != 0; //` 0 外部`
}
//`直线u切割凸多边形左侧 注意直线方向`
//`测试:HDU3982`
void convexcut(Line u,polygon &po){
int &top = po.n;//注意引用
top = 0;
for(int i = 0;i < n;i++){
int d1 = sgn((u.e-u.s)^(p[i]-u.s));
int d2 = sgn((u.e-u.s)^(p[(i+1)%n]-u.s));
if(d1 >= 0)po.p[top++] = p[i];
if(d1*d2 < 0)po.p[top++] = u.crosspoint(Line(p[i],p[(i+1)%n]));
}
}
//`得到周长`
//`测试 LightOJ1239`
double getcircumference(){
double sum = 0;
for(int i = 0;i < n;i++) sum += p[i].distance(p[(i+1)%n]);
return sum;
}
//`得到面积`
double getarea(){
double sum = 0;
for(int i = 0;i < n;i++) sum += (p[i]^p[(i+1)%n]);
return fabs(sum)/2;
}
//`得到方向`
bool getdir(){
double sum = 0;
for(int i = 0;i < n;i++)
sum += (p[i]^p[(i+1)%n]);
if(sgn(sum) > 0)return 1; //` 1 逆时针`
else return 0; //` 0 顺时针`
}
//`得到重心`
Point getbarycentre(){
Point ret(0,0);
double area = 0;
for(int i = 1;i < n-1;i++){
double tmp = (p[i]-p[0])^(p[i+1]-p[0]);
if(sgn(tmp) == 0)continue;
area += tmp;
ret.x += (p[0].x+p[i].x+p[i+1].x)/3*tmp;
ret.y += (p[0].y+p[i].y+p[i+1].y)/3*tmp;
}
if(sgn(area)) ret = ret/area;
return ret;
}
//`多边形和圆交的面积`
//`测试:POJ3675 HDU3982 HDU2892`
double areacircle(circle c){
double ans = 0;
for(int i = 0;i < n;i++){
int j = (i+1)%n;
if(sgn( (p[j]-c.p)^(p[i]-c.p) ) >= 0)
ans += c.areatriangle(p[i],p[j]);
else ans -= c.areatriangle(p[i],p[j]);
}
return fabs(ans);
}
//`多边形和圆关系`
int relationcircle(circle c){
getline();
int x = 2; //` 2 圆完全在多边形内`
if(relationpoint(c.p) != 1)return 0; //` 0 圆心不在内部`
for(int i = 0;i < n;i++){
if(c.relationseg(l[i])==2)return 0; //` 0 其它`
if(c.relationseg(l[i])==1)x = 1; //` 1 圆在多边形里面,碰到了多边形边界`
}
return x;
}
//`旋转卡壳求凸包直径(最远点对)`
double rorating_calipers1()
{
double res=0;
for(int i=0,j=1;i<n;i++)
{
while(dsgn(cross(p[i],p[i+1],p[j]),cross(p[i],p[i+1],p[j+1]))<0) j=(j+1)%n;
res=max(res,max(p[i].distance(p[j]),p[i+1].distance(p[j])));
}
return res;
}
//`旋转卡壳求最小矩形覆盖`
double rorating_calipers2(polygon &pt)
{
double res=1e20;
for(int i=0,a=1,b=1,c;i<n;i++)
{
while(dsgn(cross(p[i],p[i+1],p[a]),cross(p[i],p[i+1],p[a+1]))<0) a=(a+1)%n;
while(dsgn(dot(p[i],p[i+1],p[b]),dot(p[i],p[i+1],p[b+1]))<0) b=(b+1)%n;
if(!i) c=a;
while(dsgn(dot(p[i+1],p[i],p[c]),dot(p[i+1],p[i],p[c+1]))<0) c=(c+1)%n;
double d=p[i].distance(p[i+1]);
double H=cross(p[i],p[i+1],p[a])/d;
double R=dot(p[i],p[i+1],p[b])/d;
double L=dot(p[i+1],p[i],p[c])/d;
if(dsgn(res,(L+R-d)*H)>0)
{
res=(L+R-d)*H;
pt.p[0]=p[i+1]+(p[i]-p[i+1])*(L/d);
pt.p[1]=p[i]+(p[i+1]-p[i])*(R/d);
pt.p[2]=pt.p[1]+(p[i+1]-p[i]).rotleft()*(H/d);
pt.p[3]=pt.p[0]+(p[i+1]-p[i]).rotleft()*(H/d);
}
}
return res;
}
//`分治法求最近点对`
Point a[N];
double divide(int l,int r)
{
if(l==r) return 2e9;
if(l+1==r) return p[l].distance(p[r]);
int mid=l+r>>1;
double d=min(divide(l,mid),divide(mid+1,r));
int k=0;
for(int i=l;i<=r;i++)
if(fabs(p[mid].x-p[i].x)<d) a[k++]=p[i];
//sort(a,a+k,[&](Point a,Point b)->bool {return a.y<b.y;});
for(int i=0;i<k;i++)
for(int j=i+1;j<k&&a[j].y-a[i].y<d;j++)
d=min(d,a[j].distance(a[i]));
return d;
}
//`旋转卡壳求最大三角形面积`
double rotating_calipers3()
{
double res=0;
for(int i=0;i<n;i++)
{
int k=i+1;
for(int j=i+1;j<n;j++)
{
while(dsgn(cross(p[i],p[j],p[k]),cross(p[i],p[j],p[k+1]))<0) k=(k+1)%n;
res=max(res,cross(p[i],p[j],p[k]));
}
}
return res/2;
}
};
//`半平面交求凸多边形面积交`
double half_plane1(Line l[],int n)
{
double res=0;
sort(l,l+n);
Line q[N];Point p[N];
int h=0,t=0,k=0;q[t++]=l[0];
for(int i=1;i<n;i++)
{
if(sgn(l[i].angle()-l[i-1].angle())==0) continue;
while(h<t-1&&l[i].relation(q[t-1].crosspoint(q[t-2]))==2) t--;
while(h<t-1&&l[i].relation(q[h].crosspoint(q[h+1]))==2) h++;
q[t++]=l[i];
}
while(h<t-1&&l[h].relation(q[t-1].crosspoint(q[t-2]))==2) t--;
q[t++]=q[h];
for(int i=h;i<t-1;i++) p[k++]=q[i].crosspoint(q[i+1]);
//for(int i=0;i<k;i++) cout<<p[i].x<<" "<<p[i].y<<endl;
for(int i=1;i<k-1;i++) res+=(p[i]-p[0])^(p[i+1]-p[0]);
return res/2;
}
//`水平可见直线 从上向下看输出能看见哪些直线`
void half_plane2(Line l[],int n)
{
sort(l,l+n);
Line q[N];
int h=0,t=0,k=0;q[t++]=l[0];
for(int i=1;i<n;i++)
{
if(sgn(l[i].angle()-l[i-1].angle())==0) continue;
while(h<t-1&&l[i].relation(q[t-1].crosspoint(q[t-2]))==2) t--;
// while(h<t-1&&l[i].relation(q[h].crosspoint(q[h+1]))==2) h++;
q[t++]=l[i];
}
int ans[N];
for(int i=h;i<t;i++)
//for(auto j:q[i].id) ans[k++]=j;
sort(ans,ans+k);
cout<<k<<endl;
for(int i=0;i<k;i++) cout<<ans[i]<<" ";
}
//`多边形内核`
bool half_plane3(Line l[],int n)
{
sort(l,l+n);
Line q[N];
int h=0,t=0;q[t++]=l[0];
for(int i=1;i<n;i++)
{
if(sgn(l[i].angle()-l[i-1].angle())==0) continue;
while(h<t-1&&l[i].relation(q[t-1].crosspoint(q[t-2]))==2) t--;
while(h<t-1&&l[i].relation(q[h].crosspoint(q[h+1]))==2) h++;
q[t++]=l[i];
}
while(h<t-1&&l[h].relation(q[t-1].crosspoint(q[t-2]))==2) t--;
return t-h>=3;
}
//`最小圆覆盖`
circle increment(Point p[],int n)
{
random_shuffle(p,p+n);
circle ans;ans.p=p[0],ans.r=0;
for(int i=1;i<n;i++)
if(ans.r<ans.p.distance(p[i]))
{
ans.p=p[i],ans.r=0;
for(int j=0;j<i;j++)
if(ans.r<ans.p.distance(p[j]))
{
ans.p=(p[i]+p[j])/2,ans.r=p[i].distance(p[j])/2;
for(int k=0;k<j;k++)
if(ans.r<ans.p.distance(p[k]))
{
Point p1=(p[i]+p[j])/2;
Point v1=(p[i]-p[j]).rotright();
Point p2=(p[i]+p[k])/2;
Point v2=(p[i]-p[k]).rotright();
ans.p=Line(p1,p1+v1).crosspoint(Line(p2,p2+v2));
ans.r=ans.p.distance(p[i]);
}
}
}
return ans;
}
//`自适应辛普森积分`
inline double f(double x){ //积分函数
return x;
}
double simpson(double l,double r){//辛普森公式
double mid=(l+r)/2;
return (r-l)*(f(l)+f(r)+4*f(mid))/6;
}
double asr(double l,double r,double ans){//自适应
double mid=(l+r)/2;
double a=simpson(l,mid),b=simpson(mid,r);
if(sgn(a+b-ans)==0) return ans;
return asr(l,mid,a)+asr(mid,r,b);
}
void solve(int cnt)
{
double xl,yl,xr,yr;
cin>>xl>>yl>>xr>>yr;
Line l1,l2,l[N];
l1.input(),l2.input();
l1.adjust(),l2.adjust();
int t=l1.check(l2);
double res=0;
l[0]=Line(Point(xl,yl),Point(xr,yl));
l[1]=Line(Point(xr,yl),Point(xr,yr));
l[2]=Line(Point(xr,yr),Point(xl,yr));
l[3]=Line(Point(xl,yr),Point(xl,yl));
if(t==1) res=(xr-xl)*(yr-yl);
else if(t==3)
{
if(sgn(l1.length()-l2.length())>0) swap(l1,l2);
if(l1.s==l2.s) l[4]=Line(l1.e,l2.e.rotate(l1.e,pi/2));
else if(l1.e==l2.e) l[4]=Line(l1.s,l2.s.rotate(l1.s,pi/2));
res=half_plane1(l,5);
}
else if(t==4)
{
if(l2.s<l1.s) swap(l1,l2);
if(l2.e<l1.e)
{
l[4]=Line(l2.s,l1.s.rotate(l2.s,pi/2));
l[5]=Line(l2.e,l1.e.rotate(l2.e,pi/2));
}
else
{
l[4]=Line(l2.s,l1.s.rotate(l2.s,pi/2));
l[5]=Line(l1.e,l2.e.rotate(l1.e,pi/2));
}
res=half_plane1(l,6);
}
else if(t==2)
{
if(l1.s==l2.s)
{
l[4]=Line(l1.s,l1.e.rotate(l1.s,pi/2));
l[5]=Line(l2.s,l2.e.rotate(l2.s,pi/2));
}
else if(l1.e==l2.e)
{
l[4]=Line(l1.e,l1.s.rotate(l1.e,pi/2));
l[5]=Line(l2.e,l2.s.rotate(l2.e,pi/2));
}
else if(l1.s==l2.e)
{
l[4]=Line(l1.s,l1.e.rotate(l1.s,pi/2));
l[5]=Line(l2.e,l2.s.rotate(l2.e,pi/2));
}
else
{
l[4]=Line(l1.e,l1.s.rotate(l1.e,pi/2));
l[5]=Line(l2.s,l2.e.rotate(l2.s,pi/2));
}
res=half_plane1(l,6);
}
cout<<fixed<<setprecision(10)<<res<<endl;
}
int main()
{
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int t=1; cin>>t;
for(int i=1;i<=t;i++) solve(i);
return 0;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 4316kb
input:
2 0 0 3 3 1 1 1 2 2 1 2 2 0 0 3 3 1 1 1 2 1 2 2 2
output:
0.0000000000 1.0000000000
result:
ok 2 numbers
Test #2:
score: 0
Accepted
time: 1ms
memory: 4248kb
input:
10 0 0 7 6 2 4 4 4 3 2 5 2 0 0 7 6 2 4 4 4 4 4 5 2 0 0 2 4 1 1 1 2 1 2 1 3 0 0 2 3 1 1 1 2 1 1 1 2 0 0 3 3 1 1 2 2 1 2 2 1 0 0 2 4 1 1 1 2 1 2 1 3 0 0 6 6 1 1 5 5 1 5 3 3 0 0 2 3 1 1 1 2 1 1 1 2 0 0 2 5 1 1 1 3 1 2 1 4 0 0 2 4 1 1 1 3 1 1 1 2
output:
0.0000000000 3.7500000000 0.0000000000 6.0000000000 0.0000000000 0.0000000000 0.0000000000 6.0000000000 2.0000000000 4.0000000000
result:
ok 10 numbers
Test #3:
score: 0
Accepted
time: 214ms
memory: 4184kb
input:
100000 350 720 355 732 353 725 352 729 354 721 353 725 -807 606 -801 621 -803 608 -803 616 -803 616 -803 614 -389 463 -373 466 -382 464 -387 464 -387 464 -385 464 -664 801 -655 806 -656 803 -659 803 -659 803 -657 802 896 -767 901 -762 900 -763 897 -763 900 -763 897 -763 403 645 407 652 406 647 405 6...
output:
0.0000000000 42.0000000000 12.0000000000 24.0000000000 25.0000000000 28.0000000000 99.0000000000 0.0000000000 135.0000000000 6.0000000000 42.0000000000 45.0000000000 120.0000000000 8.0000000000 84.0000000000 15.0000000000 16.0000000000 0.0000000000 36.0000000000 4.0000000000 0.5000000000 20.00000000...
result:
ok 100000 numbers
Test #4:
score: 0
Accepted
time: 216ms
memory: 4280kb
input:
100000 -653 -979 -650 -961 -652 -973 -651 -973 -652 -973 -651 -973 -311 -975 -297 -966 -301 -967 -309 -973 -309 -973 -301 -967 734 -459 746 -420 736 -451 743 -440 736 -451 743 -440 127 431 139 456 131 436 138 447 138 447 131 436 -535 293 -505 299 -510 296 -531 297 -510 296 -533 295 571 -397 584 -371...
output:
54.0000000000 126.0000000000 468.0000000000 300.0000000000 29.5900621118 190.6666666667 75.0000000000 0.0000000000 323.0000000000 0.0000000000 0.0000000000 18.0000000000 0.0000000000 141.2894736842 29.3076923077 21.0000000000 7.7500000000 20.0000000000 3.1000000000 144.0000000000 1.5833333333 0.0000...
result:
ok 100000 numbers
Test #5:
score: 0
Accepted
time: 216ms
memory: 4448kb
input:
100000 -553 286 -544 299 -551 297 -552 288 -551 297 -548 293 -535 81 -526 122 -534 86 -532 117 -532 117 -534 86 42 -110 54 -94 43 -95 47 -109 47 -109 45 -102 392 33 397 38 395 36 394 37 394 37 395 36 -934 910 -916 933 -924 915 -933 916 -917 921 -933 916 -119 -981 -87 -975 -90 -980 -114 -980 -103 -97...
output:
6.4444444444 369.0000000000 106.2857142857 25.0000000000 5.6000000000 0.0000000000 32.0000000000 216.0000000000 0.0000000000 99.9000000000 0.0000000000 6.0000000000 276.6500000000 0.0000000000 462.0000000000 42.0000000000 0.0000000000 0.0000000000 1710.0000000000 0.0000000000 50.0000000000 245.00000...
result:
ok 100000 numbers
Test #6:
score: 0
Accepted
time: 221ms
memory: 4324kb
input:
100000 587 345 644 380 643 368 595 358 643 368 595 358 361 362 367 379 362 373 364 368 364 368 366 363 -418 766 -374 819 -410 796 -403 813 -417 779 -403 813 -536 183 -488 322 -510 238 -521 222 -521 222 -532 304 719 393 812 421 728 417 808 420 728 417 808 420 209 -634 242 -618 231 -623 238 -626 238 -...
output:
1995.0000000000 0.0000000000 1265.6470588235 1482.5647865854 2604.0000000000 528.0000000000 384.0000000000 481.6307692308 0.0000000000 490.0000000000 70.0000000000 0.0000000000 16.0000000000 270.0000000000 597.4545454545 288.0000000000 0.0000000000 1206.6250000000 512.0000000000 1.0763888889 1458.00...
result:
ok 100000 numbers
Test #7:
score: 0
Accepted
time: 251ms
memory: 4392kb
input:
100000 -77 35 -66 122 -69 98 -72 81 -72 81 -69 70 -804 257 -551 278 -656 269 -794 277 -656 269 -587 265 -311 610 -280 731 -306 638 -288 700 -306 638 -288 700 -438 472 -433 615 -437 536 -437 499 -437 499 -437 536 -295 -71 -213 39 -275 -29 -238 34 -275 -29 -238 34 589 387 728 432 646 394 631 407 616 4...
output:
5.6149732620 0.0000000000 3751.0000000000 715.0000000000 9020.0000000000 0.0000000000 14300.0000000000 16364.2741935484 50801.4838709677 16.0000000000 0.0000000000 2493.6363636364 280.6607142857 44.0000000000 185.0000000000 935.0000000000 9.4659090909 56.0000000000 4726.0000000000 437.1000000000 466...
result:
ok 100000 numbers
Test #8:
score: 0
Accepted
time: 264ms
memory: 4456kb
input:
100000 -475 589 -253 919 -408 663 -351 817 -408 663 -351 817 524 632 561 857 553 829 556 729 541 765 559 807 -253 -540 -98 -505 -239 -506 -232 -510 -239 -506 -232 -510 -149 639 -51 649 -130 647 -87 644 -130 647 -87 644 719 -478 924 92 916 -66 920 74 910 -276 912 -206 -75 -924 -47 -677 -66 -844 -48 -...
output:
73260.0000000000 0.0000000000 5425.0000000000 980.0000000000 0.0000000000 4692.4705882353 651.0000000000 560.0000000000 21645.0000000000 1013.2467850582 32053.0000000000 96819.0000000000 31937.1755890762 168.0000000000 260.0000000000 2398.3780487805 8256.0000000000 0.0000000000 0.0000000000 14500.30...
result:
ok 100000 numbers
Test #9:
score: 0
Accepted
time: 258ms
memory: 4352kb
input:
100000 -302 -975 987 976 -25 289 396 -1 21 -703 930 -131 -993 -999 968 963 -381 -323 929 583 487 -43 -303 -356 -700 -827 301 846 -366 742 -570 319 -570 319 -638 178 401 -174 675 180 463 -149 455 -131 463 -149 459 -140 -133 -812 454 808 221 176 145 537 121 651 145 537 -334 -930 781 -18 638 -504 279 -...
output:
0.0000000000 0.0000000000 0.0000000000 18936.4444444444 0.0000000000 1016880.0000000000 602.1705458741 509410.0000000000 0.0000000000 177747.8083832335 240642.3387096774 369120.7786144579 0.0000000000 538241.0000000000 0.0000000000 0.0000000000 0.0000000000 257258.7829787234 339529.6515789473 477372...
result:
ok 100000 numbers
Test #10:
score: 0
Accepted
time: 219ms
memory: 4452kb
input:
100000 -979 -985 824 957 559 390 -209 191 313 140 -209 191 -803 -976 928 979 686 -661 -676 876 686 -661 -676 876 -930 -993 896 995 519 318 -16 230 -16 230 519 318 -625 -850 969 915 540 -88 575 572 526 -352 561 308 -840 -977 839 946 122 -658 -670 403 -670 403 122 -658 -994 -1000 951 1000 383 -468 211...
output:
1351762.3093570401 3384105.0000000000 3630088.0000000000 632999.1363636360 3228717.0000000000 867642.8888888892 0.0000000000 3506074.0000000000 3256160.0000000000 3230766.0000000000 3144390.0000000000 3487424.0000000000 0.0000000000 0.0000000000 2231056.0000000000 3827620.0000000000 2734851.41414444...
result:
ok 100000 numbers
Test #11:
score: 0
Accepted
time: 222ms
memory: 4448kb
input:
100000 -998 -998 997 994 -271 -892 885 154 501 -277 -539 313 -992 -993 977 998 -240 190 -155 863 107 43 -449 362 -992 -1000 996 1000 -498 586 530 -270 -813 478 787 -484 -999 -990 994 999 328 -701 -484 -425 328 -701 -484 -425 -998 -999 997 994 -559 439 929 299 185 369 929 299 -1000 -999 994 999 766 -...
output:
0.0000000000 0.0000000000 0.0000000000 3964077.0000000000 1687977.2432795700 3984012.0000000000 1186.8072701490 3769116.0000000000 3972033.0000000000 2145411.9341637008 0.0000000000 2031273.5632183910 769194.2585470087 1829984.5090909088 2233806.7532097008 3958054.0000000000 164249.7130102041 205535...
result:
ok 100000 numbers
Test #12:
score: 0
Accepted
time: 224ms
memory: 4292kb
input:
100000 329 -90 334 -72 332 -89 332 -88 332 -89 332 -88 -211 427 -208 432 -209 428 -210 430 -209 428 -210 430 277 218 283 223 281 222 280 220 281 222 280 220 117 -745 128 -740 118 -744 127 -743 127 -743 118 -744 -438 172 -429 184 -437 177 -431 177 -431 176 -436 177 -406 529 -403 535 -405 530 -405 531...
output:
90.0000000000 15.0000000000 30.0000000000 55.0000000000 0.0000000000 18.0000000000 0.6666666667 9.0000000000 0.0000000000 11.3750000000 1.2500000000 15.0000000000 352.0000000000 0.0000000000 0.0000000000 80.0000000000 0.0000000000 12.0000000000 56.0000000000 0.0000000000 2.5000000000 0.0000000000 4....
result:
ok 100000 numbers
Test #13:
score: 0
Accepted
time: 237ms
memory: 4460kb
input:
100000 864 -604 868 -586 867 -598 866 -587 867 -601 866 -587 -973 -363 -967 -352 -971 -354 -969 -358 -968 -360 -968 -361 731 -847 734 -835 732 -845 733 -845 733 -845 732 -845 322 -154 356 -147 352 -148 342 -148 345 -148 355 -148 12 -593 16 -571 13 -580 14 -586 15 -592 13 -580 -665 293 -660 296 -663 ...
output:
3.9610389610 0.0000000000 36.0000000000 49.0000000000 60.0000000000 15.0000000000 71.5000000000 0.0000000000 40.0000000000 36.0000000000 104.0000000000 24.0000000000 12.0000000000 48.0000000000 0.0000000000 6.0000000000 12.0000000000 130.0000000000 112.0000000000 0.6000000000 88.0000000000 88.000000...
result:
ok 100000 numbers
Test #14:
score: 0
Accepted
time: 238ms
memory: 4344kb
input:
100000 11 -579 21 -575 14 -578 15 -576 14 -578 15 -576 638 916 653 935 650 925 650 929 650 918 650 927 207 -519 210 -495 209 -504 209 -499 209 -517 209 -503 -892 533 -879 547 -886 535 -891 545 -886 535 -891 545 24 -431 48 -381 25 -385 45 -415 45 -415 41 -397 -260 675 -253 742 -254 711 -257 731 -257 ...
output:
40.0000000000 30.0000000000 3.0000000000 182.0000000000 238.0000000000 469.0000000000 3.0210526316 85.0000000000 0.0000000000 2304.0000000000 5.0000000000 48.0000000000 732.0000000000 272.0000000000 0.0000000000 0.0000000000 0.0000000000 378.0000000000 387.0000000000 12.8333333333 357.9545454545 0.0...
result:
ok 100000 numbers
Test #15:
score: 0
Accepted
time: 235ms
memory: 4320kb
input:
100000 233 -984 278 -977 237 -981 238 -979 236 -983 238 -979 612 814 628 829 622 824 627 818 622 824 627 818 948 403 965 406 953 404 951 405 951 405 953 404 -709 840 -551 862 -701 861 -630 847 -630 847 -701 861 536 523 543 534 537 524 541 525 541 525 537 524 -63 -483 -49 -466 -50 -477 -52 -480 -52 -...
output:
290.0000000000 240.0000000000 51.0000000000 3476.0000000000 77.0000000000 8.5714285714 0.0000000000 1092.0000000000 2662.0000000000 187.8500000000 836.0000000000 960.0000000000 0.0000000000 0.0000000000 861.8000000000 2171.7142857143 12463.0000000000 0.0000000000 159.2500000000 320.0000000000 198.00...
result:
ok 100000 numbers
Test #16:
score: 0
Accepted
time: 237ms
memory: 4372kb
input:
100000 725 209 729 214 727 210 726 211 726 211 727 210 660 -376 740 -226 738 -238 709 -291 738 -238 709 -291 149 -399 200 -264 196 -298 186 -384 196 -298 186 -384 312 -847 455 -765 390 -772 426 -813 426 -813 390 -772 947 -739 957 -632 956 -685 955 -693 955 -693 950 -733 -30 -883 -23 -878 -29 -882 -2...
output:
20.0000000000 12000.0000000000 6885.0000000000 11726.0000000000 0.0000000000 8.0000000000 612.0000000000 0.0000000000 1180.0000000000 19234.0000000000 0.0000000000 0.0000000000 0.0000000000 5896.0000000000 0.0000000000 3213.0000000000 492.0000000000 0.0000000000 0.0000000000 1838.2000000000 0.000000...
result:
ok 100000 numbers
Test #17:
score: 0
Accepted
time: 234ms
memory: 4384kb
input:
100000 -382 62 -103 103 -249 90 -246 99 -155 84 -246 99 -216 2 -111 48 -209 5 -153 3 -140 32 -166 39 -266 326 -109 379 -183 354 -208 346 -208 346 -183 354 -398 -169 327 192 -305 69 190 -164 -305 69 190 -164 -611 -877 -385 -717 -529 -784 -413 -775 -529 -784 -413 -775 -356 -68 -258 -48 -279 -49 -336 -...
output:
25.3186813187 0.0000000000 8321.0000000000 261725.0000000000 36160.0000000000 0.0000000000 148708.0000000000 1048.6842105263 33420.5581395349 23546.0000000000 6453.8478070175 1156.0000000000 17.9649122807 629.7870370370 24010.8363636364 2430.0000000000 0.0000000000 3251.3062500000 1090.4000000000 55...
result:
ok 100000 numbers
Test #18:
score: 0
Accepted
time: 264ms
memory: 4292kb
input:
100000 -670 -906 906 875 76 659 787 -116 787 -116 76 659 -512 346 718 508 87 409 344 492 657 449 344 492 -129 -479 474 487 234 -281 374 -23 29 357 164 -410 -370 -981 -168 987 -310 377 -198 -801 -310 377 -224 985 -919 -182 943 834 -465 389 -403 402 -403 402 -217 441 -550 -982 -534 418 -542 -847 -542 ...
output:
2806856.0000000000 58.9231859375 0.0000000000 425.7427843803 0.0000000000 22400.0000000000 415800.0000000000 0.0000000000 813732.0000000000 1094143.9407744876 442188.0000000000 0.0000000000 0.0000000000 0.0000000000 62167.3398058252 1417705.4045385779 0.0000000000 495772.6810176125 0.0000000000 1947...
result:
ok 100000 numbers
Test #19:
score: 0
Accepted
time: 259ms
memory: 4384kb
input:
100000 -1000 -857 805 872 303 182 -659 649 -659 649 303 182 -983 -960 901 944 -346 -598 -518 380 -432 -109 -604 869 -997 -952 965 920 733 -238 -389 -846 733 -238 -389 -846 -956 -970 980 994 -247 824 -479 664 -566 604 -305 784 -975 -746 883 894 -338 217 -827 497 -827 497 151 -63 -791 -588 946 900 202...
output:
3120845.0000000000 949771.0184049077 3672864.0000000000 504273.9310344828 910394.5194274025 2584656.0000000000 0.0000000000 3346200.0000000000 3722814.0000000000 0.0000000000 3455808.0000000000 3381192.0000000000 3000370.0000000000 0.0000000000 0.0000000000 453073.4246686301 1196461.7462932458 44668...
result:
ok 100000 numbers
Test #20:
score: 0
Accepted
time: 237ms
memory: 4344kb
input:
100000 -1000 -999 1000 998 339 -905 140 -133 140 -133 657 231 -992 -982 991 998 -250 -429 -135 -67 -365 -791 -250 -429 -966 -976 980 981 303 -92 106 -551 303 -92 106 -551 -997 -992 996 997 793 744 -740 -330 282 386 -229 28 -1000 -999 999 993 333 573 -767 222 333 573 -767 222 -981 -985 999 993 -273 -...
output:
1006535.9998797365 0.0000000000 3808322.0000000000 1470130.7832161714 3982008.0000000000 298549.5652173912 3548251.8828539290 1288381.2660803783 3876561.0000000000 0.0000000000 253343.9999999999 0.0000000000 0.0000000000 49050.5323689699 464519.0254521787 3924280.0000000000 3172778.5083701466 0.0000...
result:
ok 100000 numbers
Test #21:
score: 0
Accepted
time: 247ms
memory: 4380kb
input:
100000 52 -610 56 -606 54 -608 55 -607 55 -608 53 -607 -353 -35 -349 -31 -351 -32 -351 -34 -352 -33 -351 -32 839 -323 842 -313 841 -321 840 -318 841 -321 840 -318 938 -62 941 -58 940 -61 939 -60 940 -61 939 -60 -702 416 -699 423 -700 419 -700 417 -700 419 -700 417 -337 349 -332 353 -333 351 -333 350...
output:
0.0000000000 2.5000000000 30.0000000000 12.0000000000 21.0000000000 10.0000000000 9.0000000000 1.5000000000 7.0000000000 0.0000000000 18.0000000000 36.0000000000 24.0000000000 9.0000000000 5.0000000000 0.0000000000 21.0000000000 30.0000000000 12.0000000000 9.5000000000 0.0000000000 20.0000000000 10....
result:
ok 100000 numbers
Test #22:
score: 0
Accepted
time: 250ms
memory: 4284kb
input:
100000 -537 167 -533 182 -534 180 -534 173 -534 176 -534 180 -165 -532 -131 -523 -161 -525 -157 -524 -157 -524 -161 -525 899 556 904 564 901 560 900 561 900 561 902 559 -931 542 -914 549 -930 543 -926 543 -930 543 -918 543 807 -892 816 -876 815 -885 814 -881 815 -885 814 -881 597 -596 606 -579 600 -...
output:
24.0000000000 306.0000000000 17.5000000000 35.0000000000 144.0000000000 153.0000000000 52.0000000000 0.0000000000 0.0000000000 36.0000000000 56.0000000000 4.3750000000 0.0000000000 172.0000000000 20.0000000000 0.0000000000 161.0000000000 40.0000000000 98.8500000000 11.7166666667 112.0000000000 56.00...
result:
ok 100000 numbers
Test #23:
score: 0
Accepted
time: 230ms
memory: 4344kb
input:
100000 -162 86 -148 92 -154 87 -150 91 -160 91 -154 87 160 -125 167 -121 161 -122 165 -124 161 -122 164 -122 -635 366 -618 382 -620 374 -622 378 -623 380 -621 376 615 -689 632 -668 631 -676 621 -680 631 -676 621 -680 -278 61 -273 87 -277 69 -275 84 -275 84 -277 69 289 534 301 547 299 545 292 544 299...
output:
0.8333333333 2.0000000000 42.5000000000 357.0000000000 130.0000000000 156.0000000000 33.0000000000 17.3785714286 154.0000000000 36.0000000000 24.0000000000 32.0000000000 0.0000000000 8.0416666667 506.0000000000 0.0000000000 177.8967391304 26.6666666667 434.0000000000 742.0000000000 109.3750000000 3....
result:
ok 100000 numbers
Test #24:
score: 0
Accepted
time: 231ms
memory: 4444kb
input:
100000 -27 318 2 328 -3 320 -23 326 -23 326 -3 320 444 632 486 691 484 638 458 686 471 662 484 638 -630 909 -627 954 -628 912 -629 918 -629 918 -628 912 -393 509 -389 559 -390 532 -390 510 -390 532 -390 510 945 -907 964 -866 952 -869 951 -896 949 -875 956 -877 272 584 286 615 276 599 273 602 276 599...
output:
290.0000000000 1123.5000000000 135.0000000000 200.0000000000 0.0000000000 218.6666666667 0.0000000000 400.0000000000 0.0000000000 2275.0000000000 1152.0000000000 54.0000000000 169.7631578947 167.1428571429 34.0000000000 2.6250000000 0.0000000000 2480.0000000000 0.0000000000 396.0000000000 2262.00000...
result:
ok 100000 numbers
Test #25:
score: 0
Accepted
time: 216ms
memory: 4312kb
input:
100000 -48 216 12 300 -42 226 2 269 2 269 -42 226 449 -897 523 -671 511 -707 503 -724 452 -743 495 -741 -132 -959 -58 -943 -83 -948 -113 -947 -69 -956 -113 -947 199 -522 296 -129 228 -308 255 -426 255 -426 228 -308 337 -855 388 -818 355 -852 366 -840 366 -840 355 -852 727 712 924 817 736 814 795 773...
output:
5040.0000000000 0.0000000000 289.5393939394 38121.0000000000 1887.0000000000 0.0000000000 3160.0000000000 204.5000000000 0.0000000000 20114.0000000000 0.0000000000 814.0000000000 397.4016666667 13585.7142857143 0.0000000000 217.6923076923 242.8571428571 0.0000000000 57528.0000000000 307.7954545455 2...
result:
ok 100000 numbers
Test #26:
score: 0
Accepted
time: 218ms
memory: 4376kb
input:
100000 69 -124 92 -99 90 -103 89 -117 90 -103 89 -117 569 -330 587 -111 572 -194 580 -119 572 -194 580 -119 457 468 830 914 753 680 621 606 489 532 621 606 462 -15 551 70 521 -1 506 -1 504 -1 476 -1 -29 152 111 582 3 254 -1 441 34 335 36 484 -367 -578 -362 -150 -364 -245 -365 -458 -365 -458 -364 -24...
output:
575.0000000000 3942.0000000000 0.0000000000 0.0000000000 0.0000000000 2140.0000000000 21010.0000000000 18444.0000000000 28665.0000000000 0.0000000000 14000.0000000000 3336.0000000000 8482.5000000000 17800.0000000000 66286.0000000000 3822.0000000000 55552.0000000000 18285.0000000000 96.0000000000 134...
result:
ok 100000 numbers
Test #27:
score: 0
Accepted
time: 267ms
memory: 4324kb
input:
100000 -935 -289 -491 868 -614 -6 -860 344 -860 344 -614 -6 -283 -623 420 999 -36 -349 -80 -442 -124 -535 8 -256 -378 -817 55 914 -127 -314 -37 633 -127 -314 -37 633 -249 -550 754 889 509 -515 287 62 509 -515 65 639 -987 -629 887 286 810 -560 301 -383 301 -383 810 -560 -836 -839 132 745 -661 -812 -2...
output:
513708.0000000000 76751.2892228739 749523.0000000000 600522.3483535529 1714710.0000000000 1533312.0000000000 0.0000000000 0.0000000000 0.0000000000 100436.0000000000 430802.4524714829 0.0000000000 594520.0000000000 1225296.0000000000 1088724.0000000000 0.0000000000 1184592.0000000000 504000.00000000...
result:
ok 100000 numbers
Test #28:
score: 0
Accepted
time: 263ms
memory: 4376kb
input:
100000 -967 -986 989 976 60 -380 -347 453 60 -380 -347 453 -943 -995 933 978 887 410 -500 -140 887 410 -500 -140 -870 -835 977 994 181 -581 823 -821 823 -821 181 -581 -985 -832 772 915 -551 402 214 884 -551 402 214 884 -969 -820 988 965 478 326 551 34 420 558 551 34 -988 -344 997 877 -942 -184 -881 ...
output:
3837672.0000000000 3701348.0000000000 3378163.0000000000 3069479.0000000000 2013508.3749999995 2423685.0000000000 0.0000000000 91400.5797173566 3743904.0000000000 700867.6977178830 370580.4588690778 0.0000000000 106662.2153029381 0.0000000000 3922368.0000000000 333909.2257925022 3710304.0000000000 1...
result:
ok 100000 numbers
Test #29:
score: 0
Accepted
time: 262ms
memory: 4316kb
input:
100000 -992 -991 993 999 -287 723 -688 -530 -688 -530 -287 723 -999 -1000 1000 1000 -841 -413 137 359 626 745 -352 -27 -997 -1000 997 986 -77 222 -133 959 -133 959 -77 222 -1000 -996 998 978 616 432 793 -930 616 432 793 -930 -1000 -994 977 965 776 -646 970 690 873 22 970 690 -973 -982 993 999 -796 8...
output:
3950150.0000000000 1542553.8451900356 3960084.0000000000 3944052.0000000000 1610389.3226047903 3894646.0000000000 3830324.0000000000 1834613.2144702841 256920.0868967181 0.0000000000 0.0000000000 3986006.0000000000 3990000.0000000000 0.0000000000 0.0000000000 3874290.0000000000 3876880.0000000000 14...
result:
ok 100000 numbers
Test #30:
score: 0
Accepted
time: 240ms
memory: 4372kb
input:
100000 757 -469 768 -466 763 -467 759 -468 759 -468 763 -467 -860 -809 -842 -799 -859 -802 -849 -804 -854 -803 -844 -805 -580 -402 -576 -398 -579 -400 -579 -399 -577 -399 -579 -400 -615 364 -599 375 -605 368 -607 373 -605 368 -607 373 141 -198 160 -187 146 -193 150 -190 142 -196 146 -193 -521 -135 -...
output:
33.0000000000 52.0000000000 3.0000000000 176.0000000000 0.0000000000 20.6333333333 35.0000000000 5.0000000000 12.0000000000 12.0000000000 90.0000000000 44.0000000000 12.0000000000 48.0000000000 15.9500000000 19.4166666667 156.0000000000 0.0000000000 0.0000000000 6.0000000000 10.0000000000 40.0000000...
result:
ok 100000 numbers
Test #31:
score: 0
Accepted
time: 210ms
memory: 4344kb
input:
100000 24 -943 45 -937 33 -939 31 -940 31 -940 29 -941 24 -407 47 -374 26 -397 40 -382 30 -405 26 -397 -338 -401 -335 -398 -337 -399 -336 -399 -337 -399 -336 -399 -186 554 -141 558 -151 555 -176 556 -151 555 -176 556 -624 109 -617 177 -621 175 -620 157 -622 137 -619 139 -930 -172 -903 -158 -911 -161...
output:
0.0000000000 2.8666666667 9.0000000000 180.0000000000 0.0000000000 154.0000000000 0.0000000000 263.5000000000 238.0000000000 374.0000000000 1242.9583333333 23.9807692308 144.0000000000 0.0000000000 0.0000000000 551.0000000000 0.0000000000 81.0000000000 310.0000000000 15.0000000000 42.0000000000 96.0...
result:
ok 100000 numbers
Test #32:
score: 0
Accepted
time: 227ms
memory: 4292kb
input:
100000 -907 -546 -898 -457 -902 -502 -901 -463 -902 -502 -901 -463 -366 -693 -359 -646 -363 -663 -364 -665 -361 -659 -364 -665 373 -119 390 -110 378 -111 385 -111 376 -111 388 -111 -737 -682 -720 -679 -728 -680 -729 -680 -727 -681 -729 -680 695 214 731 263 723 247 700 218 711 219 709 250 482 -243 48...
output:
801.0000000000 208.2500000000 63.0000000000 23.0000000000 0.0000000000 84.0000000000 810.0000000000 0.0000000000 1860.0000000000 1656.0000000000 56.0000000000 204.0000000000 290.0000000000 1010.0000000000 13.5208333333 156.0000000000 867.0000000000 2950.0000000000 18.0000000000 0.0000000000 282.0000...
result:
ok 100000 numbers
Test #33:
score: 0
Accepted
time: 238ms
memory: 4292kb
input:
100000 -737 590 -688 597 -732 595 -731 596 -732 595 -736 591 24 -730 52 -476 35 -564 34 -652 35 -564 34 -652 480 -273 562 -155 530 -248 511 -272 530 -248 549 -224 -370 -155 -355 -22 -368 -152 -364 -46 -364 -76 -367 -23 430 827 489 899 454 840 432 869 432 869 473 847 -310 -126 -179 -27 -204 -36 -281 ...
output:
0.0000000000 7112.0000000000 0.0000000000 0.0000000000 302.9806560135 12969.0000000000 3645.0000000000 132.0000000000 5.9548611111 29016.0000000000 0.0000000000 31987.5937500000 5022.0000000000 112.5590558091 0.0000000000 1.1250000000 5349.1750000000 7920.0000000000 0.0000000000 1360.6446644664 475....
result:
ok 100000 numbers
Test #34:
score: 0
Accepted
time: 248ms
memory: 4368kb
input:
100000 -717 -894 -455 -770 -597 -886 -533 -836 -533 -836 -565 -861 -798 -326 -742 75 -782 -234 -759 -35 -782 -234 -759 -35 113 -696 295 -596 277 -641 217 -650 117 -665 177 -656 280 -873 734 -751 733 -843 427 -863 344 -796 427 -863 -685 -613 -543 -590 -598 -601 -596 -612 -596 -612 -567 -595 734 309 9...
output:
16449.3750000000 22456.0000000000 0.0000000000 43.6294196393 3.0431034483 872.3473214286 39611.0000000000 17.0454545455 0.0000000000 5594.5753575358 0.0000000000 36295.7241379310 7812.0000000000 15811.0000000000 0.0000000000 0.0000000000 38318.9950142450 0.0000000000 0.0000000000 3822.8750000000 228...
result:
ok 100000 numbers
Test #35:
score: 0
Accepted
time: 218ms
memory: 4352kb
input:
100000 -935 -968 975 962 310 93 414 637 219 -383 115 -927 -998 -975 937 981 390 157 -401 -464 390 157 -401 -464 -995 -419 994 865 -281 846 -197 -136 -197 -136 -239 355 -975 -964 998 941 -576 -35 -328 781 -359 679 -328 781 -983 -938 927 845 159 -827 528 481 282 -391 405 45 -982 -967 951 970 804 -685 ...
output:
0.0000000000 3784860.0000000000 1580064.0305498978 739091.6029411765 899036.1238532111 66224.3522570119 0.0000000000 3430916.0000000000 2071579.1807432433 245252.3099778431 643532.4271844660 3323293.0000000000 3347344.0000000000 0.0000000000 0.0000000000 4229.3810750820 2317345.0000000000 0.00000000...
result:
ok 100000 numbers