QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#636844#33. Cat in a treemaspy100 ✓218ms83144kbC++2033.7kb2024-10-13 03:22:422024-10-13 03:22:42

Judging History

你现在查看的是最新测评结果

  • [2024-10-13 03:22:42]
  • 评测
  • 测评结果:100
  • 用时:218ms
  • 内存:83144kb
  • [2024-10-13 03:22:42]
  • 提交

answer

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "/home/maspy/compro/library/graph/tree.hpp"

#line 2 "/home/maspy/compro/library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  // sum(deg(v)) の計算量になっていて、
  // 新しいグラフの n+m より大きい可能性があるので注意
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (len(used_e) <= e.id) used_e.resize(e.id + 1);
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

  Graph<T, true> to_directed_tree(int root = -1) {
    if (root == -1) root = 0;
    assert(!is_directed && prepared && M == N - 1);
    Graph<T, true> G1(N);
    vc<int> par(N, -1);
    auto dfs = [&](auto& dfs, int v) -> void {
      for (auto& e: (*this)[v]) {
        if (e.to == par[v]) continue;
        par[e.to] = v, dfs(dfs, e.to);
      }
    };
    dfs(dfs, root);
    for (auto& e: edges) {
      int a = e.frm, b = e.to;
      if (par[a] == b) swap(a, b);
      assert(par[b] == a);
      G1.add(a, b, e.cost);
    }
    G1.build();
    return G1;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 4 "/home/maspy/compro/library/graph/tree.hpp"

// HLD euler tour をとっていろいろ。
template <typename GT>
struct Tree {
  using Graph_type = GT;
  GT &G;
  using WT = typename GT::cost_type;
  int N;
  vector<int> LID, RID, head, V, parent, VtoE;
  vc<int> depth;
  vc<WT> depth_weighted;

  Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }

  void build(int r = 0, bool hld = 1) {
    if (r == -1) return; // build を遅延したいとき
    N = G.N;
    LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
    V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
    depth.assign(N, -1), depth_weighted.assign(N, 0);
    assert(G.is_prepared());
    int t1 = 0;
    dfs_sz(r, -1, hld);
    dfs_hld(r, t1);
  }

  void dfs_sz(int v, int p, bool hld) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする
    for (int i = r - 2; i >= l; --i) {
      if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      VtoE[e.to] = e.id;
      dfs_sz(e.to, v, hld);
      sz[v] += sz[e.to];
      if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  vc<int> heavy_path_at(int v) {
    vc<int> P = {v};
    while (1) {
      int a = P.back();
      for (auto &&e: G[a]) {
        if (e.to != parent[a] && head[e.to] == v) {
          P.eb(e.to);
          break;
        }
      }
      if (P.back() == a) break;
    }
    return P;
  }

  int heavy_child(int v) {
    int k = LID[v] + 1;
    if (k == N) return -1;
    int w = V[k];
    return (parent[w] == v ? w : -1);
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }
  int v_to_e(int v) { return VtoE[v]; }
  int get_eid(int u, int v) {
    if (parent[u] != v) swap(u, v);
    assert(parent[u] == v);
    return VtoE[u];
  }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  // 目標地点へ進む個数が k
  int LA(int v, int k) {
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }
  int la(int u, int v) { return LA(u, v); }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }

  int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); }
  int lca(int u, int v) { return LCA(u, v); }

  int subtree_size(int v, int root = -1) {
    if (root == -1) return RID[v] - LID[v];
    if (v == root) return N;
    int x = jump(v, root, 1);
    if (in_subtree(v, x)) return RID[v] - LID[v];
    return N - RID[x] + LID[x];
  }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist_weighted(int a, int b) {
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
  }

  // a is in b
  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int jump(int a, int b, ll k) {
    if (k == 1) {
      if (a == b) return -1;
      return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
    }
    int c = LCA(a, b);
    int d_ac = depth[a] - depth[c];
    int d_bc = depth[b] - depth[c];
    if (k > d_ac + d_bc) return -1;
    if (k <= d_ac) return LA(a, k);
    return LA(b, d_ac + d_bc - k);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<int> collect_light(int v) {
    vc<int> res;
    bool skip = true;
    for (auto &&e: G[v])
      if (e.to != parent[v]) {
        if (!skip) res.eb(e.to);
        skip = false;
      }
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  // 辺の列の情報 (frm,to,str)
  // str = "heavy_up", "heavy_down", "light_up", "light_down"
  vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) {
    vc<tuple<int, int, string>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v];
        down.eb(parent[v], v, "light_down"), v = parent[v];
      } else {
        if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u];
        up.eb(u, parent[u], "light_up"), u = parent[u];
      }
    }
    if (LID[u] < LID[v]) down.eb(u, v, "heavy_down");
    elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up");
    reverse(all(down));
    concat(up, down);
    return up;
  }

  vc<int> restore_path(int u, int v) {
    vc<int> P;
    for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
      if (a <= b) {
        FOR(i, a, b + 1) P.eb(V[i]);
      } else {
        FOR_R(i, b, a + 1) P.eb(V[i]);
      }
    }
    return P;
  }

  // path [a,b] と [c,d] の交わり. 空ならば {-1,-1}.
  // https://codeforces.com/problemset/problem/500/G
  pair<int, int> path_intersection(int a, int b, int c, int d) {
    int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d);
    int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d);
    int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d)
    if (x != y) return {x, y};
    int z = ac ^ ad ^ cd;
    if (x != z) x = -1;
    return {x, x};
  }
};
#line 3 "/home/maspy/compro/library/graph/shortest_path/bfs01.hpp"

template <typename T, typename GT>
pair<vc<T>, vc<int>> bfs01(GT& G, int v) {
  assert(G.is_prepared());
  int N = G.N;
  vc<T> dist(N, infty<T>);
  vc<int> par(N, -1);
  deque<int> que;

  dist[v] = 0;
  que.push_front(v);
  while (!que.empty()) {
    auto v = que.front();
    que.pop_front();
    for (auto&& e: G[v]) {
      if (dist[e.to] == infty<T> || dist[e.to] > dist[e.frm] + e.cost) {
        dist[e.to] = dist[e.frm] + e.cost;
        par[e.to] = e.frm;
        if (e.cost == 0)
          que.push_front(e.to);
        else
          que.push_back(e.to);
      }
    }
  }
  return {dist, par};
}

// 多点スタート。[dist, par, root]
template <typename T, typename GT>
tuple<vc<T>, vc<int>, vc<int>> bfs01(GT& G, vc<int> vs) {
  assert(G.is_prepared());
  int N = G.N;
  vc<T> dist(N, infty<T>);
  vc<int> par(N, -1);
  vc<int> root(N, -1);
  deque<int> que;

  for (auto&& v: vs) {
    dist[v] = 0;
    root[v] = v;
    que.push_front(v);
  }

  while (!que.empty()) {
    auto v = que.front();
    que.pop_front();
    for (auto&& e: G[v]) {
      if (dist[e.to] == infty<T> || dist[e.to] > dist[e.frm] + e.cost) {
        dist[e.to] = dist[e.frm] + e.cost;
        root[e.to] = root[e.frm];
        par[e.to] = e.frm;
        if (e.cost == 0)
          que.push_front(e.to);
        else
          que.push_back(e.to);
      }
    }
  }
  return {dist, par, root};
}
#line 3 "/home/maspy/compro/library/graph/centroid_decomposition.hpp"

// 頂点ベースの重心分解
// f(par, V, indptr)
template <typename F>
void centroid_decomposition_0_dfs(vc<int>& par, vc<int>& vs, F f) {
  const int N = len(par);
  assert(N >= 1);
  int c = -1;
  vc<int> sz(N, 1);
  FOR_R(i, N) {
    if (sz[i] >= ceil<int>(N, 2)) {
      c = i;
      break;
    }
    sz[par[i]] += sz[i];
  }
  vc<int> color(N);
  vc<int> V = {c};
  int nc = 1;
  FOR(v, 1, N) {
    if (par[v] == c) { V.eb(v), color[v] = nc++; }
  }
  if (c > 0) {
    for (int a = par[c]; a != -1; a = par[a]) { color[a] = nc, V.eb(a); }
    ++nc;
  }
  FOR(i, N) {
    if (i != c && color[i] == 0) color[i] = color[par[i]], V.eb(i);
  }
  vc<int> indptr(nc + 1);
  FOR(i, N) indptr[1 + color[i]]++;
  FOR(i, nc) indptr[i + 1] += indptr[i];
  vc<int> counter = indptr;
  vc<int> ord(N);
  for (auto& v: V) { ord[counter[color[v]]++] = v; }
  vc<int> new_idx(N);
  FOR(i, N) new_idx[ord[i]] = i;
  vc<int> name(N);
  FOR(i, N) name[new_idx[i]] = vs[i];
  {
    vc<int> tmp(N, -1);
    FOR(i, 1, N) {
      int a = new_idx[i], b = new_idx[par[i]];
      if (a > b) swap(a, b);
      tmp[b] = a;
    }
    swap(par, tmp);
  }
  f(par, name, indptr);
  FOR(k, 1, nc) {
    int L = indptr[k], R = indptr[k + 1];
    vc<int> par1(R - L, -1);
    vc<int> name1(R - L, -1);
    name1[0] = name[0];
    FOR(i, L, R) name1[i - L] = name[i];
    FOR(i, L, R) { par1[i - L] = max(par[i] - L, -1); }
    centroid_decomposition_0_dfs(par1, name1, f);
  }
}

/*
https://maspypy.com/%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%83%bb1-3%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%81%ae%e3%81%8a%e7%b5%b5%e6%8f%8f%e3%81%8d
centroid_decomposition_1:長さ 1 以上のパス全体
f(par, V, L1, R1, L2, R2)
[L1, R1): color 1 / [L2, R2): color 2
*/
template <typename F>
void centroid_decomposition_1_dfs(vc<int>& par, vc<int> vs, F f) {
  const int N = len(par);
  assert(N > 1);
  if (N == 2) {
    vc<int> p = {-1, 0};
    vc<int> v = {vs[0], vs[1]};
    f(p, vs, 0, 1, 1, 2);
    return;
  }
  int c = -1;
  vc<int> sz(N, 1);
  FOR_R(i, N) {
    if (sz[i] >= ceil<int>(N, 2)) {
      c = i;
      break;
    }
    sz[par[i]] += sz[i];
  }
  vc<int> color(N, -1);
  int take = 0;
  vc<int> ord(N, -1);
  ord[c] = 0;
  int p = 1;
  FOR(v, 1, N) {
    if (par[v] == c && take + sz[v] <= floor<int>(N - 1, 2)) { color[v] = 0, ord[v] = p++, take += sz[v]; }
  }
  FOR(i, 1, N) {
    if (color[par[i]] == 0) color[i] = 0, ord[i] = p++;
  }
  int n0 = p - 1;
  for (int a = par[c]; a != -1; a = par[a]) { color[a] = 1, ord[a] = p++; }
  FOR(i, N) {
    if (i != c && color[i] == -1) color[i] = 1, ord[i] = p++;
  }
  assert(p == N);
  int n1 = N - 1 - n0;
  vc<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(N, -1);
  vc<int> V0(n0 + 1), V1(n1 + 1), V2(N);
  FOR(v, N) {
    int i = ord[v];
    V2[i] = vs[v];
    if (color[v] != 1) { V0[i] = vs[v]; }
    if (color[v] != 0) { V1[max(i - n0, 0)] = vs[v]; }
  }
  FOR(v, 1, N) {
    int a = ord[v], b = ord[par[v]];
    if (a > b) swap(a, b);
    par2[b] = a;
    if (color[v] != 1 && color[par[v]] != 1) par0[b] = a;
    if (color[v] != 0 && color[par[v]] != 0) par1[max(b - n0, 0)] = max(a - n0, 0);
  }
  f(par2, V2, 1, 1 + n0, 1 + n0, 1 + n0 + n1);
  centroid_decomposition_1_dfs(par0, V0, f);
  centroid_decomposition_1_dfs(par1, V1, f);
}

/*
https://maspypy.com/%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%83%bb1-3%e9%87%8d%e5%bf%83%e5%88%86%e8%a7%a3%e3%81%ae%e3%81%8a%e7%b5%b5%e6%8f%8f%e3%81%8d
f(par, V, color)
color in [-1,0,1], -1 is virtual.
*/
template <typename F>
void centroid_decomposition_2_dfs(vc<int>& par, vc<int>& vs, vc<int>& real, F f) {
  const int N = len(par);
  assert(N > 1);
  if (N == 2) {
    if (real[0] && real[1]) {
      vc<int> color = {0, 1};
      f(par, vs, color);
    }
    return;
  }
  int c = -1;
  vc<int> sz(N, 1);
  FOR_R(i, N) {
    if (sz[i] >= ceil<int>(N, 2)) {
      c = i;
      break;
    }
    sz[par[i]] += sz[i];
  }
  vc<int> color(N, -1);
  int take = 0;
  vc<int> ord(N, -1);
  ord[c] = 0;
  int p = 1;
  FOR(v, 1, N) {
    if (par[v] == c && take + sz[v] <= floor<int>(N - 1, 2)) { color[v] = 0, ord[v] = p++, take += sz[v]; }
  }
  FOR(i, 1, N) {
    if (color[par[i]] == 0) color[i] = 0, ord[i] = p++;
  }
  int n0 = p - 1;
  for (int a = par[c]; a != -1; a = par[a]) { color[a] = 1, ord[a] = p++; }
  FOR(i, N) {
    if (i != c && color[i] == -1) color[i] = 1, ord[i] = p++;
  }
  assert(p == N);
  int n1 = N - 1 - n0;
  vc<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(N, -1);
  vc<int> V0(n0 + 1), V1(n1 + 1), V2(N);
  vc<int> rea0(n0 + 1), rea1(n1 + 1), rea2(N);
  FOR(v, N) {
    int i = ord[v];
    V2[i] = vs[v], rea2[i] = real[v];
    if (color[v] != 1) { V0[i] = vs[v], rea0[i] = real[v]; }
    if (color[v] != 0) { V1[max(i - n0, 0)] = vs[v], rea1[max(i - n0, 0)] = real[v]; }
  }
  FOR(v, 1, N) {
    int a = ord[v], b = ord[par[v]];
    if (a > b) swap(a, b);
    par2[b] = a;
    if (color[v] != 1 && color[par[v]] != 1) par0[b] = a;
    if (color[v] != 0 && color[par[v]] != 0) par1[max(b - n0, 0)] = max(a - n0, 0);
  }
  color.assign(N, -1);
  FOR(i, 1, N) if (rea2[i]) color[i] = (i <= n0 ? 0 : 1);
  if (real[c]) color[0] = 2, rea0[0] = rea1[0] = rea2[0] = 0;
  f(par2, V2, color);
  centroid_decomposition_2_dfs(par0, V0, rea0, f);
  centroid_decomposition_2_dfs(par1, V1, rea1, f);
}

// 0: f(par, V, indptr)
// 1: f(par, V, L1, R1, L2, R2)
// 2: f(par, V, color)
template <int MODE, typename GT, typename F>
void centroid_decomposition(GT& G, F f) {
  static_assert(!GT::is_directed);
  const int N = G.N;
  if (MODE != 0 && N == 1) return;
  vc<int> V(N), par(N, -1);
  int l = 0, r = 0;
  V[r++] = 0;
  while (l < r) {
    int v = V[l++];
    for (auto& e: G[v]) {
      if (e.to != par[v]) V[r++] = e.to, par[e.to] = v;
    }
  }
  assert(r == N);
  vc<int> new_idx(N);
  FOR(i, N) new_idx[V[i]] = i;
  vc<int> tmp(N, -1);
  FOR(i, 1, N) {
    int j = par[i];
    tmp[new_idx[i]] = new_idx[j];
  }
  swap(par, tmp);
  static_assert(MODE == 0 || MODE == 1 || MODE == 2);
  if constexpr (MODE == 0) { centroid_decomposition_0_dfs(par, V, f); }
  elif constexpr(MODE == 1) { centroid_decomposition_1_dfs(par, V, f); }
  else {
    vc<int> real(N, 1);
    centroid_decomposition_2_dfs(par, V, real, f);
  }
}
#line 5 "main.cpp"

void solve() {
  LL(N, K);
  vvc<pair<int, int>> dat(N);
  vi A(N, infty<ll>);
  Graph<int, 0> G(N);
  FOR(v, 1, N) {
    INT(p);
    G.add(p, v);
  }
  G.build();

  auto f = [&](vc<int> par, vc<int> V, vc<int> indptr) -> void {
    int n = len(V);
    vc<int> D(n);
    FOR(i, 1, n) D[i] = D[par[i]] + 1;
    FOR(i, n) { dat[V[i]].eb(V[0], D[i]); }
  };

  centroid_decomposition<0>(G, f);

  Tree<decltype(G)> tree(G);
  auto V = argsort(tree.depth);
  reverse(all(V));
  ll ANS = 0;
  for (auto& v: V) {
    ll d = infty<ll>;
    for (auto& [i, x]: dat[v]) chmin(d, A[i] + x);
    if (d < K) continue;
    ++ANS;
    for (auto& [i, x]: dat[v]) chmin(A[i], x);
  }
  print(ANS);
}

signed main() { solve(); }

详细

Subtask #1:

score: 11
Accepted

Test #1:

score: 11
Accepted
time: 1ms
memory: 3800kb

input:

10 2
0
0
2
2
0
3
4
7
2

output:

6

result:

ok single line: '6'

Test #2:

score: 11
Accepted
time: 0ms
memory: 3804kb

input:

10 3
0
0
2
1
4
4
3
1
7

output:

4

result:

ok single line: '4'

Test #3:

score: 11
Accepted
time: 0ms
memory: 3728kb

input:

12 1
0
0
1
3
1
0
2
1
3
2
2

output:

12

result:

ok single line: '12'

Test #4:

score: 11
Accepted
time: 0ms
memory: 4044kb

input:

12 4
0
0
1
2
0
0
4
7
7
9
10

output:

3

result:

ok single line: '3'

Test #5:

score: 11
Accepted
time: 0ms
memory: 3972kb

input:

14 2
0
1
2
3
0
1
5
1
4
0
3
11
9

output:

8

result:

ok single line: '8'

Test #6:

score: 11
Accepted
time: 0ms
memory: 3692kb

input:

14 4
0
0
2
3
4
2
6
3
6
9
3
3
2

output:

3

result:

ok single line: '3'

Test #7:

score: 11
Accepted
time: 0ms
memory: 3736kb

input:

16 2
0
0
0
1
2
3
2
6
6
0
4
11
0
12
2

output:

11

result:

ok single line: '11'

Test #8:

score: 11
Accepted
time: 0ms
memory: 3800kb

input:

16 3
0
0
0
3
2
2
0
2
8
4
6
11
8
3
5

output:

6

result:

ok single line: '6'

Test #9:

score: 11
Accepted
time: 0ms
memory: 3676kb

input:

18 1
0
0
2
2
2
1
0
3
1
4
2
2
12
0
6
10
13

output:

18

result:

ok single line: '18'

Test #10:

score: 11
Accepted
time: 0ms
memory: 3716kb

input:

18 5
0
0
2
1
0
2
6
5
8
5
0
8
5
4
12
7
10

output:

4

result:

ok single line: '4'

Test #11:

score: 11
Accepted
time: 0ms
memory: 3736kb

input:

18 1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

output:

18

result:

ok single line: '18'

Test #12:

score: 11
Accepted
time: 0ms
memory: 3740kb

input:

18 2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

output:

17

result:

ok single line: '17'

Test #13:

score: 11
Accepted
time: 0ms
memory: 3736kb

input:

17 1
0
1
1
0
0
1
2
0
1
0
2
1
2
2
2
2

output:

17

result:

ok single line: '17'

Test #14:

score: 11
Accepted
time: 0ms
memory: 4044kb

input:

17 2
0
1
0
1
1
0
2
1
2
1
1
0
1
2
0
0

output:

14

result:

ok single line: '14'

Test #15:

score: 11
Accepted
time: 0ms
memory: 3720kb

input:

18 5
0
0
1
1
0
1
2
2
2
1
0
0
1
0
1
1
0

output:

1

result:

ok single line: '1'

Test #16:

score: 11
Accepted
time: 0ms
memory: 3720kb

input:

18 1
0
1
2
0
1
0
4
0
2
3
0
3
2
1
3
4
2

output:

18

result:

ok single line: '18'

Test #17:

score: 11
Accepted
time: 0ms
memory: 3804kb

input:

18 2
0
0
0
1
2
2
3
3
1
3
4
1
1
4
2
4
0

output:

13

result:

ok single line: '13'

Test #18:

score: 11
Accepted
time: 0ms
memory: 3696kb

input:

18 3
0
1
1
3
1
4
2
1
0
2
0
0
1
1
3
0
3

output:

5

result:

ok single line: '5'

Test #19:

score: 11
Accepted
time: 0ms
memory: 3752kb

input:

18 6
0
0
2
3
4
3
3
1
6
1
2
0
2
0
5
2
4

output:

2

result:

ok single line: '2'

Test #20:

score: 11
Accepted
time: 0ms
memory: 3648kb

input:

18 7
0
1
0
3
2
0
6
3
4
4
3
2
6
3
6
0
0

output:

1

result:

ok single line: '1'

Subtask #2:

score: 40
Accepted

Dependency #1:

100%
Accepted

Test #21:

score: 40
Accepted
time: 2ms
memory: 4316kb

input:

1500 1000
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
...

output:

2

result:

ok single line: '2'

Test #22:

score: 40
Accepted
time: 1ms
memory: 3916kb

input:

500 1
0
1
1
1
1
5
5
2
4
4
10
0
0
11
12
6
13
5
17
2
13
12
19
12
8
7
18
5
9
10
15
1
25
21
7
32
29
14
22
12
34
13
1
10
0
20
4
6
44
38
19
12
9
17
20
51
5
3
23
46
39
25
7
42
37
55
13
14
30
46
9
71
47
55
61
43
39
1
76
0
49
8
80
51
51
71
55
44
79
25
80
24
68
15
41
88
72
76
72
38
83
94
88
69
17
9
49
75
64
3...

output:

500

result:

ok single line: '500'

Test #23:

score: 40
Accepted
time: 1ms
memory: 3848kb

input:

500 5
0
1
2
0
3
5
0
2
0
3
10
1
3
5
13
8
8
16
16
4
17
5
1
17
6
1
17
9
20
0
27
27
1
14
24
30
17
5
37
37
9
33
7
20
39
24
29
20
33
19
32
26
13
33
31
21
31
11
20
50
35
34
16
47
17
5
48
55
60
66
57
43
10
68
69
69
34
75
27
41
3
56
8
32
41
85
55
70
5
57
48
61
41
78
19
12
85
73
62
18
79
95
47
39
61
67
88
18
...

output:

89

result:

ok single line: '89'

Test #24:

score: 40
Accepted
time: 1ms
memory: 3944kb

input:

500 10
0
1
1
0
1
0
6
6
8
1
4
0
10
0
13
8
11
16
18
1
17
7
21
22
1
22
9
26
1
4
1
21
5
18
6
7
35
4
31
5
38
36
31
37
25
17
8
28
36
12
26
20
9
11
20
42
38
17
29
42
29
38
28
39
46
39
3
46
22
16
34
25
14
3
21
73
62
77
78
29
43
3
25
48
3
47
17
54
3
43
47
43
42
62
12
44
38
29
75
62
37
96
91
47
97
104
15
84
4...

output:

23

result:

ok single line: '23'

Test #25:

score: 40
Accepted
time: 1ms
memory: 4236kb

input:

1000 1
0
0
0
2
0
4
3
4
4
2
9
4
1
12
2
12
7
12
13
1
12
20
17
5
8
3
7
0
11
18
28
2
29
26
34
24
5
24
22
38
30
0
30
19
17
9
45
32
14
47
42
29
47
5
2
1
44
23
16
48
3
51
28
44
16
24
31
8
49
0
6
12
39
6
13
2
74
77
0
25
78
67
43
83
32
22
69
38
57
32
62
23
12
22
53
85
88
91
3
4
42
96
93
20
59
44
59
102
95
86...

output:

1000

result:

ok single line: '1000'

Test #26:

score: 40
Accepted
time: 1ms
memory: 3836kb

input:

1000 5
0
0
1
1
2
3
0
2
0
1
6
3
10
13
14
1
12
0
2
0
0
16
0
14
13
11
1
4
2
15
21
10
24
4
0
18
16
29
24
2
38
40
17
31
17
30
8
18
12
49
16
47
31
52
53
10
41
28
39
57
20
49
43
1
46
27
59
38
7
37
24
38
36
13
59
34
25
31
63
36
4
32
72
9
17
4
80
87
63
20
68
43
42
64
80
8
88
2
24
68
6
41
34
68
63
66
92
32
93...

output:

191

result:

ok single line: '191'

Test #27:

score: 40
Accepted
time: 1ms
memory: 4000kb

input:

1000 10
0
0
1
2
2
2
4
2
3
9
10
5
7
3
4
6
7
2
8
16
9
5
4
3
17
17
23
10
11
26
15
30
20
32
27
12
5
29
10
15
22
9
40
19
30
1
23
33
16
5
0
5
18
18
5
48
5
50
27
39
35
60
54
11
29
25
43
13
62
29
48
39
13
49
44
66
52
65
54
29
66
15
32
35
76
7
53
40
57
7
7
77
82
83
43
31
28
85
69
1
9
72
32
29
53
57
5
94
57
6...

output:

44

result:

ok single line: '44'

Test #28:

score: 40
Accepted
time: 2ms
memory: 4400kb

input:

1500 12
0
1
2
0
4
2
0
4
6
2
3
10
4
2
12
2
10
1
5
7
7
10
3
10
0
20
1
15
24
25
0
10
30
13
0
14
24
20
7
37
25
6
20
34
37
0
27
28
25
26
28
8
2
25
50
19
19
55
33
26
53
1
53
23
20
23
27
36
17
63
22
39
10
22
26
68
62
26
1
56
11
1
51
12
19
84
42
59
65
73
9
61
63
65
27
44
34
85
31
79
98
72
60
57
92
10
53
45
...

output:

41

result:

ok single line: '41'

Test #29:

score: 40
Accepted
time: 2ms
memory: 4444kb

input:

1500 5
0
0
2
2
3
0
5
0
0
6
2
8
0
12
8
0
2
5
4
4
4
0
0
10
16
4
26
27
10
17
23
21
5
24
27
6
22
28
2
38
24
11
38
25
19
20
22
35
21
7
6
42
21
19
30
30
56
10
23
31
5
35
49
25
2
28
31
56
43
65
55
62
15
45
10
70
30
56
67
28
35
56
4
25
42
34
41
76
12
81
66
66
8
57
47
80
75
14
68
97
12
58
10
75
86
64
101
104...

output:

293

result:

ok single line: '293'

Test #30:

score: 40
Accepted
time: 2ms
memory: 4112kb

input:

1500 15
0
1
2
3
0
0
5
1
8
0
10
1
1
0
4
6
4
2
5
18
1
8
3
8
3
1
20
22
23
28
25
31
3
28
27
8
36
25
3
30
8
29
41
21
41
34
46
37
24
6
33
15
44
44
18
14
37
55
43
59
10
3
40
27
55
44
40
3
22
53
18
11
17
35
1
41
53
41
22
40
29
35
21
26
37
23
38
74
33
84
2
63
82
53
45
24
43
75
1
66
80
52
63
31
63
46
71
65
48...

output:

19

result:

ok single line: '19'

Test #31:

score: 40
Accepted
time: 1ms
memory: 4124kb

input:

1500 40
0
1
0
0
1
1
0
7
2
5
1
9
11
9
12
3
14
8
10
11
3
5
16
5
9
20
18
21
17
8
30
13
28
9
9
30
9
2
9
6
25
28
8
33
43
19
37
41
14
10
44
38
8
53
47
1
46
32
14
24
23
51
14
46
32
32
66
60
49
53
45
35
47
24
72
52
56
22
77
65
23
3
61
33
36
48
12
79
21
46
74
9
24
23
25
36
2
63
95
49
45
68
18
51
16
1
29
48
1...

output:

1

result:

ok single line: '1'

Test #32:

score: 40
Accepted
time: 1ms
memory: 4080kb

input:

1470 4
0
0
1
1
3
4
1
2
5
8
2
8
11
11
9
5
1
0
11
19
8
7
6
1
9
3
13
0
0
16
14
11
12
11
19
14
13
1
12
5
2
6
18
17
12
18
3
7
11
3
15
7
4
19
17
14
17
6
3
11
16
8
3
4
3
7
3
4
17
7
9
7
8
15
6
10
19
12
17
10
10
2
3
4
8
7
4
5
9
1
17
12
10
0
2
13
3
5
4
19
15
10
9
6
7
13
7
5
1
17
18
6
11
12
5
4
17
15
5
0
16
4
...

output:

13

result:

ok single line: '13'

Test #33:

score: 40
Accepted
time: 1ms
memory: 3936kb

input:

1470 10
0
1
2
1
0
3
2
6
5
6
0
0
7
7
3
2
13
5
12
1
5
18
9
5
18
0
18
9
10
19
1
14
15
12
7
7
6
3
8
5
2
17
3
10
6
2
2
12
1
17
19
9
6
7
3
10
18
5
12
5
10
11
2
8
3
19
6
15
19
13
17
6
9
5
1
1
2
10
7
17
4
18
14
7
18
12
0
12
13
17
14
12
12
13
11
0
2
18
9
8
6
3
16
5
9
10
0
13
0
10
6
5
17
0
4
8
3
6
18
14
15
5
...

output:

1

result:

ok single line: '1'

Test #34:

score: 40
Accepted
time: 1ms
memory: 4184kb

input:

1400 10
0
1
1
1
3
3
1
0
7
1
5
3
8
0
6
11
6
13
4
5
5
17
4
6
13
21
3
24
19
21
21
13
0
29
5
2
29
23
15
4
14
24
33
15
44
4
5
13
7
10
46
24
25
15
48
43
16
0
57
35
43
35
33
50
20
46
21
4
6
1
1
42
8
44
8
17
30
70
40
0
8
3
80
10
14
26
66
2
45
1
46
73
0
8
89
25
4
60
51
26
61
50
85
29
38
17
84
88
30
44
1
64
1...

output:

5

result:

ok single line: '5'

Test #35:

score: 40
Accepted
time: 0ms
memory: 4080kb

input:

1400 12
0
0
0
1
0
1
3
2
1
1
4
7
5
0
7
9
13
8
2
18
5
2
14
18
11
12
5
0
9
27
5
1
9
21
4
10
21
25
15
26
23
8
36
15
37
0
1
38
27
49
26
9
20
45
6
48
36
24
34
16
34
11
36
57
28
21
11
53
32
53
44
22
17
24
52
28
9
36
64
71
20
74
23
15
45
0
31
87
43
22
88
21
67
31
12
18
73
67
30
8
7
74
60
85
18
94
16
20
15
6...

output:

5

result:

ok single line: '5'

Test #36:

score: 40
Accepted
time: 1ms
memory: 4236kb

input:

1500 10
0
1
0
2
3
4
5
5
6
1
10
4
6
11
12
7
11
6
7
1
19
14
20
12
21
12
6
1
18
9
16
16
25
19
18
21
22
4
18
24
25
7
14
8
31
12
29
46
40
5
43
4
7
52
12
17
11
42
43
32
9
48
24
17
24
63
8
10
48
1
9
33
28
25
64
20
71
49
69
5
26
1
73
19
42
78
24
84
9
21
39
65
80
12
80
57
50
36
68
92
97
57
46
7
88
72
21
50
5...

output:

7

result:

ok single line: '7'

Test #37:

score: 40
Accepted
time: 1ms
memory: 4196kb

input:

1500 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
79
93
...

output:

50

result:

ok single line: '50'

Test #38:

score: 40
Accepted
time: 2ms
memory: 4216kb

input:

1500 50
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
10...

output:

7

result:

ok single line: '7'

Test #39:

score: 40
Accepted
time: 2ms
memory: 4292kb

input:

1500 70
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
10...

output:

8

result:

ok single line: '8'

Test #40:

score: 40
Accepted
time: 2ms
memory: 4548kb

input:

1500 5
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100...

output:

301

result:

ok single line: '301'

Subtask #3:

score: 49
Accepted

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Test #41:

score: 49
Accepted
time: 107ms
memory: 35880kb

input:

190001 5
0
1
2
0
4
5
0
7
8
0
10
11
0
13
14
0
16
17
0
19
20
0
22
23
0
25
26
0
28
29
0
31
32
0
34
35
0
37
38
0
40
41
0
43
44
0
46
47
0
49
50
0
52
53
0
55
56
0
58
59
0
61
62
0
64
65
0
67
68
0
70
71
0
73
74
0
76
77
0
79
80
0
82
83
0
85
86
0
88
89
0
91
92
0
94
95
0
97
98
0
100
101
0
103
104
0
106
107
0
1...

output:

50462

result:

ok single line: '50462'

Test #42:

score: 49
Accepted
time: 99ms
memory: 29300kb

input:

100000 1
0
1
0
2
2
5
6
5
5
2
8
4
7
3
2
4
3
1
13
17
3
18
11
23
20
9
3
18
26
15
2
11
19
27
5
0
19
9
31
17
2
7
12
2
1
5
40
6
4
33
16
30
8
40
2
26
4
23
0
32
39
32
43
11
52
8
61
15
0
62
16
56
11
34
21
14
64
23
11
71
33
78
60
76
65
19
45
9
38
79
74
45
39
49
55
17
64
53
90
78
70
4
8
13
73
26
4
98
63
70
105...

output:

100000

result:

ok single line: '100000'

Test #43:

score: 49
Accepted
time: 97ms
memory: 29744kb

input:

100000 20
0
1
1
0
2
5
6
3
5
5
2
3
5
13
0
2
8
16
8
5
16
12
4
22
2
7
26
23
26
28
12
17
23
21
4
17
1
31
14
4
24
21
28
33
33
24
35
27
15
33
42
32
32
7
46
39
20
44
52
0
13
5
54
11
43
0
45
43
25
2
44
66
50
20
18
34
28
75
28
21
24
23
10
62
23
79
53
81
71
77
29
43
42
83
86
13
24
87
10
67
60
77
54
74
74
52
8...

output:

454

result:

ok single line: '454'

Test #44:

score: 49
Accepted
time: 92ms
memory: 29860kb

input:

100000 50
0
1
1
2
0
3
5
3
7
9
5
6
4
6
8
7
15
3
10
1
17
15
14
22
2
4
19
9
5
12
2
4
20
18
8
8
35
15
26
13
19
35
30
34
20
42
27
0
26
39
41
43
51
3
39
24
38
56
48
32
59
50
56
33
1
65
61
14
19
61
40
6
50
47
59
54
48
69
29
40
61
76
11
37
16
46
53
23
53
40
63
4
12
50
44
55
89
10
85
9
72
95
81
85
18
85
36
6...

output:

1

result:

ok single line: '1'

Test #45:

score: 49
Accepted
time: 87ms
memory: 30192kb

input:

100000 100
0
1
0
3
1
2
2
7
6
9
7
11
3
12
14
1
2
2
2
14
5
7
15
21
18
0
18
6
18
16
1
7
4
26
34
29
31
37
36
11
38
18
7
29
37
45
4
40
37
4
0
14
9
2
25
36
36
45
40
56
34
41
61
37
32
52
59
65
40
19
67
41
41
43
14
72
49
73
69
67
59
32
50
16
35
44
4
2
25
0
49
4
85
68
57
43
78
96
36
93
23
9
24
47
92
55
54
56...

output:

1

result:

ok single line: '1'

Test #46:

score: 49
Accepted
time: 205ms
memory: 55140kb

input:

200000 2
0
0
0
0
3
4
1
0
0
9
7
7
1
11
3
9
4
12
18
7
14
13
22
9
18
0
6
15
17
19
8
31
5
30
1
23
1
10
38
33
32
2
27
38
8
21
29
33
8
27
28
15
9
1
29
25
32
45
55
26
15
50
17
38
3
22
38
7
64
39
10
67
37
8
44
15
45
40
53
11
16
44
9
51
30
44
8
35
85
42
53
58
36
67
25
78
75
9
42
52
54
50
101
97
10
25
26
62
7...

output:

119331

result:

ok single line: '119331'

Test #47:

score: 49
Accepted
time: 207ms
memory: 54872kb

input:

200000 40
0
1
2
2
0
2
0
1
2
3
2
9
11
3
11
15
14
12
16
8
11
6
0
19
11
16
14
8
21
18
12
3
14
31
23
19
9
19
13
23
32
29
42
16
27
7
26
7
37
38
44
33
8
33
54
43
34
3
16
16
13
14
11
38
46
19
66
30
19
31
33
71
41
41
32
42
8
74
4
79
79
34
35
52
74
68
11
4
1
4
5
42
28
24
1
11
93
4
0
68
61
51
35
83
5
14
102
5...

output:

14

result:

ok single line: '14'

Test #48:

score: 49
Accepted
time: 213ms
memory: 55092kb

input:

200000 80
0
1
0
0
0
2
6
5
6
3
9
4
7
8
14
2
0
17
2
16
2
4
13
8
23
8
3
11
24
27
21
18
6
26
14
27
2
25
13
39
8
1
36
15
25
19
21
14
30
17
46
32
45
19
1
25
30
24
50
48
52
38
51
56
26
3
8
58
17
68
48
61
54
6
28
48
41
51
14
33
34
25
30
35
20
68
26
30
4
86
87
26
8
80
62
85
54
81
48
59
45
11
77
82
5
28
78
84...

output:

1

result:

ok single line: '1'

Test #49:

score: 49
Accepted
time: 196ms
memory: 56912kb

input:

200000 200
0
1
1
3
2
0
4
6
6
5
6
5
6
6
11
6
9
3
13
5
17
5
4
21
5
2
7
0
3
10
27
21
10
24
33
25
19
13
25
17
0
5
31
10
23
43
34
18
25
44
42
39
28
4
23
7
10
17
23
0
42
48
18
35
22
5
44
53
35
16
40
71
38
72
74
68
57
19
33
51
72
45
26
27
72
11
29
42
36
48
50
49
35
83
66
26
58
65
55
25
49
62
6
89
36
97
61
...

output:

1

result:

ok single line: '1'

Test #50:

score: 49
Accepted
time: 65ms
memory: 24536kb

input:

100000 3
0
1
1
0
0
0
1
0
5
4
6
3
3
4
11
5
10
15
16
4
5
16
18
20
11
15
8
25
5
14
21
2
4
30
2
20
27
22
23
31
7
8
24
27
32
8
31
5
35
7
32
1
4
40
9
28
47
11
5
56
36
1
43
32
63
55
33
30
60
35
55
40
23
14
30
18
2
34
36
23
65
20
31
82
47
63
54
52
6
62
84
28
6
56
11
21
17
16
61
47
27
51
27
34
14
37
42
89
14...

output:

1000

result:

ok single line: '1000'

Test #51:

score: 49
Accepted
time: 73ms
memory: 26240kb

input:

100000 10
0
1
2
1
2
1
4
4
8
7
3
9
8
9
4
3
16
3
0
9
7
12
14
23
8
15
20
20
7
27
22
28
2
17
25
34
28
26
3
0
39
39
5
34
34
31
26
45
45
43
1
9
51
44
20
46
30
19
40
51
3
6
49
62
49
46
51
61
22
41
20
40
71
27
17
69
51
5
6
72
79
22
41
76
13
14
35
40
41
78
71
51
91
54
24
82
2
61
44
16
96
25
47
62
99
72
52
85...

output:

79

result:

ok single line: '79'

Test #52:

score: 49
Accepted
time: 70ms
memory: 25624kb

input:

100000 15
0
0
0
0
1
1
6
1
1
3
9
6
0
9
10
1
14
1
4
8
13
3
17
3
2
2
12
15
28
0
21
4
11
14
16
6
23
12
16
1
10
8
22
7
43
15
38
40
33
35
31
0
37
41
3
55
13
20
31
27
18
40
17
49
61
35
64
35
0
14
19
16
29
44
15
5
29
20
9
13
0
46
27
46
69
22
80
56
7
20
80
82
35
85
16
66
70
45
21
68
14
16
20
95
92
23
46
90
9...

output:

23

result:

ok single line: '23'

Test #53:

score: 49
Accepted
time: 143ms
memory: 50776kb

input:

200000 4
0
0
2
0
1
5
5
5
6
2
3
5
11
9
2
0
2
8
4
11
5
6
12
8
15
11
11
1
2
6
7
29
12
4
1
17
24
23
14
2
29
16
9
20
42
4
40
47
38
37
23
10
0
28
9
55
51
45
56
32
31
31
12
39
43
35
47
16
44
7
51
34
30
7
10
1
59
65
59
34
32
7
74
82
60
43
25
80
10
73
41
59
81
34
81
80
62
92
51
84
70
97
81
94
53
30
36
3
27
4...

output:

600

result:

ok single line: '600'

Test #54:

score: 49
Accepted
time: 138ms
memory: 49124kb

input:

200000 12
0
1
0
2
1
3
5
1
4
1
4
5
3
9
2
7
15
13
14
3
19
21
2
11
12
1
3
4
15
27
0
28
10
25
30
13
21
28
26
17
0
17
35
10
17
37
14
15
39
24
33
36
32
27
31
1
45
0
0
6
21
3
3
19
37
18
41
48
8
6
40
66
29
8
72
47
21
46
1
38
14
46
64
57
5
44
48
86
56
42
83
51
89
25
15
65
83
66
98
85
40
56
26
74
101
38
69
52...

output:

48

result:

ok single line: '48'

Test #55:

score: 49
Accepted
time: 154ms
memory: 48796kb

input:

200000 17
0
1
1
0
1
5
5
1
7
9
0
4
6
3
6
6
7
12
10
0
7
19
3
9
3
18
9
16
16
1
5
21
14
21
9
2
24
18
11
20
37
5
34
13
10
3
11
31
13
37
32
26
22
14
51
8
56
35
46
58
57
28
26
26
18
65
37
62
16
45
38
10
18
28
0
21
59
25
18
25
42
7
23
17
63
16
60
45
77
57
81
54
31
28
89
78
91
77
21
89
42
36
38
7
94
70
4
34
...

output:

12

result:

ok single line: '12'

Test #56:

score: 49
Accepted
time: 3ms
memory: 4656kb

input:

2400 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100...

output:

435

result:

ok single line: '435'

Test #57:

score: 49
Accepted
time: 19ms
memory: 11492kb

input:

21200 2000
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99...

output:

11

result:

ok single line: '11'

Test #58:

score: 49
Accepted
time: 82ms
memory: 44344kb

input:

100000 10000
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
...

output:

9

result:

ok single line: '9'

Test #59:

score: 49
Accepted
time: 218ms
memory: 83144kb

input:

199999 10000
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
...

output:

11

result:

ok single line: '11'

Test #60:

score: 49
Accepted
time: 106ms
memory: 36800kb

input:

195001 7
0
1
2
3
0
5
6
7
0
9
10
11
0
13
14
15
0
17
18
19
0
21
22
23
0
25
26
27
0
29
30
31
0
33
34
35
0
37
38
39
0
41
42
43
0
45
46
47
0
49
50
51
0
53
54
55
0
57
58
59
0
61
62
63
0
65
66
67
0
69
70
71
0
73
74
75
0
77
78
79
0
81
82
83
0
85
86
87
0
89
90
91
0
93
94
95
0
97
98
99
0
101
102
103
0
105
106...

output:

40021

result:

ok single line: '40021'

Test #61:

score: 49
Accepted
time: 158ms
memory: 42868kb

input:

190001 200
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99...

output:

1000

result:

ok single line: '1000'