QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#636533 | #9434. Italian Cuisine | maspy | AC ✓ | 21ms | 9556kb | C++20 | 22.7kb | 2024-10-13 00:20:21 | 2024-10-13 00:20:28 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "/home/maspy/compro/library/geo/base.hpp"
template <typename T>
struct Point {
T x, y;
Point() : x(0), y(0) {}
template <typename A, typename B>
Point(A x, B y) : x(x), y(y) {}
template <typename A, typename B>
Point(pair<A, B> p) : x(p.fi), y(p.se) {}
Point operator+=(const Point p) {
x += p.x, y += p.y;
return *this;
}
Point operator-=(const Point p) {
x -= p.x, y -= p.y;
return *this;
}
Point operator+(Point p) const { return {x + p.x, y + p.y}; }
Point operator-(Point p) const { return {x - p.x, y - p.y}; }
bool operator==(Point p) const { return x == p.x && y == p.y; }
bool operator!=(Point p) const { return x != p.x || y != p.y; }
Point operator-() const { return {-x, -y}; }
Point operator*(T t) const { return {x * t, y * t}; }
Point operator/(T t) const { return {x / t, y / t}; }
bool operator<(Point p) const {
if (x != p.x) return x < p.x;
return y < p.y;
}
T dot(Point other) { return x * other.x + y * other.y; }
T det(Point other) { return x * other.y - y * other.x; }
double norm() { return sqrtl(x * x + y * y); }
double angle() { return atan2(y, x); }
Point rotate(double theta) {
static_assert(!is_integral<T>::value);
double c = cos(theta), s = sin(theta);
return Point{c * x - s * y, s * x + c * y};
}
};
#ifdef FASTIO
template <typename T>
void rd(Point<T> &p) {
fastio::rd(p.x), fastio::rd(p.y);
}
template <typename T>
void wt(Point<T> &p) {
fastio::wt(p.x);
fastio::wt(' ');
fastio::wt(p.y);
}
#endif
// A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1
template <typename T>
int ccw(Point<T> A, Point<T> B, Point<T> C) {
T x = (B - A).det(C - A);
if (x > 0) return 1;
if (x < 0) return -1;
return 0;
}
template <typename REAL, typename T, typename U>
REAL dist(Point<T> A, Point<U> B) {
REAL dx = REAL(A.x) - REAL(B.x);
REAL dy = REAL(A.y) - REAL(B.y);
return sqrt(dx * dx + dy * dy);
}
// ax+by+c
template <typename T>
struct Line {
T a, b, c;
Line(T a, T b, T c) : a(a), b(b), c(c) {}
Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; }
Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {}
template <typename U>
U eval(Point<U> P) {
return a * P.x + b * P.y + c;
}
template <typename U>
T eval(U x, U y) {
return a * x + b * y + c;
}
// 同じ直線が同じ a,b,c で表現されるようにする
void normalize() {
static_assert(is_same_v<T, int> || is_same_v<T, long long>);
T g = gcd(gcd(abs(a), abs(b)), abs(c));
a /= g, b /= g, c /= g;
if (b < 0) { a = -a, b = -b, c = -c; }
if (b == 0 && a < 0) { a = -a, b = -b, c = -c; }
}
bool is_parallel(Line other) { return a * other.b - b * other.a == 0; }
bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; }
};
template <typename T>
struct Segment {
Point<T> A, B;
Segment(Point<T> A, Point<T> B) : A(A), B(B) {}
Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {}
bool contain(Point<T> C) {
T det = (C - A).det(B - A);
if (det != 0) return 0;
return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0;
}
Line<T> to_Line() { return Line(A, B); }
};
template <typename REAL>
struct Circle {
Point<REAL> O;
REAL r;
Circle(Point<REAL> O, REAL r) : O(O), r(r) {}
Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {}
template <typename T>
bool contain(Point<T> p) {
REAL dx = p.x - O.x, dy = p.y - O.y;
return dx * dx + dy * dy <= r * r;
}
};
#line 2 "/home/maspy/compro/library/geo/convex_polygon.hpp"
#line 2 "/home/maspy/compro/library/geo/convex_hull.hpp"
#line 4 "/home/maspy/compro/library/geo/convex_hull.hpp"
// allow_180=true で同一座標点があるとこわれる
// full なら I[0] が sorted で min になる
template <typename T, bool allow_180 = false>
vector<int> ConvexHull(vector<Point<T>>& XY, string mode = "full", bool sorted = false) {
assert(mode == "full" || mode == "lower" || mode == "upper");
ll N = XY.size();
if (N == 1) return {0};
if (N == 2) {
if (XY[0] < XY[1]) return {0, 1};
if (XY[1] < XY[0]) return {1, 0};
return {0};
}
vc<int> I(N);
if (sorted) {
FOR(i, N) I[i] = i;
} else {
I = argsort(XY);
}
if constexpr (allow_180) { FOR(i, N - 1) assert(XY[i] != XY[i + 1]); }
auto check = [&](ll i, ll j, ll k) -> bool {
T det = (XY[j] - XY[i]).det(XY[k] - XY[i]);
if constexpr (allow_180) return det >= 0;
return det > T(0);
};
auto calc = [&]() {
vector<int> P;
for (auto&& k: I) {
while (P.size() > 1) {
auto i = P[P.size() - 2];
auto j = P[P.size() - 1];
if (check(i, j, k)) break;
P.pop_back();
}
P.eb(k);
}
return P;
};
vc<int> P;
if (mode == "full" || mode == "lower") {
vc<int> Q = calc();
P.insert(P.end(), all(Q));
}
if (mode == "full" || mode == "upper") {
if (!P.empty()) P.pop_back();
reverse(all(I));
vc<int> Q = calc();
P.insert(P.end(), all(Q));
}
if (mode == "upper") reverse(all(P));
while (len(P) >= 2 && XY[P[0]] == XY[P.back()]) P.pop_back();
return P;
}
#line 5 "/home/maspy/compro/library/geo/convex_polygon.hpp"
// n=2 は現状サポートしていない
template <typename T>
struct ConvexPolygon {
using P = Point<T>;
int n;
vc<P> point;
ConvexPolygon(vc<P> point_) : n(len(point_)), point(point_) {
assert(n >= 3);
FOR(i, n) {
int j = nxt_idx(i), k = nxt_idx(j);
assert((point[j] - point[i]).det(point[k] - point[i]) >= 0);
}
}
// 比較関数 comp(i,j)
template <typename F>
int periodic_min_comp(F comp) {
int L = 0, M = n, R = n + n;
while (1) {
if (R - L == 2) break;
int L1 = (L + M) / 2, R1 = (M + R + 1) / 2;
if (comp(L1 % n, M % n)) { R = M, M = L1; }
elif (comp(R1 % n, M % n)) { L = M, M = R1; }
else {
L = L1, R = R1;
}
}
return M % n;
}
int nxt_idx(int i) { return (i + 1 == n ? 0 : i + 1); }
int prev_idx(int i) { return (i == 0 ? n - 1 : i - 1); }
// 中:1, 境界:0, 外:-1. test した.
int side(P p) {
int L = 1, R = n - 1;
T a = (point[L] - point[0]).det(p - point[0]);
T b = (point[R] - point[0]).det(p - point[0]);
if (a < 0 || b > 0) return -1;
// p は 0 から見て [L,R] 方向
while (R - L >= 2) {
int M = (L + R) / 2;
T c = (point[M] - point[0]).det(p - point[0]);
if (c < 0)
R = M, b = c;
else
L = M, a = c;
}
T c = (point[R] - point[L]).det(p - point[L]);
T x = min({a, -b, c});
if (x < 0) return -1;
if (x > 0) return 1;
// on triangle p[0]p[L]p[R]
if (p == point[0]) return 0;
if (c != 0 && a == 0 && L != 1) return 1;
if (c != 0 && b == 0 && R != n - 1) return 1;
return 0;
}
// return {min, idx}. test した.
pair<T, int> min_dot(P p) {
int idx = periodic_min_comp([&](int i, int j) -> bool { return point[i].dot(p) < point[j].dot(p); });
return {point[idx].dot(p), idx};
}
// return {max, idx}. test した.
pair<T, int> max_dot(P p) {
int idx = periodic_min_comp([&](int i, int j) -> bool { return point[i].dot(p) > point[j].dot(p); });
return {point[idx].dot(p), idx};
}
// p から見える範囲. p 辺に沿って見えるところも見えるとする. test した.
// 多角形からの反時計順は [l,r] だが p から見た偏角順は [r,l] なので注意
pair<int, int> visible_range(P p) {
int a = periodic_min_comp([&](int i, int j) -> bool { return ((point[i] - p).det(point[j] - p) < 0); });
int b = periodic_min_comp([&](int i, int j) -> bool { return ((point[i] - p).det(point[j] - p) > 0); });
if ((p - point[a]).det(p - point[prev_idx(a)]) == T(0)) a = prev_idx(a);
if ((p - point[b]).det(p - point[nxt_idx(b)]) == T(0)) b = nxt_idx(b);
return {a, b};
}
// 線分が「内部と」交わるか
// https://codeforces.com/contest/1906/problem/D
bool check_cross(P A, P B) {
FOR(2) {
swap(A, B);
auto [a, b] = visible_range(A);
if ((point[a] - A).det(B - A) >= 0) return 0;
if ((point[b] - A).det(B - A) <= 0) return 0;
}
return 1;
}
vc<T> AREA;
// point[i,...,j] (inclusive) の面積
T area_between(int i, int j) {
assert(0 <= i && i < n);
assert((0 <= j && j < n) || (i <= j && j < i + n));
if (i > j) j += n;
if (AREA.empty()) build_AREA();
return AREA[j] - AREA[i] + (point[j % n].det(point[i]));
}
void build_AREA() {
AREA.resize(2 * n);
FOR(i, n) AREA[n + i] = AREA[i] = point[i].det(point[nxt_idx(i)]);
AREA = cumsum<T>(AREA);
}
};
#line 6 "main.cpp"
using P = Point<ll>;
void solve() {
LL(N);
P O;
read(O);
LL(R);
VEC(P, A, N);
ConvexPolygon<ll> X(A);
ll ANS = 0;
FOR(i, N) {
int j = binary_search(
[&](int j) -> bool {
j %= N;
i128 det = (A[j] - A[i]).det(O - A[i]);
if (det <= 0) return 0;
i128 d = (A[j] - A[i]).dot(A[j] - A[i]);
return d * R * R <= det * det;
},
i + 1, i + N - 1);
chmax(ANS, X.area_between(i, j));
}
print(ANS);
}
signed main() {
INT(T);
FOR(T) solve();
}
这程序好像有点Bug,我给组数据试试?
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3632kb
input:
3 5 1 1 1 0 0 1 0 5 0 3 3 0 5 6 2 4 1 2 0 4 0 6 3 4 6 2 6 0 3 4 3 3 1 3 0 6 3 3 6 0 3
output:
5 24 0
result:
ok 3 number(s): "5 24 0"
Test #2:
score: 0
Accepted
time: 1ms
memory: 3680kb
input:
1 6 0 0 499999993 197878055 -535013568 696616963 -535013568 696616963 40162440 696616963 499999993 -499999993 499999993 -499999993 -535013568
output:
0
result:
ok 1 number(s): "0"
Test #3:
score: 0
Accepted
time: 8ms
memory: 3732kb
input:
6666 19 -142 -128 26 -172 -74 -188 -86 -199 -157 -200 -172 -199 -186 -195 -200 -175 -197 -161 -188 -144 -177 -127 -162 -107 -144 -90 -126 -87 -116 -86 -104 -89 -97 -108 -86 -125 -80 -142 -74 -162 -72 16 -161 -161 17 -165 -190 -157 -196 -154 -197 -144 -200 -132 -200 -128 -191 -120 -172 -123 -163 -138...
output:
5093 3086 2539 668 3535 7421 4883 5711 5624 1034 2479 3920 4372 2044 4996 5070 2251 4382 4175 1489 1154 3231 4038 1631 5086 14444 1692 6066 687 1512 4849 5456 2757 8341 8557 8235 1013 5203 10853 6042 6300 4480 2303 2728 1739 2187 3385 4266 6322 909 4334 1518 948 5036 1449 2376 3180 4810 1443 1786 47...
result:
ok 6666 numbers
Test #4:
score: 0
Accepted
time: 9ms
memory: 4240kb
input:
6660 19 -689502500 -712344644 121094647 -534017213 -493851833 -578925616 -506634533 -663335128 -540066520 -748890119 -585225068 -847722967 -641694086 -916653030 -716279342 -956235261 -766049951 -1000000000 -836145979 -963288744 -923225928 -948140134 -944751289 -920681768 -972760883 -872492254 -10000...
output:
117285633945667137 89094762176992129 84336379088082383 63629451600307531 193020267813347512 73921930794195237 59524748406448173 34419869321856821 207356845785317033 185783506654647921 80463327658075813 156569165998743736 129550296314602340 157065066097450631 77819745596643484 40796197589680466 11394...
result:
ok 6660 numbers
Test #5:
score: 0
Accepted
time: 10ms
memory: 3944kb
input:
6646 17 -822557900 -719107452 81678600 -810512657 -985436857 -717822260 -1000000000 -636451281 -949735403 -599009378 -915571539 -596352662 -824307789 -736572772 -553995003 -765031367 -500309996 -797636289 -458500641 -842827212 -428669086 -871078362 -428977078 -928761972 -490982466 -999825512 -570408...
output:
110526056201314429 15027921575542560 53254517372894023 258485758440262622 34392829191543913 76614213562057620 145259866156654928 42339731416270977 143102643161355094 106105394104280855 145392090901459236 43856914998019051 173982988807640937 44231578293584008 58978505810355496 23485666110810764 12532...
result:
ok 6646 numbers
Test #6:
score: 0
Accepted
time: 9ms
memory: 4236kb
input:
6669 15 -874867377 -757943357 7111757 -974567193 -807217609 -949619167 -890139925 -934615014 -930145748 -888846948 -960741232 -795467329 -1000000000 -722124377 -940364550 -622857698 -842665231 -578818283 -747428314 -780030596 -534753737 -866558348 -484345048 -928090924 -519994734 -987269004 -5856231...
output:
182950707425830089 29338404516797685 84520746595092394 105477320399449524 73884037892247358 49031829753894899 48108760133499810 178434777514737858 31287633742235961 84173958668093920 15282003310382472 106987783997819044 50751134064267722 22920035202317059 79797616191974237 75995194318427644 94277118...
result:
ok 6669 numbers
Test #7:
score: 0
Accepted
time: 6ms
memory: 3972kb
input:
6673 11 -746998467 -874016929 25938500 -1000000000 -901415571 -645111069 -992353393 -547811885 -1000000000 -483640464 -931109189 -546643988 -877114659 -625764830 -834162211 -723093733 -813353581 -811419393 -799116488 -879584543 -791576283 -944145006 -828676656 -998000881 -880308971 14 -826271552 -81...
output:
54570343814105147 74950556637655098 38052401037814742 109159348998561498 21083015515232346 31649646072675313 42326841119894707 158636477858979605 129690295986443039 112077348808529800 16900062518936042 63732368902300348 79182769273740625 142098431062104007 111981825046535522 38580332981675983 631960...
result:
ok 6673 numbers
Test #8:
score: 0
Accepted
time: 18ms
memory: 9524kb
input:
1 100000 312059580 -177336163 523906543 43599219 998132845 43570757 998134606 43509809 998138374 43456461 998141672 43379797 998146410 43325475 998149757 43283580 998152335 43207966 998156986 43131288 998161701 43054854 998166387 42988614 998170421 42922795 998174418 42844022 998179189 42778015 9981...
output:
2336396422009996549
result:
ok 1 number(s): "2336396422009996549"
Test #9:
score: 0
Accepted
time: 21ms
memory: 9524kb
input:
1 100000 -251564816 -78082096 448753841 -80224677 990816180 -80259466 990812190 -80305475 990806906 -80353208 990801417 -80432095 990792336 -80499807 990784538 -80550474 990778690 -80584379 990774772 -80646058 990767643 -80721039 990758969 -80765340 990753844 -80831878 990746146 -80884094 990740100 ...
output:
2228503226896114609
result:
ok 1 number(s): "2228503226896114609"
Test #10:
score: 0
Accepted
time: 11ms
memory: 9556kb
input:
1 100000 -21114562 65507992 38717262 185741374 -973388860 185752671 -973385638 185780414 -973377719 185856314 -973356051 185933967 -973333881 185954554 -973328000 186032784 -973305637 186080608 -973291964 186146989 -973272982 186174716 -973265053 186244761 -973245018 186322991 -973222629 186396908 -...
output:
3072519712977372770
result:
ok 1 number(s): "3072519712977372770"
Test #11:
score: 0
Accepted
time: 20ms
memory: 9404kb
input:
1 100000 268671 -2666521 876866632 230011647 -961116491 230075890 -961094782 230134968 -961074817 230168748 -961063401 230244475 -961037808 230269796 -961029249 230315761 -961013704 230385411 -960990142 230415463 -960979975 230481755 -960957543 230553370 -960933304 230586681 -960922029 230613411 -96...
output:
133463776650326652
result:
ok 1 number(s): "133463776650326652"
Test #12:
score: 0
Accepted
time: 14ms
memory: 9468kb
input:
1 100000 -2718704 778274 581723239 -978709486 169949360 -978714995 169927878 -978732247 169860576 -978751379 169785908 -978765698 169730020 -978773095 169701140 -978776354 169688400 -978789899 169635448 -978801355 169590640 -978818799 169522411 -978836755 169452110 -978848869 169404635 -978865973 16...
output:
868255658642677668
result:
ok 1 number(s): "868255658642677668"
Test #13:
score: 0
Accepted
time: 16ms
memory: 9476kb
input:
1 100000 -2748577 -2474335 98902294 951770249 -240991282 951794130 -240924574 951808902 -240883307 951834639 -240811406 951854284 -240756524 951859830 -240741030 951881397 -240680772 951908083 -240606202 951935455 -240529694 951945987 -240500253 951973326 -240423829 951997817 -240355366 952015600 -2...
output:
2586612861573259216
result:
ok 1 number(s): "2586612861573259216"
Extra Test:
score: 0
Extra Test Passed