QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#635963#8628. 最大连续和wzj33300Compile Error//C++2316.1kb2024-10-12 21:38:062024-10-12 21:38:07

Judging History

你现在查看的是最新测评结果

  • [2024-10-12 21:38:07]
  • 评测
  • [2024-10-12 21:38:06]
  • 提交

answer

/**
  * created     : 12.10.2024 20:25:04
  * author      : wzj33300
  */

#include <bits/stdc++.h>
using namespace std;

#ifdef DEBUG
#include <algo/debug.h>
#else
#define debug(...) 42
#define assert(...) 42
#endif

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using db = long double;  // or double, if TL is tight
using str = string;      // yay python!

// pairs
using pi = pair<int, int>;
using pl = pair<ll, ll>;
using pd = pair<db, db>;
#define mp make_pair
#define fi first
#define se second

// ^ lol this makes everything look weird but I'll try it
template <class T>
using vc = vector<T>;
template <class T, size_t SZ>
using AR = array<T, SZ>;
using vi = vc<int>;
using vb = vc<bool>;
using vl = vc<ll>;
using vd = vc<db>;
using vs = vc<str>;
using vpi = vc<pi>;
using vpl = vc<pl>;
using vpd = vc<pd>;

// vectors
// oops size(x), rbegin(x), rend(x) need C++17
#define sz(x) int((x).size())
#define bg(x) begin(x)
#define all(x) bg(x), end(x)
#define rall(x) x.rbegin(), x.rend()
#define sor(x) sort(all(x))
#define rsz resize
#define ins insert
#define pb push_back
#define eb emplace_back
#define ft front()
#define bk back()

#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep1(i, n) for (int i = 1; i < (n); ++i)
#define rep1n(i, n) for (int i = 1; i <= (n); ++i)
#define repr(i, n) for (int i = (n) - 1; i >= 0; --i)

#define rep_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))

#define lb lower_bound
#define ub upper_bound
template <class T>
int lwb(vc<T>& a, const T& b) {
  return int(lb(all(a), b) - bg(a));
}
template <class T>
int upb(vc<T>& a, const T& b) {
  return int(ub(all(a), b) - bg(a));
}
// const int MOD = 998244353;  // 1e9+7;
const int Big = 1e9;  // not too close to INT_MAX
const ll BIG = 1e18;  // not too close to LLONG_MAX
const db PI = acos((db)-1);
const int dx[4]{1, 0, -1, 0}, dy[4]{0, 1, 0, -1};  // for every grid problem!!
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

int pct(int x) { return __builtin_popcount(x); }
int pct(u32 x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int pct(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <class T>
bool ckmin(T& a, const T& b) {
  return b < a ? a = b, 1 : 0;
}  // set a = min(a,b)
template <class T>
bool ckmax(T& a, const T& b) {
  return a < b ? a = b, 1 : 0;
}  // set a = max(a,b)

template <class T, class U>
T fstTrue(T lo, T hi, U f) {
  ++hi;
  assert(lo <= hi);  // assuming f is increasing
  while (lo < hi) {  // find first index such that f is true
    T mid = lo + (hi - lo) / 2;
    f(mid) ? hi = mid : lo = mid + 1;
  }
  return lo;
}
template <class T, class U>
T lstTrue(T lo, T hi, U f) {
  --lo;
  assert(lo <= hi);  // assuming f is decreasing
  while (lo < hi) {  // find first index such that f is true
    T mid = lo + (hi - lo + 1) / 2;
    f(mid) ? lo = mid : hi = mid - 1;
  }
  return lo;
}

namespace seg_tree {

// Floor of log_2(a); index of highest 1-bit
inline int floor_log_2(int a) {
  return a ? bit_width(unsigned(a)) - 1 : -1;
}

struct point {
  int a;
  point() : a(0) {}
  explicit point(int a_) : a(a_) { assert(a >= -1); }

  explicit operator bool() { return bool(a); }

  // This is useful so you can directly do array indices
  /* implicit */ operator int() const { return a; }

  point c(bool z) const {
    return point((a << 1) | z);
  }

  point operator[](bool z) const {
    return c(z);
  }

  point p() const {
    return point(a >> 1);
  }

  friend std::ostream& operator<<(std::ostream& o, const point& p) { return o << int(p); }

  template <typename F>
  void for_each(F f) const {
    for (int v = a; v > 0; v >>= 1) {
      f(point(v));
    }
  }

  template <typename F>
  void for_parents_down(F f) const {
    // strictly greater than 0
    for (int L = floor_log_2(a); L > 0; L--) {
      f(point(a >> L));
    }
  }

  template <typename F>
  void for_parents_up(F f) const {
    for (int v = a >> 1; v > 0; v >>= 1) {
      f(point(v));
    }
  }

  point& operator++() {
    ++a;
    return *this;
  }
  point operator++(int) { return point(a++); }
  point& operator--() {
    --a;
    return *this;
  }
  point operator--(int) { return point(a--); }
};

struct range {
  int a, b;
  range() : a(1), b(1) {}
  range(int a_, int b_) : a(a_), b(b_) {
    assert(1 <= a && a <= b && b <= 2 * a);
  }
  explicit range(std::array<int, 2> r) : range(r[0], r[1]) {}

  explicit operator std::array<int, 2>() const {
    return {a, b};
  }

  const int& operator[](bool z) const {
    return z ? b : a;
  }

  friend std::ostream& operator<<(std::ostream& o, const range& r) { return o << "[" << r.a << ".." << r.b << ")"; }

  // Iterate over the range from outside-in.
  //   Calls f(point a)
  template <typename F>
  void for_each(F f) const {
    for (int x = a, y = b; x < y; x >>= 1, y >>= 1) {
      if (x & 1) f(point(x++));
      if (y & 1) f(point(--y));
    }
  }

  // Iterate over the range from outside-in.
  //   Calls f(point a, bool is_right)
  template <typename F>
  void for_each_with_side(F f) const {
    for (int x = a, y = b; x < y; x >>= 1, y >>= 1) {
      if (x & 1) f(point(x++), false);
      if (y & 1) f(point(--y), true);
    }
  }

  // Iterate over the range from left to right.
  //    Calls f(point)
  template <typename F>
  void for_each_l_to_r(F f) const {
    int anc_depth = floor_log_2((a - 1) ^ b);
    int anc_msk = (1 << anc_depth) - 1;
    for (int v = (-a) & anc_msk; v; v &= v - 1) {
      int i = countr_zero(unsigned(v));
      f(point(((a - 1) >> i) + 1));
    }
    for (int v = b & anc_msk; v;) {
      int i = floor_log_2(v);
      f(point((b >> i) - 1));
      v ^= (1 << i);
    }
  }

  // Iterate over the range from right to left.
  //    Calls f(point)
  template <typename F>
  void for_each_r_to_l(F f) const {
    int anc_depth = floor_log_2((a - 1) ^ b);
    int anc_msk = (1 << anc_depth) - 1;
    for (int v = b & anc_msk; v; v &= v - 1) {
      int i = countr_zero(unsigned(v));
      f(point((b >> i) - 1));
    }
    for (int v = (-a) & anc_msk; v;) {
      int i = floor_log_2(v);
      f(point(((a - 1) >> i) + 1));
      v ^= (1 << i);
    }
  }

  template <typename F>
  void for_parents_down(F f) const {
    int x = a, y = b;
    if ((x ^ y) > x) {
      x <<= 1, std::swap(x, y);
    }
    int dx = countr_zero(unsigned(x));
    int dy = countr_zero(unsigned(y));
    int anc_depth = floor_log_2((x - 1) ^ y);
    for (int i = floor_log_2(x); i > dx; i--) {
      f(point(x >> i));
    }
    for (int i = anc_depth; i > dy; i--) {
      f(point(y >> i));
    }
  }

  template <typename F>
  void for_parents_up(F f) const {
    int x = a, y = b;
    if ((x ^ y) > x) {
      x <<= 1, std::swap(x, y);
    }
    int dx = countr_zero(unsigned(x));
    int dy = countr_zero(unsigned(y));
    int anc_depth = floor_log_2((x - 1) ^ y);
    for (int i = dx + 1; i <= anc_depth; i++) {
      f(point(x >> i));
    }
    for (int v = y >> (dy + 1); v; v >>= 1) {
      f(point(v));
    }
  }
};

struct in_order_layout {
  // Alias them in for convenience
  using point = seg_tree::point;
  using range = seg_tree::range;

  int n, s;
  in_order_layout() : n(0), s(0) {}
  in_order_layout(int n_) : n(n_), s(n ? bit_ceil(unsigned(n)) : 0) {}

  point get_point(int a) const {
    assert(0 <= a && a < n);
    a += s;
    return point(a >= 2 * n ? a - n : a);
  }

  range get_range(int a, int b) const {
    assert(0 <= a && a <= b && b <= n);
    if (n == 0) return range();
    a += s, b += s;
    return range((a >= 2 * n ? 2 * (a - n) : a), (b >= 2 * n ? 2 * (b - n) : b));
  }

  range get_range(std::array<int, 2> p) const {
    return get_range(p[0], p[1]);
  }

  int get_leaf_index(point pt) const {
    int a = int(pt);
    assert(n <= a && a < 2 * n);
    return (a < s ? a + n : a) - s;
  }

  std::array<int, 2> get_node_bounds(point pt) const {
    int a = int(pt);
    assert(1 <= a && a < 2 * n);
    int l = countl_zero(unsigned(a)) - countl_zero(unsigned(2 * n - 1));
    int x = a << l, y = (a + 1) << l;
    assert(s <= x && x < y && y <= 2 * s);
    return {(x >= 2 * n ? (x >> 1) + n : x) - s, (y >= 2 * n ? (y >> 1) + n : y) - s};
  }

  int get_node_split(point pt) const {
    int a = int(pt);
    assert(1 <= a && a < n);
    int l = countl_zero(unsigned(2 * a + 1)) - countl_zero(unsigned(2 * n - 1));
    int x = (2 * a + 1) << l;
    assert(s <= x && x < 2 * s);
    return (x >= 2 * n ? (x >> 1) + n : x) - s;
  }

  int get_node_size(point pt) const {
    auto bounds = get_node_bounds(pt);
    return bounds[1] - bounds[0];
  }
};

struct circular_layout {
  // Alias them in for convenience
  using point = seg_tree::point;
  using range = seg_tree::range;

  int n;
  circular_layout() : n(0) {}
  circular_layout(int n_) : n(n_) {}

  point get_point(int a) const {
    assert(0 <= a && a < n);
    return point(n + a);
  }

  range get_range(int a, int b) const {
    assert(0 <= a && a <= b && b <= n);
    if (n == 0) return range();
    return range(n + a, n + b);
  }

  range get_range(std::array<int, 2> p) const {
    return get_range(p[0], p[1]);
  }

  int get_leaf_index(point pt) const {
    int a = int(pt);
    assert(n <= a && a < 2 * n);
    return a - n;
  }

  // Returns {x,y} so that 0 <= x < n and 1 <= y <= n
  // If the point is non-wrapping, then 0 <= x < y <= n
  std::array<int, 2> get_node_bounds(point pt) const {
    int a = int(pt);
    assert(1 <= a && a < 2 * n);
    int l = countl_zero(unsigned(a)) - countl_zero(unsigned(2 * n - 1));
    int s = bit_ceil(unsigned(n));
    int x = a << l, y = (a + 1) << l;
    assert(s <= x && x < y && y <= 2 * s);
    return {(x >= 2 * n ? x >> 1 : x) - n, (y > 2 * n ? y >> 1 : y) - n};
  }

  // Returns the split point of the node, such that 1 <= s <= n.
  int get_node_split(point pt) const {
    int a = int(pt);
    assert(1 <= a && a < n);
    return get_node_bounds(pt.c(0))[1];
  }

  int get_node_size(point pt) const {
    auto bounds = get_node_bounds(pt);
    int r = bounds[1] - bounds[0];
    return r > 0 ? r : r + n;
  }
};

}  // namespace seg_tree

template <typename Info>
class SimpleSegmentTree {
 public:
  int n;
  vector<Info> infos;
  seg_tree::in_order_layout layout;

  void UpdateNode(seg_tree::point a) {
    infos[a] = infos[a.c(0)].Unite(infos[a.c(1)]);
  }

  SimpleSegmentTree(int n_) : SimpleSegmentTree(vector<Info>(n_)) {}

  SimpleSegmentTree(const vector<Info>& a) : n(int(a.size())) {
    assert(n > 0);
    infos.resize(2 * n);
    layout = seg_tree::in_order_layout(n);
    for (int i = 0; i < n; i++) {
      infos[layout.get_point(i)] = a[i];
    }
    for (int i = n - 1; i >= 1; i--) {
      infos[i] = infos[2 * i].Unite(infos[2 * i + 1]);
    }
  }

  void Set(int p, const Info& v) {
    auto pt = layout.get_point(p);
    infos[pt] = v;
    pt.for_parents_up([&](seg_tree::point a) {
      UpdateNode(a);
    });
  }

  Info Query(int l, int r) {
    auto rng = layout.get_range(l, r);
    Info res;
    rng.for_each_l_to_r([&](seg_tree::point a) {
      res = res.Unite(infos[a]);
    });
    return res;
  }

  Info Get(int p) {
    auto pt = layout.get_point(p);
    return infos[pt];
  }

  template <typename F>
  int MaxRight(int l, F f) {
    auto rng = layout.get_range(l, n);
    int res = n;
    Info sum;
    rng.for_each_l_to_r([&](seg_tree::point a) {
      if (res != n) {
        return;
      }
      auto new_sum = sum.Unite(infos[a]);
      if (f(new_sum)) {
        sum = new_sum;
        return;
      }
      while (a < n) {
        new_sum = sum.Unite(infos[a.c(0)]);
        if (f(new_sum)) {
          sum = new_sum;
          a = a.c(1);
        } else {
          a = a.c(0);
        }
      }
      res = layout.get_node_bounds(a)[0];
    });
    return res;
  }

  template <typename F>
  int MinLeft(int r, F f) {
    auto rng = layout.get_range(0, r);
    int res = 0;
    Info sum;
    rng.for_each_r_to_l([&](seg_tree::point a) {
      if (res != 0) {
        return;
      }
      auto new_sum = infos[a].Unite(sum);
      if (f(new_sum)) {
        sum = new_sum;
        return;
      }
      while (a < n) {
        new_sum = infos[a.c(1)].Unite(sum);
        if (f(new_sum)) {
          sum = new_sum;
          a = a.c(0);
        } else {
          a = a.c(1);
        }
      }
      res = layout.get_node_bounds(a)[1];
    });
    return res;
  }
};

struct Info {
  int mx = 0, cnt = 0;
  ll sum = 0;

  Info Unite(Info b) const {
    Info res;
    res.mx = std::max(mx, b.mx), res.cnt = cnt + b.cnt, res.sum = sum + b.sum;
    return res;
  }

  static Info GetDefault([[maybe_unused]] int l, [[maybe_unused]] int r) {
    return Info();
  }
};

// signed main() {
int main() {
  // freopen(".in", "r",stdin);
  // freopen(".out","w",stdout);
  ios::sync_with_stdio(false);
  cin.tie(0);
  int n, m;
  std::cin >> n >> m;
  vi a(n), b(m), al;
  for (auto& i : a) std::cin >> i, al.eb(i);
  for (auto& i : b) std::cin >> i, al.eb(i);
  std::sort(all(b), greater());
  b.resize(n, -Big * 2);
  std::sort(all(al));
  al.erase(std::unique(all(al)), al.end());
  int N = sz(al);
  vl sa(n + 1), sb(m + 1);
  for (int i = 0; i < n; i++) sa[i + 1] = sa[i] + a[i], a[i] = lwb(al, a[i]);
  for (int i = 0; i < m; i++) sb[i + 1] = sb[i] + b[i], b[i] = lwb(al, b[i]);

  SimpleSegmentTree<Info> tr(n);

  vi buc(N);
  for (int i = 0; i < n; i++) buc[a[i]]++;
  for (int i = 1; i < N; i++) buc[i] += buc[i - 1];
  buc.insert(buc.begin(), 0), buc.pop_back();
  auto add = [&](int x) {
    tr.Set(buc[x]++, Info{x, 1, al[x]});
  };
  auto del = [&](int x) {
    tr.Set(--buc[x], Info{0, 0, 0});
  };
  int L = 0, R = -1;
  auto div = [&](this auto&& div, int l, int r, int pl, int pr) -> ll {
    debug(l, r, pl, pr);
    if (l > r) return -BIG;
    int mid = l + r >> 1;
    while (L > pl) add(a[--L]);
    while (R < std::min(mid, pr)) add(a[++R]);
    while (L < pl) del(a[L++]);
    while (R > std::min(mid, pr)) del(a[R--]);
    ll ans = -BIG;
    int p;
    while (L <= std::min(mid, pr)) {
      int k = tr.MaxRight(0, [&](const Info& x) {
        debug(x.cnt);
        if (x.cnt == 0) return true;
        return x.mx < b[x.cnt - 1];
      });
      auto c = tr.Query(0, k);
      ll ansnow = sa[mid + 1] - sa[L] - c.sum + sb[c.cnt];
      if (ckmax(ans, ansnow)) p = L;
      del(a[L++]);
    }
    return std::max({ans, div(l, mid - 1, pl, p), div(mid + 1, r, p, pr)});
  };
  std::cout << div(0, n - 1, 0, n - 1);
  return 0;
}

/*

找到最后一个 k 满足 a_k<b_k a从小到大排序 b从大到小排序 满足单调性 线段树二分

注意处理a相等的情况

*/

详细

answer.code:13: warning: "assert" redefined
   13 | #define assert(...) 42
      | 
In file included from /usr/include/c++/13/cassert:44,
                 from /usr/include/x86_64-linux-gnu/c++/13/bits/stdc++.h:106,
                 from answer.code:6:
/usr/include/assert.h:92: note: this is the location of the previous definition
   92 | #  define assert(expr)                                                  \
      | 
answer.code: In function ‘int main()’:
answer.code:590:18: error: expected identifier before ‘this’
  590 |   auto div = [&](this auto&& div, int l, int r, int pl, int pr) -> ll {
      |                  ^~~~
answer.code:590:18: error: expected ‘,’ or ‘...’ before ‘this’
answer.code: In lambda function:
answer.code:592:9: error: ‘l’ was not declared in this scope
  592 |     if (l > r) return -BIG;
      |         ^
answer.code:592:13: error: ‘r’ was not declared in this scope
  592 |     if (l > r) return -BIG;
      |             ^
answer.code:593:15: error: ‘l’ was not declared in this scope
  593 |     int mid = l + r >> 1;
      |               ^
answer.code:593:19: error: ‘r’ was not declared in this scope
  593 |     int mid = l + r >> 1;
      |                   ^
answer.code:594:18: error: expected primary-expression before ‘)’ token
  594 |     while (L > pl) add(a[--L]);
      |                  ^
answer.code:595:30: error: ‘pr’ was not declared in this scope; did you mean ‘tr’?
  595 |     while (R < std::min(mid, pr)) add(a[++R]);
      |                              ^~
      |                              tr
answer.code:596:18: error: expected primary-expression before ‘)’ token
  596 |     while (L < pl) del(a[L++]);
      |                  ^
answer.code:597:30: error: ‘pr’ was not declared in this scope; did you mean ‘tr’?
  597 |     while (R > std::min(mid, pr)) del(a[R--]);
      |                              ^~
      |                              tr
answer.code:600:31: error: ‘pr’ was not declared in this scope; did you mean ‘tr’?
  600 |     while (L <= std::min(mid, pr)) {
      |                               ^~
      |                               tr
answer.code:611:27: error: use of ‘div’ before deduction of ‘auto’
  611 |     return std::max({ans, div(l, mid - 1, pl, p), div(mid + 1, r, p, pr)});
      |                           ^~~
answer.code:611:45: error: expected primary-expression before ‘,’ token
  611 |     return std::max({ans, div(l, mid - 1, pl, p), div(mid + 1, r, p, pr)});
      |                                             ^
answer.code:611:51: error: use of ‘div’ before deduction of ‘auto’
  611 |     return std::max({ans, div(l, mid - 1, pl, p), div(mid + 1, r, p, pr)});
      |                                                   ^~~
answer.code:611:70: error: ‘pr’ was not declared in this scope; did you mean ‘tr’?
  611 |     return std::max({ans, div(l, mid - 1, pl, p), div(mid + 1, r, p, pr)});
      |                                                                      ^~
      |                                                                      tr
answer.code:611:20: error: no matching function for call to ‘max(<brace-enclosed initializer list>)’
  611 |     return std::max({ans, div(l, mid - 1, pl, p), div(mid + 1, r, p, pr)});
      |            ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from /usr/include/c++/13/algorithm:60,
                 from /usr/include/x86_64-linux-gnu/c++/13/bits/stdc++.h:51:
/usr/include/c++/13/bits/stl_algobase.h:257:5: note: candidate: ‘template<class _Tp> constexpr const _Tp& std::max(const _Tp&, const _Tp&)’
  257 |     max(const _Tp& __a, const _Tp& __b)
      |     ^~~
/usr/include/c++/13/bits/stl_algobase.h:257:5: note:   template argument deduction/substitution failed:
answer.code:611:20: note:   candidate expects 2 arguments, 1 provided
  611 |     return std::max({ans, div(l, mid - 1, pl, p), div(mid + 1, r, p, pr)});
      |            ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/usr/include/c++/13/bits/stl_algobase.h:303:5: note: candidate: ‘template<class _Tp, class _Compare> constexpr const _Tp& std::max(const _Tp&, const _Tp&, _Compare)’
  303 |     max(const _Tp& __a, const _Tp& __b, _Compare __comp)
      |     ^~~
/usr/include/c++/13/bits/stl_algobase.h:303:5: note:   template argument deduction/substitution failed:
answer.code:611:20: note:   candidate expects 3 arguments, 1 provided
  611 |     return std::max({ans, div(l, mid - 1, pl, p), div(mid + 1, r, p, pr)});
      |            ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from /usr/include/c++/13/algorithm:61:
/usr/include/c++/13/bits/stl_algo.h:5795:5: note: candidate: ‘template<class _Tp> constexpr _Tp std::max(initializer_list<_Tp>)’
 5795 |     max(initializer_list<_Tp> __l)
      |     ^~~
/usr/include/c++/13/bits/stl_algo.h:5795:5: note:   template argument deduction/substitution failed:
/usr/include/c++/13/bits/stl_algo.h:5805:5: note:...