QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#634292 | #9451. Expected Waiting Time | ucup-team5234# | TL | 1ms | 3872kb | C++20 | 61.7kb | 2024-10-12 17:01:23 | 2024-10-12 17:01:25 |
Judging History
answer
#include <algorithm>
#include <array>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#include <utility>
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <sstream>
#include <string>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base: modint_base {};
template<class T>
using is_modint = std::is_base_of<modint_base, T>;
template<class T>
using is_modint_t
= std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template<int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint: internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() {
return m;
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint(): _v(0) {
}
template<class T,
internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x
= (long long) (v % (long long) (umod()));
if(x < 0) x += umod();
_v = (unsigned int) (x);
}
template<class T,
internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int) (v % umod());
}
static_modint(bool v) {
_v = ((unsigned int) (v) % umod());
}
unsigned int val() const {
return _v;
}
mint& operator++() {
_v++;
if(_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if(_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if(_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if(_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int) (z % umod());
return *this;
}
mint& operator/=(const mint& rhs) {
return *this = *this * rhs.inv();
}
mint operator+() const {
return *this;
}
mint operator-() const {
return mint() - *this;
}
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while(n) {
if(n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if(prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs,
const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs,
const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs,
const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs,
const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs,
const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs,
const mint& rhs) {
return lhs._v != rhs._v;
}
std::string dump() const {
std::stringstream ss;
ss << val();
return ss.str();
}
private:
unsigned int _v;
static constexpr unsigned int umod() {
return m;
}
static constexpr bool prime = internal::is_prime<m>;
};
template<int id>
struct dynamic_modint: internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() {
return (int) (bt.umod());
}
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint(): _v(0) {
}
template<class T,
internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long) (v % (long long) (mod()));
if(x < 0) x += mod();
_v = (unsigned int) (x);
}
template<class T,
internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int) (v % mod());
}
dynamic_modint(bool v) {
_v = ((unsigned int) (v) % mod());
}
unsigned int val() const {
return _v;
}
mint& operator++() {
_v++;
if(_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if(_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if(_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if(_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) {
return *this = *this * rhs.inv();
}
mint operator+() const {
return *this;
}
mint operator-() const {
return mint() - *this;
}
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while(n) {
if(n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs,
const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs,
const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs,
const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs,
const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs,
const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs,
const mint& rhs) {
return lhs._v != rhs._v;
}
std::string dump() const {
std::stringstream ss;
ss << "modint<" << mod() << ">(" << val() << ")";
return ss.str();
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() {
return bt.umod();
}
};
template<int id>
internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template<class T>
using is_static_modint
= std::is_base_of<internal::static_modint_base, T>;
template<class T>
using is_static_modint_t
= std::enable_if_t<is_static_modint<T>::value>;
template<class>
struct is_dynamic_modint: public std::false_type {};
template<int id>
struct is_dynamic_modint<dynamic_modint<id>>
: public std::true_type {};
template<class T>
using is_dynamic_modint_t
= std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <type_traits>
#include <vector>
namespace atcoder {
namespace internal {
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i <= cnt2 - 2; i++) {
sum_e[i] = es[i] * now;
now *= ies[i];
}
}
for (int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint now = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * now;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
now *= sum_e[bsf(~(unsigned int)(s))];
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i <= cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now;
now *= es[i];
}
}
for (int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint inow = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
inow.val();
}
inow *= sum_ie[bsf(~(unsigned int)(s))];
}
}
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) {
if (n < m) {
std::swap(n, m);
std::swap(a, b);
}
std::vector<mint> ans(n + m - 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
return ans;
}
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
// B = 2^63, -B <= x, r(real value) < B
// (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
// r = c1[i] (mod MOD1)
// focus on MOD1
// r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
// r = x,
// x - M' + (0 or 2B),
// x - 2M' + (0, 2B or 4B),
// x - 3M' + (0, 2B, 4B or 6B) (without mod!)
// (r - x) = 0, (0)
// - M' + (0 or 2B), (1)
// -2M' + (0 or 2B or 4B), (2)
// -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
// we checked that
// ((1) mod MOD1) mod 5 = 2
// ((2) mod MOD1) mod 5 = 3
// ((3) mod MOD1) mod 5 = 4
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
// Implement (union by size) + (path compression)
// Reference:
// Zvi Galil and Giuseppe F. Italiano,
// Data structures and algorithms for disjoint set union problems
struct dsu {
public:
dsu(): _n(0) {
}
dsu(int n): _n(n), parent_or_size(n, -1) {
}
int merge(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
int x = leader(a), y = leader(b);
if(x == y) return x;
if(-parent_or_size[x] < -parent_or_size[y])
std::swap(x, y);
parent_or_size[x] += parent_or_size[y];
parent_or_size[y] = x;
return x;
}
bool same(int a, int b) {
assert(0 <= a && a < _n);
assert(0 <= b && b < _n);
return leader(a) == leader(b);
}
int leader(int a) {
assert(0 <= a && a < _n);
if(parent_or_size[a] < 0) return a;
return parent_or_size[a]
= leader(parent_or_size[a]);
}
int size(int a) {
assert(0 <= a && a < _n);
return -parent_or_size[leader(a)];
}
std::vector<std::vector<int>> groups() {
std::vector<int> leader_buf(_n), group_size(_n);
for(int i = 0; i < _n; i++) {
leader_buf[i] = leader(i);
group_size[leader_buf[i]]++;
}
std::vector<std::vector<int>> result(_n);
for(int i = 0; i < _n; i++) {
result[i].reserve(group_size[i]);
}
for(int i = 0; i < _n; i++) {
result[leader_buf[i]].push_back(i);
}
result.erase(
std::remove_if(result.begin(), result.end(),
[&](const std::vector<int>& v) {
return v.empty();
}),
result.end());
return result;
}
private:
int _n;
// root node: -1 * component size
// otherwise: parent
std::vector<int> parent_or_size;
};
} // namespace atcoder
#include <cassert>
#include <vector>
namespace atcoder {
// Reference: https://en.wikipedia.org/wiki/Fenwick_tree
template<class T>
struct fenwick_tree {
using U = internal::to_unsigned_t<T>;
public:
fenwick_tree(): _n(0) {
}
fenwick_tree(int n): _n(n), data(n) {
}
void add(int p, T x) {
assert(0 <= p && p < _n);
p++;
while(p <= _n) {
data[p - 1] += U(x);
p += p & -p;
}
}
T sum(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
return sum(r) - sum(l);
}
size_t sz() {
return _n;
}
private:
int _n;
std::vector<U> data;
U sum(int r) {
U s = 0;
while(r > 0) {
s += data[r - 1];
r -= r & -r;
}
return s;
}
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
namespace atcoder {
template<class S, S (*op)(S, S), S (*e)(), class F,
S (*mapping)(F, S), F (*composition)(F, F),
F (*id)()>
struct lazy_segtree {
public:
lazy_segtree(): lazy_segtree(0) {
}
lazy_segtree(int n)
: lazy_segtree(std::vector<S>(n, e())) {
}
lazy_segtree(const std::vector<S>& v)
: _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for(int i = 0; i < _n; i++) d[size + i] = v[i];
for(int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for(int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for(int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for(int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if(l == r) return e();
l += size;
r += size;
for(int i = log; i >= 1; i--) {
if(((l >> i) << i) != l) push(l >> i);
if(((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while(l < r) {
if(l & 1) sml = op(sml, d[l++]);
if(r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() {
return d[1];
}
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for(int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for(int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if(l == r) return;
l += size;
r += size;
for(int i = log; i >= 1; i--) {
if(((l >> i) << i) != l) push(l >> i);
if(((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while(l < r) {
if(l & 1) all_apply(l++, f);
if(r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for(int i = 1; i <= log; i++) {
if(((l >> i) << i) != l) update(l >> i);
if(((r >> i) << i) != r) update((r - 1) >> i);
}
}
template<bool (*g)(S)>
int max_right(int l) {
return max_right(l, [](S x) {
return g(x);
});
}
template<class G>
int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if(l == _n) return _n;
l += size;
for(int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while(l % 2 == 0) l >>= 1;
if(!g(op(sm, d[l]))) {
while(l < size) {
push(l);
l = (2 * l);
if(g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while((l & -l) != l);
return _n;
}
template<bool (*g)(S)>
int min_left(int r) {
return min_left(r, [](S x) {
return g(x);
});
}
template<class G>
int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if(r == 0) return 0;
r += size;
for(int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while(r > 1 && (r % 2)) r >>= 1;
if(!g(op(d[r], sm))) {
while(r < size) {
push(r);
r = (2 * r + 1);
if(g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while((r & -r) != r);
return 0;
}
size_t sz() const {
return _n;
}
std::vector<S> dump() {
std::vector<S> ret;
for(int i = 0; i < _n; i++) {
ret.push_back(get(i));
}
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) {
d[k] = op(d[2 * k], d[2 * k + 1]);
}
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if(k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <tuple>
#include <vector>
namespace atcoder {
long long pow_mod(long long x, long long n, int m) {
assert(0 <= n && 1 <= m);
if (m == 1) return 0;
internal::barrett bt((unsigned int)(m));
unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
while (n) {
if (n & 1) r = bt.mul(r, y);
y = bt.mul(y, y);
n >>= 1;
}
return r;
}
long long inv_mod(long long x, long long m) {
assert(1 <= m);
auto z = internal::inv_gcd(x, m);
assert(z.first == 1);
return z.second;
}
// (rem, mod)
std::pair<long long, long long> crt(const std::vector<long long>& r,
const std::vector<long long>& m) {
assert(r.size() == m.size());
int n = int(r.size());
// Contracts: 0 <= r0 < m0
long long r0 = 0, m0 = 1;
for (int i = 0; i < n; i++) {
assert(1 <= m[i]);
long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
if (m0 < m1) {
std::swap(r0, r1);
std::swap(m0, m1);
}
if (m0 % m1 == 0) {
if (r0 % m1 != r1) return {0, 0};
continue;
}
// assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)
// (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
// r2 % m0 = r0
// r2 % m1 = r1
// -> (r0 + x*m0) % m1 = r1
// -> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1)
// -> x = (r1 - r0) / g * inv(u0) (mod u1)
// im = inv(u0) (mod u1) (0 <= im < u1)
long long g, im;
std::tie(g, im) = internal::inv_gcd(m0, m1);
long long u1 = (m1 / g);
// |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
if ((r1 - r0) % g) return {0, 0};
// u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
long long x = (r1 - r0) / g % u1 * im % u1;
// |r0| + |m0 * x|
// < m0 + m0 * (u1 - 1)
// = m0 + m0 * m1 / g - m0
// = lcm(m0, m1)
r0 += x * m0;
m0 *= u1; // -> lcm(m0, m1)
if (r0 < 0) r0 += m0;
}
return {r0, m0};
}
long long floor_sum(long long n, long long m, long long a, long long b) {
long long ans = 0;
if (a >= m) {
ans += (n - 1) * n * (a / m) / 2;
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
long long y_max = (a * n + b) / m, x_max = (y_max * m - b);
if (y_max == 0) return ans;
ans += (n - (x_max + a - 1) / a) * y_max;
ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
return ans;
}
} // namespace atcoder
#include <algorithm>
#include <vector>
namespace atcoder {
namespace internal {
template <class T> struct simple_queue {
std::vector<T> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const T& t) { payload.push_back(t); }
T& front() { return payload[pos]; }
void clear() {
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
template <class Cap> struct mf_graph {
public:
mf_graph() : _n(0) {}
mf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap});
g[to].push_back(_edge{from, from_id, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result;
for (int i = 0; i < m; i++) {
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto& _e = g[pos[i].first][pos[i].second];
auto& _re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
std::vector<int> level(_n), iter(_n);
internal::simple_queue<int> que;
auto bfs = [&]() {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int& i = iter[v]; i < int(g[v].size()); i++) {
_edge& e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d =
self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) break;
}
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
std::fill(iter.begin(), iter.end(), 0);
while (flow < flow_limit) {
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
}
return flow;
}
std::vector<bool> min_cut(int s) {
std::vector<bool> visited(_n);
internal::simple_queue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
template <class Cap, class Cost> struct mcf_graph {
public:
mcf_graph() {}
mcf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap, cost});
g[to].push_back(_edge{from, from_id, 0, -cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{
pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result(m);
for (int i = 0; i < m; i++) {
result[i] = get_edge(i);
}
return result;
}
std::pair<Cap, Cost> flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
return slope(s, t, flow_limit).back();
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
// variants (C = maxcost):
// -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
// reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
std::vector<Cost> dual(_n, 0), dist(_n);
std::vector<int> pv(_n), pe(_n);
std::vector<bool> vis(_n);
auto dual_ref = [&]() {
std::fill(dist.begin(), dist.end(),
std::numeric_limits<Cost>::max());
std::fill(pv.begin(), pv.end(), -1);
std::fill(pe.begin(), pe.end(), -1);
std::fill(vis.begin(), vis.end(), false);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::priority_queue<Q> que;
dist[s] = 0;
que.push(Q{0, s});
while (!que.empty()) {
int v = que.top().to;
que.pop();
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
// dist[v] = shortest(s, v) + dual[s] - dual[v]
// dist[v] >= 0 (all reduced cost are positive)
// dist[v] <= (n-1)C
for (int i = 0; i < int(g[v].size()); i++) {
auto e = g[v][i];
if (vis[e.to] || !e.cap) continue;
// |-dual[e.to] + dual[v]| <= (n-1)C
// cost <= C - -(n-1)C + 0 = nC
Cost cost = e.cost - dual[e.to] + dual[v];
if (dist[e.to] - dist[v] > cost) {
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push(Q{dist[e.to], e.to});
}
}
}
if (!vis[t]) {
return false;
}
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
// dual[v] = dual[v] - dist[t] + dist[v]
// = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
// = - shortest(s, t) + dual[t] + shortest(s, v)
// = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
dual[v] -= dist[t] - dist[v];
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
std::vector<std::pair<Cap, Cost>> result;
result.push_back({flow, cost});
while (flow < flow_limit) {
if (!dual_ref()) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = pv[v]) {
c = std::min(c, g[pv[v]][pe[v]].cap);
}
for (int v = t; v != s; v = pv[v]) {
auto& e = g[pv[v]][pe[v]];
e.cap -= c;
g[v][e.rev].cap += c;
}
Cost d = -dual[s];
flow += c;
cost += c * d;
if (prev_cost_per_flow == d) {
result.pop_back();
}
result.push_back({flow, cost});
prev_cost_per_flow = d;
}
return result;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
#include <algorithm>
#include <algorithm>
#include <utility>
#include <vector>
namespace atcoder {
namespace internal {
template <class E> struct csr {
std::vector<int> start;
std::vector<E> elist;
csr(int n, const std::vector<std::pair<int, E>>& edges)
: start(n + 1), elist(edges.size()) {
for (auto e : edges) {
start[e.first + 1]++;
}
for (int i = 1; i <= n; i++) {
start[i] += start[i - 1];
}
auto counter = start;
for (auto e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
// Reference:
// R. Tarjan,
// Depth-First Search and Linear Graph Algorithms
struct scc_graph {
public:
scc_graph(int n) : _n(n) {}
int num_vertices() { return _n; }
void add_edge(int from, int to) { edges.push_back({from, {to}}); }
// @return pair of (# of scc, scc id)
std::pair<int, std::vector<int>> scc_ids() {
auto g = csr<edge>(_n, edges);
int now_ord = 0, group_num = 0;
std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
visited.reserve(_n);
auto dfs = [&](auto self, int v) -> void {
low[v] = ord[v] = now_ord++;
visited.push_back(v);
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto to = g.elist[i].to;
if (ord[to] == -1) {
self(self, to);
low[v] = std::min(low[v], low[to]);
} else {
low[v] = std::min(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (true) {
int u = visited.back();
visited.pop_back();
ord[u] = _n;
ids[u] = group_num;
if (u == v) break;
}
group_num++;
}
};
for (int i = 0; i < _n; i++) {
if (ord[i] == -1) dfs(dfs, i);
}
for (auto& x : ids) {
x = group_num - 1 - x;
}
return {group_num, ids};
}
std::vector<std::vector<int>> scc() {
auto ids = scc_ids();
int group_num = ids.first;
std::vector<int> counts(group_num);
for (auto x : ids.second) counts[x]++;
std::vector<std::vector<int>> groups(ids.first);
for (int i = 0; i < group_num; i++) {
groups[i].reserve(counts[i]);
}
for (int i = 0; i < _n; i++) {
groups[ids.second[i]].push_back(i);
}
return groups;
}
private:
int _n;
struct edge {
int to;
};
std::vector<std::pair<int, edge>> edges;
};
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <vector>
namespace atcoder {
struct scc_graph {
public:
scc_graph() : internal(0) {}
scc_graph(int n) : internal(n) {}
void add_edge(int from, int to) {
int n = internal.num_vertices();
assert(0 <= from && from < n);
assert(0 <= to && to < n);
internal.add_edge(from, to);
}
std::vector<std::vector<int>> scc() { return internal.scc(); }
private:
internal::scc_graph internal;
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <vector>
namespace atcoder {
template<class S, S (*op)(S, S), S (*e)()>
struct segtree {
public:
segtree(): segtree(0) {
}
segtree(int n): segtree(std::vector<S>(n, e())) {
}
segtree(const std::vector<S>& v): _n(int(v.size())) {
log = internal::ceil_pow2(_n);
sz = 1 << log;
d = std::vector<S>(2 * sz, e());
for(int i = 0; i < _n; i++) d[sz + i] = v[i];
for(int i = sz - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += sz;
d[p] = x;
for(int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) const {
assert(0 <= p && p < _n);
return d[p + sz];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += sz;
r += sz;
while(l < r) {
if(l & 1) sml = op(sml, d[l++]);
if(r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() {
return d[1];
}
template<bool (*f)(S)>
int max_right(int l) {
return max_right(l, [](S x) {
return f(x);
});
}
template<class F>
int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if(l == _n) return _n;
l += sz;
S sm = e();
do {
while(l % 2 == 0) l >>= 1;
if(!f(op(sm, d[l]))) {
while(l < sz) {
l = (2 * l);
if(f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - sz;
}
sm = op(sm, d[l]);
l++;
} while((l & -l) != l);
return _n;
}
template<bool (*f)(S)>
int min_left(int r) {
return min_left(r, [](S x) {
return f(x);
});
}
template<class F>
int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if(r == 0) return 0;
r += sz;
S sm = e();
do {
r--;
while(r > 1 && (r % 2)) r >>= 1;
if(!f(op(d[r], sm))) {
while(r < sz) {
r = (2 * r + 1);
if(f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - sz;
}
sm = op(d[r], sm);
} while((r & -r) != r);
return 0;
}
size_t size() const {
return _n;
}
private:
int _n, sz, log;
std::vector<S> d;
void update(int k) {
d[k] = op(d[2 * k], d[2 * k + 1]);
}
};
} // namespace atcoder
#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>
namespace atcoder {
namespace internal {
std::vector<int> sa_naive(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n);
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(), [&](int l, int r) {
if (l == r) return false;
while (l < n && r < n) {
if (s[l] != s[r]) return s[l] < s[r];
l++;
r++;
}
return l == n;
});
return sa;
}
std::vector<int> sa_doubling(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n), rnk = s, tmp(n);
std::iota(sa.begin(), sa.end(), 0);
for (int k = 1; k < n; k *= 2) {
auto cmp = [&](int x, int y) {
if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
int rx = x + k < n ? rnk[x + k] : -1;
int ry = y + k < n ? rnk[y + k] : -1;
return rx < ry;
};
std::sort(sa.begin(), sa.end(), cmp);
tmp[sa[0]] = 0;
for (int i = 1; i < n; i++) {
tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
}
std::swap(tmp, rnk);
}
return sa;
}
// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
int n = int(s.size());
if (n == 0) return {};
if (n == 1) return {0};
if (n == 2) {
if (s[0] < s[1]) {
return {0, 1};
} else {
return {1, 0};
}
}
if (n < THRESHOLD_NAIVE) {
return sa_naive(s);
}
if (n < THRESHOLD_DOUBLING) {
return sa_doubling(s);
}
std::vector<int> sa(n);
std::vector<bool> ls(n);
for (int i = n - 2; i >= 0; i--) {
ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
}
std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
for (int i = 0; i < n; i++) {
if (!ls[i]) {
sum_s[s[i]]++;
} else {
sum_l[s[i] + 1]++;
}
}
for (int i = 0; i <= upper; i++) {
sum_s[i] += sum_l[i];
if (i < upper) sum_l[i + 1] += sum_s[i];
}
auto induce = [&](const std::vector<int>& lms) {
std::fill(sa.begin(), sa.end(), -1);
std::vector<int> buf(upper + 1);
std::copy(sum_s.begin(), sum_s.end(), buf.begin());
for (auto d : lms) {
if (d == n) continue;
sa[buf[s[d]]++] = d;
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
sa[buf[s[n - 1]]++] = n - 1;
for (int i = 0; i < n; i++) {
int v = sa[i];
if (v >= 1 && !ls[v - 1]) {
sa[buf[s[v - 1]]++] = v - 1;
}
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
for (int i = n - 1; i >= 0; i--) {
int v = sa[i];
if (v >= 1 && ls[v - 1]) {
sa[--buf[s[v - 1] + 1]] = v - 1;
}
}
};
std::vector<int> lms_map(n + 1, -1);
int m = 0;
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms_map[i] = m++;
}
}
std::vector<int> lms;
lms.reserve(m);
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms.push_back(i);
}
}
induce(lms);
if (m) {
std::vector<int> sorted_lms;
sorted_lms.reserve(m);
for (int v : sa) {
if (lms_map[v] != -1) sorted_lms.push_back(v);
}
std::vector<int> rec_s(m);
int rec_upper = 0;
rec_s[lms_map[sorted_lms[0]]] = 0;
for (int i = 1; i < m; i++) {
int l = sorted_lms[i - 1], r = sorted_lms[i];
int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
bool same = true;
if (end_l - l != end_r - r) {
same = false;
} else {
while (l < end_l) {
if (s[l] != s[r]) {
break;
}
l++;
r++;
}
if (l == n || s[l] != s[r]) same = false;
}
if (!same) rec_upper++;
rec_s[lms_map[sorted_lms[i]]] = rec_upper;
}
auto rec_sa =
sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);
for (int i = 0; i < m; i++) {
sorted_lms[i] = lms[rec_sa[i]];
}
induce(sorted_lms);
}
return sa;
}
} // namespace internal
std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
assert(0 <= upper);
for (int d : s) {
assert(0 <= d && d <= upper);
}
auto sa = internal::sa_is(s, upper);
return sa;
}
template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
int n = int(s.size());
std::vector<int> idx(n);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
std::vector<int> s2(n);
int now = 0;
for (int i = 0; i < n; i++) {
if (i && s[idx[i - 1]] != s[idx[i]]) now++;
s2[idx[i]] = now;
}
return internal::sa_is(s2, now);
}
std::vector<int> suffix_array(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return internal::sa_is(s2, 255);
}
// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
const std::vector<int>& sa) {
int n = int(s.size());
assert(n >= 1);
std::vector<int> rnk(n);
for (int i = 0; i < n; i++) {
rnk[sa[i]] = i;
}
std::vector<int> lcp(n - 1);
int h = 0;
for (int i = 0; i < n; i++) {
if (h > 0) h--;
if (rnk[i] == 0) continue;
int j = sa[rnk[i] - 1];
for (; j + h < n && i + h < n; h++) {
if (s[j + h] != s[i + h]) break;
}
lcp[rnk[i] - 1] = h;
}
return lcp;
}
std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return lcp_array(s2, sa);
}
// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
int n = int(s.size());
if (n == 0) return {};
std::vector<int> z(n);
z[0] = 0;
for (int i = 1, j = 0; i < n; i++) {
int& k = z[i];
k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
while (i + k < n && s[k] == s[i + k]) k++;
if (j + z[j] < i + z[i]) j = i;
}
z[0] = n;
return z;
}
std::vector<int> z_algorithm(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return z_algorithm(s2);
}
} // namespace atcoder
#include <cassert>
#include <vector>
namespace atcoder {
// Reference:
// B. Aspvall, M. Plass, and R. Tarjan,
// A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean
// Formulas
struct two_sat {
public:
two_sat() : _n(0), scc(0) {}
two_sat(int n) : _n(n), _answer(n), scc(2 * n) {}
void add_clause(int i, bool f, int j, bool g) {
assert(0 <= i && i < _n);
assert(0 <= j && j < _n);
scc.add_edge(2 * i + (f ? 0 : 1), 2 * j + (g ? 1 : 0));
scc.add_edge(2 * j + (g ? 0 : 1), 2 * i + (f ? 1 : 0));
}
bool satisfiable() {
auto id = scc.scc_ids().second;
for (int i = 0; i < _n; i++) {
if (id[2 * i] == id[2 * i + 1]) return false;
_answer[i] = id[2 * i] < id[2 * i + 1];
}
return true;
}
std::vector<bool> answer() { return _answer; }
private:
int _n;
std::vector<bool> _answer;
internal::scc_graph scc;
};
} // namespace atcoder
using namespace atcoder;
#include <bits/stdc++.h>
using namespace std;
#define SZ(x) (int) (x).size()
#define REP(i, n) for(int i = 0; i < (n); i++)
#define FOR(i, a, b) for(auto i = (a); i < (b); i++)
#define For(i, a, b, c) \
for(auto i = (a); i != (b); i += (c))
#define REPR(i, n) for(auto i = (n) - 1; i >= 0; i--)
#define ALL(s) (s).begin(), (s).end()
#define so(V) sort(ALL(V))
#define rev(V) reverse(ALL(V))
#define uni(v) v.erase(unique(ALL(v)), (v).end())
#define eb emplace_back
typedef unsigned long long ull;
typedef long long ll;
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<bool> vb;
typedef vector<vi> vvi;
typedef vector<vll> vvll;
typedef pair<int, int> PI;
typedef pair<ll, ll> PL;
const double EPS = 1e-6;
const int MOD = 1e9 + 7;
const int INF = (1 << 30);
const ll LINF = 1e18;
const long double math_PI = acosl(-1);
template<typename T>
vector<T> make_v(size_t a) {
return vector<T>(a);
}
template<typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
return vector<decltype(make_v<T>(ts...))>(
a, make_v<T>(ts...));
}
template<typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(
T &t, const V &v) {
t = v;
}
template<typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(
T &t, const V &v) {
for(auto &e: t) fill_v(e, v);
}
template<class T>
bool chmax(T &a, const T &b) {
if(a < b) {
a = b;
return true;
}
return false;
}
template<class T>
bool chmin(T &a, const T &b) {
if(a > b) {
a = b;
return true;
}
return false;
}
template<typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
cin >> p.first >> p.second;
return is;
}
template<typename T>
istream &operator>>(istream &is, vector<T> &vec) {
for(T &x: vec) is >> x;
return is;
}
template<typename T>
string join(vector<T> &vec, string splitter) {
stringstream ss;
REP(i, SZ(vec)) {
if(i != 0) ss << splitter;
ss << vec[i];
}
return ss.str();
}
template<typename T>
ostream &operator<<(ostream &os, vector<T> &vec) {
os << join(vec, " ");
return os;
}
#ifdef LOCAL
#include "cpp-dump/cpp-dump.hpp"
CPP_DUMP_DEFINE_EXPORT_OBJECT_GENERIC(dump())
#define dump(...) cpp_dump(__VA_ARGS__)
namespace cp = cpp_dump;
#else
#define dump(...)
#define preprocess(...)
#define CPP_DUMP_SET_OPTION(...)
#define CPP_DUMP_DEFINE_EXPORT_OBJECT(...)
#define CPP_DUMP_DEFINE_EXPORT_ENUM(...)
#define CPP_DUMP_DEFINE_DANGEROUS_EXPORT_OBJECT(...)
#endif
template<typename T>
struct Comb {
private:
vector<T> _fact;
vector<T> inv;
int pre_build;
void expand(int x) {
if(pre_build == -1) return;
while(SZ(_fact) <= x) {
int next = SZ(_fact);
_fact.push_back(_fact[next - 1] * next);
inv.push_back(_fact[next].inv());
}
}
T nPr_calc(int n, int r) {
T ret = 1;
for(int i = n; i > n - r; i--) ret *= i;
return ret;
}
T nCr_calc(int n, int r) {
T ret = 1;
REP(i, r) {
ret *= n - i;
ret /= i + 1;
}
return ret;
}
public:
Comb(int pre_build = 0): pre_build(pre_build) {
if(pre_build == -1) {
return;
}
_fact = vector<T>(pre_build + 1);
_fact[0] = 1;
inv = vector<T>(pre_build + 1);
REP(i, pre_build) {
_fact[i + 1] = _fact[i] * (i + 1);
}
inv[pre_build] = _fact[pre_build].inv();
REPR(i, pre_build) {
inv[i] = inv[i + 1] * (i + 1);
}
}
T P(int n, int r) {
assert(r >= 0);
assert(n >= r);
expand(n);
if(pre_build == -1) return nPr_calc(n, r);
return _fact[n] * inv[n - r];
}
T C(int n, int r) {
assert(r >= 0);
assert(n >= r);
expand(n);
if(pre_build == -1) return nCr_calc(n, r);
return _fact[n] * inv[r] * inv[n - r];
}
T H(int n, int r) {
assert(r >= 0);
assert(n >= 1);
expand(n + r - 1);
return C(n + r - 1, r);
}
T type_permission(vi V) {
assert(pre_build != -1);
int sum = 0;
for(int i: V) {
assert(i >= 0);
sum += i;
}
expand(sum);
T ans = _fact[sum];
for(int i: V) ans *= inv[i];
return ans;
}
T fact(int n) {
expand(n);
return _fact[n];
}
T inv_fact(int n) {
expand(n);
return inv[n];
}
};
template<typename T>
struct RangeSum {
private:
vector<T> V;
int N = -1;
public:
RangeSum(vector<T> &v) {
N = SZ(v);
V = vector<T>(N + 1);
V[0] = T(0);
REP(i, N) {
V[i + 1] = v[i] + V[i];
}
}
T sum(int l, int r) {
chmax(l, 0);
chmin(r, N);
chmax(r, l);
return V[r] - V[l];
}
};
template<typename T>
struct RangeSum2D {
private:
vector<vector<T>> V;
int H = -1;
int W = -1;
public:
RangeSum2D(vector<vector<T>> &v) {
H = SZ(v);
W = SZ(v[0]);
V = vector<vector<T>>(H, vector<T>(W));
REP(i, H) {
REP(j, W) {
V[i][j] += v[i][j];
if(i != 0) V[i][j] += V[i - 1][j];
if(j != 0) V[i][j] += V[i][j - 1];
if(i != 0 && j != 0)
V[i][j] -= V[i - 1][j - 1];
}
}
}
T sum(int y1, int x1, int y2, int x2) {
T ret = V[y2][x2];
if(y1 != 0) ret -= V[y1 - 1][x2];
if(x1 != 0) ret -= V[y2][x1 - 1];
if(y1 != 0 && x1 != 0) ret += V[y1 - 1][x1 - 1];
return ret;
}
};
using vi = vector<int>;
using ll = long long;
using mint = modint;
int main() {
int T;
cin >> T;
while(T--) {
int N, P;
cin >> N >> P;
int b0, A, B;
cin >> b0 >> A >> B;
mint::set_mod(P);
vector<mint> V(2 * N);
V[0] = 0;
Comb<mint> comb(2 * N);
for(int i = 1; i < 2 * N; i += 2) {
int inner = (i - 1) / 2;
V[i] = comb.C(2 * inner, inner) / (inner + 1);
int outer = (2 * N - inner * 2 - 2) / 2;
V[i] *= comb.C(2 * outer, outer) / (outer + 1);
}
RangeSum<mint> R(V);
mint b = A * b0 + B;
mint a = b + 1;
mint ans = 0;
REP(i, 2 * N) {
int right = 2 * N - i - 1;
int left = i;
ans -= R.sum(0, right + 1) * a;
ans += R.sum(0, left + 1) * a;
b = A * b + B;
a += b + 1;
}
cout << (ans / comb.C(2 * N, N) * (N + 1)).val()
<< endl;
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3872kb
input:
5 1 1000000007 0 1 0 2 1000000007 0 1 1 2 7 5 2 3 3 31 15 6 24 20 1000000007 0 1 0
output:
1 12 1 21 879705565
result:
ok 5 number(s): "1 12 1 21 879705565"
Test #2:
score: -100
Time Limit Exceeded
input:
4400 3954 1000000007 0 1 0 1306 1000000007 0 1 0 3774 1000000007 0 1 0 3345 1000000007 0 1 0 891 1000000007 0 1 0 2462 1000000007 0 1 0 237 1000000007 0 1 0 26 1000000007 0 1 0 2510 1000000007 0 1 0 637 1000000007 0 1 0 3250 1000000007 0 1 0 3447 1000000007 0 1 0 1222 1000000007 0 1 0 133 1000000007...
output:
440618338 378292891 979368645 915766295 343598158 80867595 161627927 517387931 396936703 42785642 945720545 764273281 186237656 635777911 164064906 548455037 991964184 468137124 561243246 118562285 856945294 642467240 23673926 808943705 897417615 462422554 656411244 204288121 997894281 244685651 762...