QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#631845#7900. Gifts from KnowledgeyouthpaulWA 17ms3652kbC++205.2kb2024-10-12 10:36:432024-10-12 10:36:43

Judging History

你现在查看的是最新测评结果

  • [2024-10-12 10:36:43]
  • 评测
  • 测评结果:WA
  • 用时:17ms
  • 内存:3652kb
  • [2024-10-12 10:36:43]
  • 提交

answer

#include<bits/stdc++.h>
#define fore(i,l,r)	for(int i=(int)(l);i<(int)(r);++i)
#define fi first
#define se second
#define endl '\n'
#define ull unsigned long long
#define ALL(v) v.begin(), v.end()
#define Debug(x, ed) std::cerr << #x << " = " << x << ed;

const int INF=0x3f3f3f3f;
const long long INFLL=1e18;

typedef long long ll;

template<class T>
constexpr T power(T a, ll b){
    T res = 1;
    while(b){
        if(b&1) res = res * a;
        a = a * a;
        b >>= 1;
    }
    return res;
}

constexpr ll mul(ll a,ll b,ll mod){ //快速乘,避免两个long long相乘取模溢出
    ll res = a * b - ll(1.L * a * b / mod) * mod;
    res %= mod;
    if(res < 0) res += mod; //误差
    return res;
}

template<ll P>
struct MLL{
    ll x;
    constexpr MLL() = default;
    constexpr MLL(ll x) : x(norm(x % getMod())) {}

    static ll Mod;
    constexpr static ll getMod(){
       if(P > 0) return P;
       return Mod;
    }

    constexpr static void setMod(int _Mod){
       Mod = _Mod;
    }
    constexpr ll norm(ll x) const{
       if(x < 0){
           x += getMod();
       }
       if(x >= getMod()){
           x -= getMod();
       }
       return x;
    }
    constexpr ll val() const{
       return x;
    }
    explicit constexpr operator ll() const{ 
       return x; //将结构体显示转换为ll类型: ll res = static_cast<ll>(OBJ)
    }
    constexpr MLL operator -() const{ //负号,等价于加上Mod
       MLL res;
       res.x = norm(getMod() - x);
       return res;
    }
    constexpr MLL inv() const{
       assert(x != 0);
       return power(*this, getMod() - 2); //用费马小定理求逆
    }
    constexpr MLL& operator *= (MLL rhs) & { //& 表示“this”指针不能指向一个临时对象或const对象
       x = mul(x, rhs.x, getMod()); //该函数只能被一个左值调用
       return *this;
    }
    constexpr MLL& operator += (MLL rhs) & {
       x = norm(x + rhs.x);
       return *this;
    }
    constexpr MLL& operator -= (MLL rhs) & {
       x = norm(x - rhs.x);
       return *this;
    }
    constexpr MLL& operator /= (MLL rhs) & {
       return *this *= rhs.inv();
    }
    friend constexpr MLL operator * (MLL lhs, MLL rhs){
       MLL res = lhs;
       res *= rhs;
       return res;
    }
    friend constexpr MLL operator + (MLL lhs, MLL rhs){
       MLL res = lhs;
       res += rhs;
       return res;
    }
    friend constexpr MLL operator - (MLL lhs, MLL rhs){
       MLL res = lhs;
       res -= rhs;
       return res;
    }
    friend constexpr MLL operator / (MLL lhs, MLL rhs){
       MLL res = lhs;
       res /= rhs;
       return res;
    }
    friend constexpr std::istream& operator >> (std::istream& is, MLL& a){
       ll v;
       is >> v;
       a = MLL(v);
       return is;
    }
    friend constexpr std::ostream& operator << (std::ostream& os, MLL& a){
       return os << a.val();
    }
    friend constexpr bool operator == (MLL lhs, MLL rhs){
       return lhs.val() == rhs.val();
    }
    friend constexpr bool operator != (MLL lhs, MLL rhs){
       return lhs.val() != rhs.val();
    }
};

const ll mod = 1e9 + 7;
using Z = MLL<mod>;
template<>
ll MLL<0ll>::Mod = 998244353;
//using Z = MLL<0ll>;

void solve(){
    int n, m;
    std::cin >> n >> m;
    std::vector<std::vector<int>> a(n + 1, std::vector<int>(m + 1));
    std::vector<std::vector<std::pair<int, int>>> g(n + m + 1);
    fore(i, 1, n + 1){
        std::string s;
        std::cin >> s;
        s = '0' + s;
        fore(j, 1, m + 1) a[i][j] = (s[j] == '1');
    }

    fore(j, 1, m + 1){
        int cnt = 0;
        fore(i, 1, n + 1) cnt += a[i][j];
        if(cnt > 2){
            std::cout << "0\n";
            return;
        }
        if(j == m - j + 1 && cnt == 2){
            std::cout << "0\n";
            return;
        }
    }

    std::vector<std::vector<int>> col(m + 1);
    fore(i, 1, n + 1)
        fore(j, 1, m + 1)
            if(a[i][j])
                col[j].push_back(i);

    auto addedge = [&](int u, int v, int w){
        g[u].push_back({v, w});
        g[v].push_back({u, w});
    };

    fore(i, 1, n + 1){
        fore(j, 1, m + 1)
            if(a[i][j]){
                for(auto v : col[j])
                    if(i > v) addedge(i, v, 3);
                for(auto v : col[m - j + 1])
                    if(i > v) addedge(i, v, 0);
            }
    }

    Z ans = 1;
    std::vector<int> c(n + 1);
    
    auto dfs = [&](auto self, int u) -> bool {
        for(auto [v, w] : g[u]){
            if(c[v] && c[v] != c[u] ^ w) return false;
            if(c[v]) continue;
            c[v] = c[u] ^ w;
            self(self, v);
        }

        return true;
    };

    fore(i, 1, n + 1)
        if(!c[i]){
            c[i] = 1;
            if(!dfs(dfs, i)){
                std::cout << "0\n";
                return;
            }
            ans *= 2;
        }


    std::cout << ans << endl;
}

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    int t;
    std::cin >> t;
    while(t--){
        solve();
    }
    
    return 0;
}

详细

Test #1:

score: 100
Accepted
time: 1ms
memory: 3560kb

input:

3
3 5
01100
10001
00010
2 1
1
1
2 3
001
001

output:

4
0
2

result:

ok 3 number(s): "4 0 2"

Test #2:

score: 0
Accepted
time: 17ms
memory: 3616kb

input:

15613
10 10
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
15 8
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
1 5
00000
5 9
000000000
000000000
0000...

output:

1024
32768
2
32
32768
128
32
16
16
2
16384
16384
128
128
32768
8192
128
64
16384
2
4
2
4096
16
4096
1024
32768
32768
16384
8
128
2
16
4096
8192
32768
8192
8192
16
16384
16384
256
128
8
256
8
4096
512
2
4
32
32
2
64
512
1024
32768
32768
2
64
16384
16
8192
16
256
16
64
8192
8192
64
1024
2
32768
2
4
51...

result:

ok 15613 numbers

Test #3:

score: -100
Wrong Answer
time: 17ms
memory: 3652kb

input:

15759
9 6
000000
000000
000000
000000
000000
000000
000000
000000
000000
5 15
010000000000000
000000000000000
000000000000000
000100000000000
000100000000000
14 12
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000...

output:

512
16
16384
512
1024
4096
32768
4
2
512
512
512
512
8
2
256
16
4096
512
64
16
4096
512
32
32768
8192
32
2048
128
16
4096
64
32768
256
32
16384
8
512
32
2048
8
16
1024
2048
128
64
32
8
512
8
8192
256
8192
32768
2
8
512
512
256
32
2
2048
8192
8
64
8
2
16384
32768
32768
1024
4096
16384
16384
128
256
4...

result:

wrong answer 462nd numbers differ - expected: '8192', found: '0'