QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#629054 | #143. 最大流(随机数据) | maspy | 100 ✓ | 7ms | 4264kb | C++20 | 19.3kb | 2024-10-11 02:17:00 | 2024-10-11 02:17:02 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 1 "/home/maspy/compro/library/flow/maxflow.hpp"
// incremental に辺を追加してよい
// 辺の容量の変更が可能
// 変更する capacity が F のとき、O((N+M)|F|) 時間で更新
template <typename Cap>
struct MaxFlow {
struct Edge {
int to, rev;
Cap cap; // 残っている容量. したがって cap+flow が定数.
Cap flow = 0;
};
const int N, source, sink;
vvc<Edge> edges;
vc<pair<int, int>> pos;
vc<int> prog, level;
vc<int> que;
bool calculated;
MaxFlow(int N, int source, int sink)
: N(N),
source(source),
sink(sink),
edges(N),
calculated(0),
flow_ans(0) {}
void add(int frm, int to, Cap cap, Cap rev_cap = 0) {
calculated = 0;
assert(0 <= frm && frm < N);
assert(0 <= to && to < N);
assert(Cap(0) <= cap);
int a = len(edges[frm]);
int b = (frm == to ? a + 1 : len(edges[to]));
pos.eb(frm, a);
edges[frm].eb(Edge{to, b, cap, 0});
edges[to].eb(Edge{frm, a, rev_cap, 0});
}
void change_capacity(int i, Cap after) {
auto [frm, idx] = pos[i];
auto& e = edges[frm][idx];
Cap before = e.cap + e.flow;
if (before < after) {
calculated = (e.cap > 0);
e.cap += after - before;
return;
}
e.cap = after - e.flow;
// 差分を押し戻す処理発生
if (e.cap < 0) flow_push_back(e);
}
void flow_push_back(Edge& e0) {
auto& re0 = edges[e0.to][e0.rev];
int a = re0.to;
int b = e0.to;
/*
辺 e0 の容量が正になるように戻す
path-cycle 分解を考えれば、
- uv 辺を含むサイクルを消す
- suvt パスを消す
前者は残余グラフで ab パス(flow_ans が変わらない)
後者は残余グラフで tb, as パス
*/
auto find_path = [&](int s, int t, Cap lim) -> Cap {
vc<bool> vis(N);
prog.assign(N, 0);
auto dfs = [&](auto& dfs, int v, Cap f) -> Cap {
if (v == t) return f;
for (int& i = prog[v]; i < len(edges[v]); ++i) {
auto& e = edges[v][i];
if (vis[e.to] || e.cap <= Cap(0)) continue;
vis[e.to] = 1;
Cap a = dfs(dfs, e.to, min(f, e.cap));
assert(a >= 0);
if (a == Cap(0)) continue;
e.cap -= a, e.flow += a;
edges[e.to][e.rev].cap += a, edges[e.to][e.rev].flow -= a;
return a;
}
return 0;
};
return dfs(dfs, s, lim);
};
while (e0.cap < 0) {
Cap x = find_path(a, b, -e0.cap);
if (x == Cap(0)) break;
e0.cap += x, e0.flow -= x;
re0.cap -= x, re0.flow += x;
}
Cap c = -e0.cap;
while (c > 0 && a != source) {
Cap x = find_path(a, source, c);
assert(x > 0);
c -= x;
}
c = -e0.cap;
while (c > 0 && b != sink) {
Cap x = find_path(sink, b, c);
assert(x > 0);
c -= x;
}
c = -e0.cap;
e0.cap += c, e0.flow -= c;
re0.cap -= c, re0.flow += c;
flow_ans -= c;
}
// frm, to, flow
vc<tuple<int, int, Cap>> get_flow_edges() {
vc<tuple<int, int, Cap>> res;
FOR(frm, N) {
for (auto&& e: edges[frm]) {
if (e.flow <= 0) continue;
res.eb(frm, e.to, e.flow);
}
}
return res;
}
vc<bool> vis;
// 差分ではなくこれまでの総量
Cap flow() {
if (calculated) return flow_ans;
calculated = true;
while (set_level()) {
prog.assign(N, 0);
while (1) {
Cap x = flow_dfs(source, infty<Cap>);
if (x == 0) break;
flow_ans += x;
chmin(flow_ans, infty<Cap>);
if (flow_ans == infty<Cap>) return flow_ans;
}
}
return flow_ans;
}
// 最小カットの値および、カットを表す 01 列を返す
pair<Cap, vc<int>> cut() {
flow();
vc<int> res(N);
FOR(v, N) res[v] = (level[v] >= 0 ? 0 : 1);
return {flow_ans, res};
}
// O(F(N+M)) くらい使って経路復元
// simple path になる
vvc<int> path_decomposition() {
flow();
auto edges = get_flow_edges();
vvc<int> TO(N);
for (auto&& [frm, to, flow]: edges) { FOR(flow) TO[frm].eb(to); }
vvc<int> res;
vc<int> vis(N);
FOR(flow_ans) {
vc<int> path = {source};
vis[source] = 1;
while (path.back() != sink) {
int to = POP(TO[path.back()]);
while (vis[to]) { vis[POP(path)] = 0; }
path.eb(to), vis[to] = 1;
}
for (auto&& v: path) vis[v] = 0;
res.eb(path);
}
return res;
}
void debug() {
print("source", source);
print("sink", sink);
print("edges (frm, to, cap, flow)");
FOR(v, N) {
for (auto& e: edges[v]) {
if (e.cap == 0 && e.flow == 0) continue;
print(v, e.to, e.cap, e.flow);
}
}
}
private:
Cap flow_ans;
bool set_level() {
que.resize(N);
level.assign(N, -1);
level[source] = 0;
int l = 0, r = 0;
que[r++] = source;
while (l < r) {
int v = que[l++];
for (auto&& e: edges[v]) {
if (e.cap > 0 && level[e.to] == -1) {
level[e.to] = level[v] + 1;
if (e.to == sink) return true;
que[r++] = e.to;
}
}
}
return false;
}
Cap flow_dfs(int v, Cap lim) {
if (v == sink) return lim;
Cap res = 0;
for (int& i = prog[v]; i < len(edges[v]); ++i) {
auto& e = edges[v][i];
if (e.cap > 0 && level[e.to] == level[v] + 1) {
Cap a = flow_dfs(e.to, min(lim, e.cap));
if (a > 0) {
e.cap -= a, e.flow += a;
edges[e.to][e.rev].cap += a, edges[e.to][e.rev].flow -= a;
res += a;
lim -= a;
if (lim == 0) break;
}
}
}
return res;
}
};
#line 5 "main.cpp"
void solve() {
LL(N, M, s, t);
--s, --t;
MaxFlow<ll> G(N, s, t);
FOR(M) {
LL(a, b, c);
--a, --b;
G.add(a, b, c);
}
ll ANS = G.flow();
print(ANS);
}
signed main() { solve(); }
Details
Tip: Click on the bar to expand more detailed information
Pretests
Final Tests
Test #1:
score: 12.5
Accepted
time: 1ms
memory: 4004kb
input:
52 275 1 2 11 18 1 18 48 9 10 15 1 11 19 1 10 20 1 3 14 1 8 16 1 31 32 2147483647 10 42 9 5 14 1 3 15 1 5 17 1 6 50 9 1 6 9 28 29 2147483647 18 40 9 43 42 2147483647 1 9 9 9 20 1 1 7 9 24 6 9 39 38 2147483647 4 14 1 38 37 2147483647 5 46 9 3 18 1 15 44 9 4 17 1 32 33 2147483647 28 9 9 32 9 9 26 12 9...
output:
729
result:
ok single line: '729'
Test #2:
score: 12.5
Accepted
time: 1ms
memory: 3920kb
input:
67 4489 14 1 25 63 19983 49 18 26963 9 29 23009 25 30 10286 45 6 14693 61 11 8464 12 19 29821 39 36 2365 12 7 20737 56 51 21002 9 63 14701 15 10 24386 21 36 25930 49 21 10680 56 11 25508 26 27 2101 46 4 1770 16 56 19722 23 8 28411 67 32 28897 45 62 22880 30 38 13226 37 56 18650 10 57 700 62 53 19659...
output:
1025243
result:
ok single line: '1025243'
Test #3:
score: 12.5
Accepted
time: 0ms
memory: 3816kb
input:
100 1029 1 2 39 96 19 68 19 19 16 33 1 17 25 1 74 22 19 50 23 19 46 29 19 70 24 19 27 92 19 50 25 19 6 36 1 34 80 19 72 19 19 48 13 19 11 86 19 19 86 19 100 99 2147483647 4 39 1 60 9 19 76 7 19 34 100 19 98 97 2147483647 15 25 1 14 94 19 5 40 1 4 38 1 46 34 19 90 89 2147483647 42 39 19 58 27 19 3 39...
output:
4693
result:
ok single line: '4693'
Test #4:
score: 12.5
Accepted
time: 1ms
memory: 3720kb
input:
100 500 64 68 97 1 597234350 42 59 1020828575 52 59 1341185789 46 82 534859215 84 98 1408384018 95 85 97421544 50 51 1658946459 71 91 1071433566 16 5 577259372 79 16 941940144 32 66 2144021311 42 94 132280559 100 83 2093384600 34 98 1633024304 31 69 735801701 68 13 632197336 70 25 868338831 60 91 14...
output:
4259958644
result:
ok single line: '4259958644'
Test #5:
score: 12.5
Accepted
time: 1ms
memory: 3848kb
input:
100 1500 30 87 12 52 1212854316 66 34 500229329 28 30 1905848380 45 10 1906211267 35 5 1227091997 14 10 797678626 42 39 2119948760 80 55 263028757 72 32 1402091192 2 70 114204531 53 87 1885940117 39 68 1262963681 20 100 363298998 81 19 475298425 86 17 276841422 95 43 940479356 85 55 1720319570 40 65...
output:
17139501202
result:
ok single line: '17139501202'
Test #6:
score: 12.5
Accepted
time: 1ms
memory: 4264kb
input:
100 5000 12 73 5 90 596775756 35 20 226786760 28 31 1775982092 79 17 743002845 10 19 150120683 83 96 901953035 91 62 809520329 2 61 1024423315 30 91 1374494188 93 26 751944004 82 82 727762428 1 43 502389284 84 87 1379778919 52 32 1459460146 71 15 983677176 18 3 249963037 80 32 828290820 40 99 159181...
output:
37381805875
result:
ok single line: '37381805875'
Test #7:
score: 12.5
Accepted
time: 7ms
memory: 3956kb
input:
100 5000 13 28 74 16 599476 99 76 112185 76 68 887056 13 2 181381 23 72 214611 10 15 955272 57 53 163306 81 44 721618 68 62 71172 70 44 233121 13 52 701794 77 40 298244 54 28 626039 26 63 829000 25 14 91588 97 62 980457 17 15 572847 100 75 273645 4 65 344467 17 47 299474 40 19 270752 50 68 804106 21...
output:
2193636882
result:
ok single line: '2193636882'
Test #8:
score: 12.5
Accepted
time: 2ms
memory: 4008kb
input:
100 5000 66 90 35 39 966842 3 56 577708 38 60 515530 3 73 351251 29 27 508007 56 70 185615 73 51 331650 6 32 589603 29 96 822851 9 99 335209 20 45 806531 60 10 460779 93 21 203582 77 27 391590 3 14 315530 86 41 234991 53 69 96865 97 15 203159 14 43 815111 4 24 337097 88 79 288209 64 34 806690 13 26 ...
output:
4340954172
result:
ok single line: '4340954172'