QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#629047 | #45. Tutte多项式 | maspy | 100 ✓ | 3016ms | 212404kb | C++20 | 31.5kb | 2024-10-11 01:56:34 | 2024-10-11 01:56:35 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "/home/maspy/compro/library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 4 "main.cpp"
#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 836905998};
if (mod == 1045430273) return {20, 363};
if (mod == 1051721729) return {20, 330};
if (mod == 1053818881) return {20, 2789};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "/home/maspy/compro/library/ds/unionfind/unionfind.hpp"
struct UnionFind {
int n, n_comp;
vc<int> dat; // par or (-size)
UnionFind(int n = 0) { build(n); }
void build(int m) {
n = m, n_comp = m;
dat.assign(n, -1);
}
void reset() { build(n); }
int operator[](int x) {
while (dat[x] >= 0) {
int pp = dat[dat[x]];
if (pp < 0) { return dat[x]; }
x = dat[x] = pp;
}
return x;
}
ll size(int x) {
x = (*this)[x];
return -dat[x];
}
bool merge(int x, int y) {
x = (*this)[x], y = (*this)[y];
if (x == y) return false;
if (-dat[x] < -dat[y]) swap(x, y);
dat[x] += dat[y], dat[y] = x, n_comp--;
return true;
}
vc<int> get_all() {
vc<int> A(n);
FOR(i, n) A[i] = (*this)[i];
return A;
}
};
#line 2 "/home/maspy/compro/library/setfunc/subset_convolution.hpp"
#line 2 "/home/maspy/compro/library/setfunc/ranked_zeta.hpp"
template <typename T, int LIM>
vc<array<T, LIM + 1>> ranked_zeta(const vc<T>& f) {
int n = topbit(len(f));
assert(n <= LIM);
assert(len(f) == 1 << n);
vc<array<T, LIM + 1>> Rf(1 << n);
for (int s = 0; s < (1 << n); ++s) Rf[s][popcnt(s)] = f[s];
for (int i = 0; i < n; ++i) {
int w = 1 << i;
for (int p = 0; p < (1 << n); p += 2 * w) {
for (int s = p; s < p + w; ++s) {
int t = s | 1 << i;
for (int d = 0; d <= n; ++d) Rf[t][d] += Rf[s][d];
}
}
}
return Rf;
}
template <typename T, int LIM>
vc<T> ranked_mobius(vc<array<T, LIM + 1>>& Rf) {
int n = topbit(len(Rf));
assert(len(Rf) == 1 << n);
for (int i = 0; i < n; ++i) {
int w = 1 << i;
for (int p = 0; p < (1 << n); p += 2 * w) {
for (int s = p; s < p + w; ++s) {
int t = s | 1 << i;
for (int d = 0; d <= n; ++d) Rf[t][d] -= Rf[s][d];
}
}
}
vc<T> f(1 << n);
for (int s = 0; s < (1 << n); ++s) f[s] = Rf[s][popcnt(s)];
return f;
}
#line 4 "/home/maspy/compro/library/setfunc/subset_convolution.hpp"
template <typename T, int LIM = 20>
vc<T> subset_convolution_square(const vc<T>& A) {
auto RA = ranked_zeta<T, LIM>(A);
int n = topbit(len(RA));
FOR(s, len(RA)) {
auto& f = RA[s];
FOR_R(d, n + 1) {
T x = 0;
FOR(i, d + 1) x += f[i] * f[d - i];
f[d] = x;
}
}
return ranked_mobius<T, LIM>(RA);
}
template <typename T, int LIM = 20>
vc<T> subset_convolution(const vc<T>& A, const vc<T>& B) {
if (A == B) return subset_convolution_square(A);
auto RA = ranked_zeta<T, LIM>(A);
auto RB = ranked_zeta<T, LIM>(B);
int n = topbit(len(RA));
FOR(s, len(RA)) {
auto &f = RA[s], &g = RB[s];
FOR_R(d, n + 1) {
T x = 0;
FOR(i, d + 1) x += f[i] * g[d - i];
f[d] = x;
}
}
return ranked_mobius<T, LIM>(RA);
}
#line 2 "/home/maspy/compro/library/setfunc/sps_exp.hpp"
// sum_i f_i/i! s^i, s^i is subset-convolution
template <typename mint, int LIM>
vc<mint> sps_exp(vc<mint>& s) {
const int N = topbit(len(s));
assert(len(s) == (1 << N) && s[0] == mint(0));
vc<mint> dp(1 << N);
dp[0] = mint(1);
FOR(i, N) {
vc<mint> a = {s.begin() + (1 << i), s.begin() + (2 << i)};
vc<mint> b = {dp.begin(), dp.begin() + (1 << i)};
a = subset_convolution<mint, LIM>(a, b);
copy(all(a), dp.begin() + (1 << i));
}
return dp;
}
#line 2 "/home/maspy/compro/library/setfunc/sps_composition.hpp"
// sum_i f_i/i! s^i, s^i is subset-convolution
template <typename mint, int LIM>
vc<mint> sps_composition_egf(vc<mint>& f, vc<mint>& s) {
const int N = topbit(len(s));
assert(len(s) == (1 << N) && s[0] == mint(0));
if (len(f) > N) f.resize(N + 1);
int D = len(f) - 1;
using ARR = array<mint, LIM + 1>;
vvc<ARR> zs(N);
FOR(i, N) {
zs[i]
= ranked_zeta<mint, LIM>({s.begin() + (1 << i), s.begin() + (2 << i)});
}
// dp : (d/dt)^df(s) (d=D,D-1,...)
vc<mint> dp(1 << (N - D));
dp[0] = f[D];
FOR_R(d, D) {
vc<mint> newdp(1 << (N - d));
newdp[0] = f[d];
vc<ARR> zdp = ranked_zeta<mint, LIM>(dp);
FOR(i, N - d) {
// zs[1<<i:2<<i], zdp[0:1<<i]
vc<ARR> znewdp(1 << i);
FOR(k, 1 << i) {
FOR(p, i + 1) FOR(q, i - p + 1) {
znewdp[k][p + q] += zdp[k][p] * zs[i][k][q];
}
}
auto x = ranked_mobius<mint, LIM>(znewdp);
copy(all(x), newdp.begin() + (1 << i));
}
swap(dp, newdp);
}
return dp;
}
// sum_i f_i s^i, s^i is subset-convolution
template <typename mint, int LIM>
vc<mint> sps_composition_poly(vc<mint> f, vc<mint> s) {
const int N = topbit(len(s));
assert(len(s) == (1 << N));
if (f.empty()) return vc<mint>(1 << N, mint(0));
// convert to egf problem
int D = min<int>(len(f) - 1, N);
vc<mint> g(D + 1);
mint c = s[0];
s[0] = 0;
// (x+c)^i
vc<mint> pow(D + 1);
pow[0] = 1;
FOR(i, len(f)) {
FOR(j, D + 1) g[j] += f[i] * pow[j];
FOR_R(j, D + 1) pow[j] = pow[j] * c + (j == 0 ? mint(0) : pow[j - 1]);
}
// to egf
mint factorial = 1;
FOR(j, D + 1) g[j] *= factorial, factorial *= mint(j + 1);
return sps_composition_egf<mint, LIM>(g, s);
}
#line 9 "main.cpp"
// 環で動作する
template <typename mint, int NMAX>
mint Tutte_Polynomial_Eval_connected(Graph<int, 0> G, mint X, mint Y) {
int N = G.N;
X -= 1, Y -= 1;
/*
V の連結成分分解を考えると,
各部分集合に S に対して, S を span する A の選び方に対する y^{cycle} の sum を F[S] として
c[n]F^n/n!, c[n] = X^{n-k(E)} として EGF composition でできる.
F[S] の計算
1 点ずつ足していく
集合に辺の個数に応じた重みをつけて exp
重み C(N,1) + C(N,2)Y + C(N,3)YY+...
*/
vv(mint, bin, N + 1, N + 1);
bin[0][0] = 1;
FOR(i, N) FOR(j, i + 1) bin[i + 1][j] += bin[i][j], bin[i + 1][j + 1] += bin[i][j];
vc<mint> wt(N + 1);
FOR(n, 1, N + 1) {
mint pow = 1;
FOR(m, 1, n + 1) { wt[n] += bin[n][m] * pow, pow *= Y; }
}
vc<mint> F(1 << N);
FOR(v, N) {
u32 nbd = 0;
for (auto& e: G[v]) nbd |= 1 << e.to;
vc<mint> f(1 << v);
FOR(s, 1 << v) { f[s] = F[s] * wt[popcnt(s & nbd)]; }
f = sps_exp<mint, NMAX>(f);
FOR(s, 1 << v) { F[s | 1 << v] = f[s]; }
}
if (X == mint(0)) { return F.back(); }
// vc<mint> c(N + 1);
// mint pow = 1;
// FOR(n, 1, N + 1) { c[n] = pow, pow *= X; }
// F = sps_composition_egf<mint, NMAX>(c, F);
// return F.back();
FOR(s, 1 << N) F[s] *= X;
F = sps_exp<mint, NMAX>(F);
return F.back() / X;
}
template <typename mint, int NMAX>
mint Tutte_Polynomial_Eval(Graph<int, 0> G, mint X, mint Y) {
int N = G.N;
UnionFind uf(N);
for (auto& e: G.edges) uf.merge(e.frm, e.to);
vvc<int> vs(N);
FOR(v, N) vs[uf[v]].eb(v);
mint ANS = 1;
for (auto& V: vs) {
if (V.empty()) continue;
Graph<int, 0> H = G.rearrange(V);
ANS *= Tutte_Polynomial_Eval_connected<mint, NMAX>(H, X, Y);
}
return ANS;
}
using mint = modint998;
void solve() {
LL(N);
Graph<int, 0> G(N);
FOR(i, N) FOR(j, N) {
INT(x);
if (i < j && x) G.add(i, j);
}
G.build();
mint x, y;
read(x, y);
mint ANS = Tutte_Polynomial_Eval<mint, 21>(G, x, y);
print(ANS);
}
signed main() { solve(); }
详细
Subtask #1:
score: 16
Accepted
Test #1:
score: 16
Accepted
time: 0ms
memory: 3656kb
input:
5 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 0 1
output:
6
result:
ok answer is 6
Test #2:
score: 16
Accepted
time: 0ms
memory: 3552kb
input:
5 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 0 2
output:
24
result:
ok answer is 24
Test #3:
score: 16
Accepted
time: 0ms
memory: 3976kb
input:
5 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0
output:
10
result:
ok answer is 10
Test #4:
score: 16
Accepted
time: 0ms
memory: 3636kb
input:
5 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1
output:
24
result:
ok answer is 24
Test #5:
score: 16
Accepted
time: 0ms
memory: 3984kb
input:
5 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 2
output:
52
result:
ok answer is 52
Test #6:
score: 16
Accepted
time: 0ms
memory: 3780kb
input:
5 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 2 0
output:
60
result:
ok answer is 60
Test #7:
score: 16
Accepted
time: 0ms
memory: 3780kb
input:
5 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 2 1
output:
86
result:
ok answer is 86
Test #8:
score: 16
Accepted
time: 0ms
memory: 3952kb
input:
7 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1
output:
3
result:
ok answer is 3
Test #9:
score: 16
Accepted
time: 0ms
memory: 3704kb
input:
7 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 20020221
output:
20020223
result:
ok answer is 20020223
Test #10:
score: 16
Accepted
time: 0ms
memory: 3708kb
input:
7 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 20020814 1
output:
807453860
result:
ok answer is 807453860
Test #11:
score: 16
Accepted
time: 0ms
memory: 4008kb
input:
7 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 20020814 20020221
output:
307912635
result:
ok answer is 307912635
Test #12:
score: 16
Accepted
time: 0ms
memory: 3964kb
input:
7 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1
output:
24
result:
ok answer is 24
Test #13:
score: 16
Accepted
time: 0ms
memory: 3704kb
input:
7 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 20020221
output:
98439924
result:
ok answer is 98439924
Test #14:
score: 16
Accepted
time: 0ms
memory: 4016kb
input:
7 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 20020814 1
output:
705719054
result:
ok answer is 705719054
Test #15:
score: 16
Accepted
time: 0ms
memory: 4000kb
input:
7 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 20020814 20020221
output:
485607933
result:
ok answer is 485607933
Test #16:
score: 16
Accepted
time: 0ms
memory: 3692kb
input:
7 0 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1
output:
48
result:
ok answer is 48
Test #17:
score: 16
Accepted
time: 0ms
memory: 3660kb
input:
7 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 0 1 20020221
output:
815810322
result:
ok answer is 815810322
Test #18:
score: 16
Accepted
time: 0ms
memory: 3788kb
input:
7 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 20020814 1
output:
387261289
result:
ok answer is 387261289
Test #19:
score: 16
Accepted
time: 0ms
memory: 3776kb
input:
7 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 20020814 20020221
output:
895603904
result:
ok answer is 895603904
Subtask #2:
score: 20
Accepted
Dependency #1:
100%
Accepted
Test #20:
score: 20
Accepted
time: 1ms
memory: 3844kb
input:
11 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 20020221
output:
153595675
result:
ok answer is 153595675
Test #21:
score: 20
Accepted
time: 1ms
memory: 3936kb
input:
11 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0 0 20020814 1
output:
491253731
result:
ok answer is 491253731
Test #22:
score: 20
Accepted
time: 1ms
memory: 3876kb
input:
11 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 20020814 20020221
output:
17689848
result:
ok answer is 17689848
Subtask #3:
score: 14
Accepted
Dependency #1:
100%
Accepted
Dependency #2:
100%
Accepted
Test #23:
score: 14
Accepted
time: 10ms
memory: 4948kb
input:
14 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0...
output:
171192566
result:
ok answer is 171192566
Test #24:
score: 14
Accepted
time: 5ms
memory: 4052kb
input:
14 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0...
output:
858770596
result:
ok answer is 858770596
Test #25:
score: 14
Accepted
time: 10ms
memory: 5036kb
input:
14 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1...
output:
220200163
result:
ok answer is 220200163
Subtask #4:
score: 25
Accepted
Dependency #1:
100%
Accepted
Dependency #2:
100%
Accepted
Dependency #3:
100%
Accepted
Test #26:
score: 25
Accepted
time: 112ms
memory: 17264kb
input:
18 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0...
output:
150803960
result:
ok answer is 150803960
Test #27:
score: 25
Accepted
time: 216ms
memory: 29576kb
input:
18 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1...
output:
295845902
result:
ok answer is 295845902
Test #28:
score: 25
Accepted
time: 245ms
memory: 29640kb
input:
18 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1...
output:
82075728
result:
ok answer is 82075728
Subtask #5:
score: 25
Accepted
Dependency #1:
100%
Accepted
Dependency #2:
100%
Accepted
Dependency #3:
100%
Accepted
Dependency #4:
100%
Accepted
Test #29:
score: 25
Accepted
time: 1338ms
memory: 115988kb
input:
21 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0...
output:
794685740
result:
ok answer is 794685740
Test #30:
score: 25
Accepted
time: 2967ms
memory: 212404kb
input:
21 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1...
output:
584501085
result:
ok answer is 584501085
Test #31:
score: 25
Accepted
time: 3016ms
memory: 212232kb
input:
21 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0...
output:
114086868
result:
ok answer is 114086868