QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#628389 | #8775. MountainCraft | maspy | AC ✓ | 558ms | 43080kb | C++20 | 19.5kb | 2024-10-10 19:56:59 | 2024-10-10 19:57:00 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) \
SHOW_IMPL(__VA_ARGS__, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) \
print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/alg/monoid/minmincnt.hpp"
// 最小値、最小値の個数
template <typename E>
struct Monoid_MinMincnt {
using value_type = pair<E, E>;
using X = value_type;
static X op(X x, X y) {
auto [xmin, xmincnt] = x;
auto [ymin, ymincnt] = y;
if (xmin > ymin) return y;
if (xmin < ymin) return x;
return {xmin, xmincnt + ymincnt};
}
static constexpr X unit() { return {infty<E>, 0}; }
static constexpr bool commute = true;
};
#line 2 "library/alg/monoid/add.hpp"
template <typename E>
struct Monoid_Add {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 3 "library/alg/acted_monoid/minmincnt_add.hpp"
template <typename E>
struct ActedMonoid_MinMincnt_Add {
using Monoid_X = Monoid_MinMincnt<E>;
using Monoid_A = Monoid_Add<E>;
using X = typename Monoid_X::value_type;
using A = typename Monoid_A::value_type;
static constexpr X act(const X &x, const A &a, const ll &size) {
auto [xmin, xmincnt] = x;
if (xmin == infty<E>) return x;
return {xmin + a, xmincnt};
}
};
#line 2 "library/ds/segtree/lazy_segtree.hpp"
template <typename ActedMonoid>
struct Lazy_SegTree {
using AM = ActedMonoid;
using MX = typename AM::Monoid_X;
using MA = typename AM::Monoid_A;
using X = typename MX::value_type;
using A = typename MA::value_type;
int n, log, size;
vc<X> dat;
vc<A> laz;
Lazy_SegTree() {}
Lazy_SegTree(int n) { build(n); }
template <typename F>
Lazy_SegTree(int n, F f) {
build(n, f);
}
Lazy_SegTree(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
dat.assign(size << 1, MX::unit());
laz.assign(size, MA::unit());
FOR(i, n) dat[size + i] = f(i);
FOR_R(i, 1, size) update(i);
}
void update(int k) { dat[k] = MX::op(dat[2 * k], dat[2 * k + 1]); }
void set(int p, X x) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
void multiply(int p, const X& x) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat[p] = MX::op(dat[p], x);
for (int i = 1; i <= log; i++) update(p >> i);
}
X get(int p) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return dat[p];
}
vc<X> get_all() {
FOR(k, 1, size) { push(k); }
return {dat.begin() + size, dat.begin() + size + n};
}
X prod(int l, int r) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return MX::unit();
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
X xl = MX::unit(), xr = MX::unit();
while (l < r) {
if (l & 1) xl = MX::op(xl, dat[l++]);
if (r & 1) xr = MX::op(dat[--r], xr);
l >>= 1, r >>= 1;
}
return MX::op(xl, xr);
}
X prod_all() { return dat[1]; }
void apply(int l, int r, A a) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return;
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) apply_at(l++, a);
if (r & 1) apply_at(--r, a);
l >>= 1, r >>= 1;
}
l = l2, r = r2;
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <typename F>
int max_right(const F check, int l) {
assert(0 <= l && l <= n);
assert(check(MX::unit()));
if (l == n) return n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
X sm = MX::unit();
do {
while (l % 2 == 0) l >>= 1;
if (!check(MX::op(sm, dat[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (check(MX::op(sm, dat[l]))) { sm = MX::op(sm, dat[l++]); }
}
return l - size;
}
sm = MX::op(sm, dat[l++]);
} while ((l & -l) != l);
return n;
}
template <typename F>
int min_left(const F check, int r) {
assert(0 <= r && r <= n);
assert(check(MX::unit()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
X sm = MX::unit();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(MX::op(dat[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (check(MX::op(dat[r], sm))) { sm = MX::op(dat[r--], sm); }
}
return r + 1 - size;
}
sm = MX::op(dat[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
void apply_at(int k, A a) {
ll sz = 1 << (log - topbit(k));
dat[k] = AM::act(dat[k], a, sz);
if (k < size) laz[k] = MA::op(laz[k], a);
}
void push(int k) {
if (laz[k] == MA::unit()) return;
apply_at(2 * k, laz[k]), apply_at(2 * k + 1, laz[k]);
laz[k] = MA::unit();
}
};
#line 6 "main.cpp"
void solve() {
LL(N, LIM);
VEC(pi, LR, N);
for (auto& [a, b]: LR) { tie(a, b) = mp(a - b, a + b); }
vi X = {0, LIM};
for (auto& [a, b]: LR) X.eb(a), X.eb(b);
UNIQUE(X);
ll LLIM = LB(X, 0), RLIM = LB(X, LIM);
ll n = len(X) - 1;
Lazy_SegTree<ActedMonoid_MinMincnt_Add<ll>> seg(n,
[&](int i) -> pair<ll, ll> {
return {0, X[i + 1] - X[i]};
});
set<pi> st;
for (auto& [a, b]: LR) {
pi p = {a, b};
int L = LB(X, a), R = LB(X, b);
if (st.count(p)) {
seg.apply(L, R, -1);
st.erase(p);
} else {
seg.apply(L, R, 1);
st.insert(p);
}
using Re = double;
auto X = seg.prod(LLIM, RLIM);
Re ANS = LIM;
if (X.fi == 0) ANS -= X.se;
ANS *= sqrtl(2);
print(ANS);
}
}
signed main() {
solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 4140kb
input:
3 10 3 2 7 3 9 6
output:
5.656854249492381 12.727922061357855 12.727922061357855
result:
ok 3 numbers
Test #2:
score: 0
Accepted
time: 0ms
memory: 3896kb
input:
5 100 31 41 59 26 31 41 59 26 31 41
output:
101.823376490862842 120.208152801713084 73.539105243400940 0.000000000000000 101.823376490862842
result:
ok 5 numbers
Test #3:
score: 0
Accepted
time: 1ms
memory: 3876kb
input:
100 10 6 4 2 3 7 6 5 5 3 6 7 5 5 8 10 4 9 8 0 9 9 10 9 3 2 3 10 10 8 4 10 9 0 1 1 7 0 2 3 4 10 3 3 10 7 4 7 5 1 4 0 7 1 9 5 6 8 8 7 4 8 1 3 9 2 1 5 5 2 1 10 9 8 4 0 9 10 7 4 1 9 10 8 6 5 4 1 4 0 9 9 3 4 8 5 10 7 2 8 10 7 10 3 4 2 2 8 5 0 9 5 3 1 4 6 4 0 3 8 1 1 6 3 8 8 4 6 5 10 2 2 2 8 4 6 1 2 4 6 4...
output:
11.313708498984761 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730...
result:
ok 100 numbers
Test #4:
score: 0
Accepted
time: 2ms
memory: 4048kb
input:
1000 100 95 8 54 8 64 96 47 34 77 47 99 91 45 70 8 6 64 84 48 42 53 14 73 66 38 27 6 52 19 75 33 39 6 24 37 80 27 45 96 48 55 95 67 1 23 78 40 4 76 7 77 22 4 47 41 31 60 54 96 37 79 52 63 40 7 92 17 7 74 12 93 16 87 5 67 43 60 29 71 58 52 41 53 84 38 2 46 87 13 54 54 14 16 93 57 7 91 98 31 23 70 3 9...
output:
18.384776310850235 41.012193308819754 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 14...
result:
ok 1000 numbers
Test #5:
score: 0
Accepted
time: 2ms
memory: 4120kb
input:
1000 1000 942 407 513 739 329 437 605 318 847 416 128 543 588 237 903 365 703 556 313 928 621 344 974 444 780 265 993 889 103 427 94 977 897 586 566 326 785 938 224 952 150 441 716 802 729 584 954 347 640 4 91 633 738 970 823 253 158 890 115 734 327 391 554 258 373 67 396 995 788 73 609 703 627 801 ...
output:
657.609306503489165 1414.213562373095101 1414.213562373095101 1414.213562373095101 1414.213562373095101 1414.213562373095101 1414.213562373095101 1414.213562373095101 1414.213562373095101 1414.213562373095101 1414.213562373095101 1414.213562373095101 1414.213562373095101 1414.213562373095101 1414.21...
result:
ok 1000 numbers
Test #6:
score: 0
Accepted
time: 185ms
memory: 12568kb
input:
200000 10 6 4 4 9 7 9 6 2 0 7 6 7 4 8 10 5 7 8 5 4 3 6 5 9 0 9 7 3 8 2 8 6 5 9 5 10 4 9 0 3 10 5 3 9 7 2 2 3 9 7 5 6 1 7 0 4 9 6 4 7 3 8 6 4 2 7 0 6 8 3 6 2 8 10 1 6 0 4 6 1 3 3 5 8 9 7 8 7 1 10 6 2 1 8 8 6 6 1 6 3 0 6 6 1 5 6 1 1 6 4 7 9 3 5 10 6 2 8 6 7 7 3 6 8 8 5 9 7 4 5 6 4 5 10 8 6 8 5 4 6 4 6...
output:
11.313708498984761 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730951 14.142135623730...
result:
ok 200000 numbers
Test #7:
score: 0
Accepted
time: 257ms
memory: 12408kb
input:
200000 100 96 9 26 82 73 33 12 92 13 77 87 2 23 79 41 91 75 28 6 45 42 81 27 51 7 64 80 90 27 65 77 72 54 60 79 8 10 61 46 15 65 16 75 95 65 4 89 38 42 74 96 63 48 87 39 78 2 59 36 48 36 66 12 75 44 45 80 86 79 99 26 30 29 54 39 44 7 27 99 23 41 76 23 71 76 51 90 76 59 22 45 70 73 98 24 94 70 54 76 ...
output:
18.384776310850235 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 141.421356237309510 1...
result:
ok 200000 numbers
Test #8:
score: 0
Accepted
time: 442ms
memory: 20868kb
input:
200000 10000 8596 2507 1107 4452 8591 3460 3584 2911 8817 9663 1604 2760 6281 8431 5271 4811 2193 1874 5329 3970 2679 8672 8426 8447 117 4849 3471 6286 177 4806 9726 7217 6743 3882 573 4295 5291 7358 1356 6269 7882 8426 8750 985 5365 8276 7420 6372 8234 6329 7723 9014 3369 1097 7140 8329 3475 447 37...
output:
5530.989242441174611 13392.602435673210493 14142.135623730950101 14142.135623730950101 14142.135623730950101 14142.135623730950101 14142.135623730950101 14142.135623730950101 14142.135623730950101 14142.135623730950101 14142.135623730950101 14142.135623730950101 14142.135623730950101 14142.135623730...
result:
ok 200000 numbers
Test #9:
score: 0
Accepted
time: 558ms
memory: 43080kb
input:
200000 1000000000 979065421 937279323 384811311 879649222 673927841 883688174 47686221 518846247 805783947 475892423 94359891 104324315 116498230 496486640 155617000 261326127 423462080 949904263 758478482 824824842 594993542 173897699 495194886 158960628 409812195 339201236 958417812 891558399 7055...
output:
1355119095.862843751907349 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 141...
result:
ok 200000 numbers
Test #10:
score: 0
Accepted
time: 0ms
memory: 3848kb
input:
3 100 82 61 46 1 82 61
output:
111.722871427474516 111.722871427474516 2.828427124746190
result:
ok 3 numbers
Test #11:
score: 0
Accepted
time: 293ms
memory: 31196kb
input:
200000 200005 199999 1 199998 2 199997 3 199996 4 199995 5 199994 6 199993 7 199992 8 199991 9 199990 10 199989 11 199988 12 199987 13 199986 14 199985 15 199984 16 199983 17 199982 18 199981 19 199980 20 199979 21 199978 22 199977 23 199976 24 199975 25 199974 26 199973 27 199972 28 199971 29 19997...
output:
2.828427124746190 5.656854249492381 8.485281374238570 11.313708498984761 14.142135623730951 16.970562748477139 19.798989873223331 22.627416997969522 25.455844122715710 28.284271247461902 31.112698372208090 33.941125496954278 36.769552621700470 39.597979746446661 42.426406871192853 45.254833995939045...
result:
ok 200000 numbers
Test #12:
score: 0
Accepted
time: 275ms
memory: 31192kb
input:
200000 200005 0 200000 1 199999 2 199998 3 199997 4 199996 5 199995 6 199994 7 199993 8 199992 9 199991 10 199990 11 199989 12 199988 13 199987 14 199986 15 199985 16 199984 17 199983 18 199982 19 199981 20 199980 21 199979 22 199978 23 199977 24 199976 25 199975 26 199974 27 199973 28 199972 29 199...
output:
282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 2...
result:
ok 200000 numbers
Test #13:
score: 0
Accepted
time: 418ms
memory: 31152kb
input:
200000 200005 188054 11946 25503 174497 5164 194836 199742 258 65650 134350 93448 106552 165510 34490 33001 166999 54081 145919 123066 76934 50244 149756 46561 153439 66523 133477 8593 191407 173633 26367 105494 94506 198495 1505 75564 124436 83182 116818 123337 76663 186899 13101 110487 89513 10858...
output:
33788.390432217987836 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 282842.712474619038403 28...
result:
ok 200000 numbers
Test #14:
score: 0
Accepted
time: 286ms
memory: 31200kb
input:
200000 200005 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50 51 5...
output:
2.828427124746190 5.656854249492381 8.485281374238570 11.313708498984761 14.142135623730951 16.970562748477139 19.798989873223331 22.627416997969522 25.455844122715710 28.284271247461902 31.112698372208090 33.941125496954278 36.769552621700470 39.597979746446661 42.426406871192853 45.254833995939045...
result:
ok 200000 numbers
Test #15:
score: 0
Accepted
time: 267ms
memory: 31180kb
input:
200000 200005 200000 200000 199999 199999 199998 199998 199997 199997 199996 199996 199995 199995 199994 199994 199993 199993 199992 199992 199991 199991 199990 199990 199989 199989 199988 199988 199987 199987 199986 199986 199985 199985 199984 199984 199983 199983 199982 199982 199981 199981 199980...
output:
282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 2...
result:
ok 200000 numbers
Test #16:
score: 0
Accepted
time: 406ms
memory: 31136kb
input:
200000 200005 99686 99686 193692 193692 142065 142065 56279 56279 120521 120521 147618 147618 148660 148660 1328 1328 69007 69007 5297 5297 136306 136306 136195 136195 101372 101372 66966 66966 110843 110843 170697 170697 23097 23097 146157 146157 118098 118098 11530 11530 42300 42300 74535 74535 17...
output:
281954.586357448715717 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 282849.783542430901434 2...
result:
ok 200000 numbers
Test #17:
score: 0
Accepted
time: 136ms
memory: 11904kb
input:
200000 1000000000 227478108 704821317 227478108 704821317 227478108 704821317 227478108 704821317 227478108 704821317 227478108 704821317 227478108 704821317 227478108 704821317 227478108 704821317 227478108 704821317 227478108 704821317 227478108 704821317 227478108 704821317 227478108 704821317 22...
output:
1318470491.027638196945190 0.000000000000000 1318470491.027638196945190 0.000000000000000 1318470491.027638196945190 0.000000000000000 1318470491.027638196945190 0.000000000000000 1318470491.027638196945190 0.000000000000000 1318470491.027638196945190 0.000000000000000 1318470491.027638196945190 0.0...
result:
ok 200000 numbers
Test #18:
score: 0
Accepted
time: 192ms
memory: 11356kb
input:
200000 1000000000 517510913 200230004 39507125 601409920 30526823 972694998 176712 534697072 789676092 648567171 967127462 822743807 176712 534697072 176712 534697072 117560602 867751869 967127462 822743807 227002346 310628813 789676092 648567171 800983841 618498638 39507125 601409920 517510913 2002...
output:
566335974.501638174057007 1015038939.091501951217651 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414...
result:
ok 200000 numbers
Test #19:
score: 0
Accepted
time: 232ms
memory: 11196kb
input:
200000 1000000000 351451808 649636951 49985291 500589827 661773922 164694264 186065541 226295124 497991267 744030929 574182692 439989249 853617452 979655888 308109763 216029731 66584658 40643821 855305206 820425533 740812379 441059394 151159173 495945962 214589103 777995590 957581330 407536966 88513...
output:
1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 1414213562.373095035552979 141...
result:
ok 200000 numbers
Test #20:
score: 0
Accepted
time: 146ms
memory: 10748kb
input:
200000 1000000000 821475126 617812186 464369722 134670005 821475126 617812186 464369722 134670005 464369722 134670005 821475126 617812186 464369722 134670005 464369722 134670005 464369722 134670005 464369722 134670005 821475126 617812186 464369722 134670005 464369722 134670005 464369722 134670005 46...
output:
1126190670.472317218780518 1126190670.472317218780518 380904295.031705021858215 0.000000000000000 380904295.031705021858215 1126190670.472317218780518 1126190670.472317218780518 1126190670.472317218780518 1126190670.472317218780518 1126190670.472317218780518 380904295.031705021858215 0.0000000000000...
result:
ok 200000 numbers
Test #21:
score: 0
Accepted
time: 185ms
memory: 11440kb
input:
200000 11 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 8 1 10 10 3 1 1 2 9 10 1 4 5 1 1 5 1 6 7 7 2 1 4 1 5 3 7 9 6 4 3 7 6 1 1 8 2 5 2 9 10 9 6 10 9 8 1 2 7 3 6 6 6 6 7 5 1 9 7 9 3 5 9 5 3 3 6 8 10 9 7 5 5 1 2 1 3 2 5 5 8 1 4 9 9 8 1 3 4 8 8 9 2 10 1 4 7 3 4 1 1 2 1 2 5 1 5 4 1 3 2 1 6 2 6 8 5 9 10 7 5...
output:
2.828427124746190 4.242640687119285 5.656854249492381 7.071067811865476 8.485281374238570 9.899494936611665 11.313708498984761 12.727922061357855 14.142135623730951 15.556349186104045 15.556349186104045 15.556349186104045 15.556349186104045 15.556349186104045 15.556349186104045 15.556349186104045 15...
result:
ok 200000 numbers
Test #22:
score: 0
Accepted
time: 128ms
memory: 12236kb
input:
200000 4 1 1 2 1 3 1 1 1 3 2 3 3 2 1 3 3 2 1 2 2 2 2 3 1 2 2 3 3 1 2 2 3 1 2 2 1 2 2 1 2 3 1 2 2 2 1 2 1 3 3 2 2 1 2 1 3 2 1 3 3 2 3 3 1 2 1 1 2 1 3 3 1 2 3 2 1 1 2 3 3 1 3 3 3 2 3 2 3 2 1 3 1 3 3 1 2 2 1 2 1 1 1 1 3 1 1 1 1 2 3 2 2 1 2 1 1 1 3 1 1 1 2 1 1 2 3 1 1 2 2 2 2 2 1 2 1 3 2 1 1 3 1 1 2 1 1...
output:
2.828427124746190 4.242640687119285 5.656854249492381 4.242640687119285 4.242640687119285 5.656854249492381 5.656854249492381 4.242640687119285 4.242640687119285 5.656854249492381 4.242640687119285 4.242640687119285 5.656854249492381 5.656854249492381 5.656854249492381 5.656854249492381 5.6568542494...
result:
ok 200000 numbers
Test #23:
score: 0
Accepted
time: 239ms
memory: 12032kb
input:
200000 51 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 1 41 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 2 47 25 41 44 8 35 38 37 24 42 32 40 48 19 4 26 4...
output:
2.828427124746190 4.242640687119285 5.656854249492381 7.071067811865476 8.485281374238570 9.899494936611665 11.313708498984761 12.727922061357855 14.142135623730951 15.556349186104045 16.970562748477139 18.384776310850235 19.798989873223331 21.213203435596427 22.627416997969522 24.041630560342615 25...
result:
ok 200000 numbers