QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#627894 | #6143. 滚榜 | wzj33300 | 100 ✓ | 187ms | 215788kb | C++23 | 5.2kb | 2024-10-10 17:32:51 | 2024-10-10 17:32:53 |
Judging History
answer
/**
* created : 10.10.2024 16:27:25
* author : wzj33300
*/
#include <bits/stdc++.h>
using namespace std;
#ifdef DEBUG
#include <algo/debug.h>
#else
#define debug(...) 42
#define assert(...) 42
#endif
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using db = long double; // or double, if TL is tight
using str = string; // yay python!
// pairs
using pi = pair<int, int>;
using pl = pair<ll, ll>;
using pd = pair<db, db>;
#define mp make_pair
#define fi first
#define se second
// ^ lol this makes everything look weird but I'll try it
template <class T>
using vc = vector<T>;
template <class T, size_t SZ>
using AR = array<T, SZ>;
using vi = vc<int>;
using vb = vc<bool>;
using vl = vc<ll>;
using vd = vc<db>;
using vs = vc<str>;
using vpi = vc<pi>;
using vpl = vc<pl>;
using vpd = vc<pd>;
// vectors
// oops size(x), rbegin(x), rend(x) need C++17
#define sz(x) int((x).size())
#define bg(x) begin(x)
#define all(x) bg(x), end(x)
#define rall(x) x.rbegin(), x.rend()
#define sor(x) sort(all(x))
#define rsz resize
#define ins insert
#define pb push_back
#define eb emplace_back
#define ft front()
#define bk back()
#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep1(i, n) for (int i = 1; i < (n); ++i)
#define rep1n(i, n) for (int i = 1; i <= (n); ++i)
#define repr(i, n) for (int i = (n) - 1; i >= 0; --i)
#define rep_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define lb lower_bound
#define ub upper_bound
template <class T>
int lwb(vc<T> &a, const T &b) {
return int(lb(all(a), b) - bg(a));
}
template <class T>
int upb(vc<T> &a, const T &b) {
return int(ub(all(a), b) - bg(a));
}
// const int MOD = 998244353; // 1e9+7;
const int Big = 1e9; // not too close to INT_MAX
const ll BIG = 1e18; // not too close to LLONG_MAX
const db PI = acos((db)-1);
const int dx[4]{1, 0, -1, 0}, dy[4]{0, 1, 0, -1}; // for every grid problem!!
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
int pct(int x) { return __builtin_popcount(x); }
int pct(u32 x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int pct(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <class T>
bool ckmin(T &a, const T &b) {
return b < a ? a = b, 1 : 0;
} // set a = min(a,b)
template <class T>
bool ckmax(T &a, const T &b) {
return a < b ? a = b, 1 : 0;
} // set a = max(a,b)
template <class T, class U>
T fstTrue(T lo, T hi, U f) {
++hi;
assert(lo <= hi); // assuming f is increasing
while (lo < hi) { // find first index such that f is true
T mid = lo + (hi - lo) / 2;
f(mid) ? hi = mid : lo = mid + 1;
}
return lo;
}
template <class T, class U>
T lstTrue(T lo, T hi, U f) {
--lo;
assert(lo <= hi); // assuming f is decreasing
while (lo < hi) { // find first index such that f is true
T mid = lo + (hi - lo + 1) / 2;
f(mid) ? lo = mid : hi = mid - 1;
}
return lo;
}
// signed main() {
int main() {
// freopen(".in", "r",stdin);
// freopen(".out","w",stdout);
ios::sync_with_stdio(false);
cin.tie(0);
int n, m;
std::cin >> n >> m;
vi a(n);
for (auto &i : a) std::cin >> i;
vc f(1 << n, vc(n, vc(m + 1, 0)));
int mx = std::distance(a.begin(), std::max_element(all(a)));
for (int s = 1; s < 1 << n; s++) {
int pc = pct(s);
if (pct(s) == 1) {
int c = lowbit(s);
int mn = std::max(a[mx] - a[c] + (mx < c), 0);
for (int cho = mn; cho <= mn && cho <= m / n; cho++) {
f[s][c][cho * n] = 1;
}
} else {
for (int S = s; S > 0; S &= S - 1) {
int c = lowbit(S);
for (int SS = s ^ 1 << c; SS > 0; SS &= SS - 1) {
int d = lowbit(SS);
int mn = std::max(a[d] - a[c] + (d < c), 0);
for (int sum = mn * (n - pc + 1); sum <= m; sum++) {
f[s][c][sum] += f[s ^ 1 << c][d][sum - mn * (n - pc + 1)];
}
}
}
}
}
ll ans = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j <= m; j++)
ans += f[(1 << n) - 1][i][j];
}
std::cout << ans << '\n';
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Pretests
Final Tests
Test #1:
score: 5
Accepted
time: 0ms
memory: 3588kb
input:
2 8 8950 8954
output:
2
result:
ok 1 number(s): "2"
Test #2:
score: 5
Accepted
time: 0ms
memory: 3588kb
input:
2 10 8841 8843
output:
2
result:
ok 1 number(s): "2"
Test #3:
score: 5
Accepted
time: 0ms
memory: 3652kb
input:
3 9 8765 8761 8765
output:
2
result:
ok 1 number(s): "2"
Test #4:
score: 5
Accepted
time: 0ms
memory: 3572kb
input:
3 8 8385 8385 8387
output:
6
result:
ok 1 number(s): "6"
Test #5:
score: 5
Accepted
time: 0ms
memory: 3568kb
input:
3 9 8581 8585 8582
output:
2
result:
ok 1 number(s): "2"
Test #6:
score: 5
Accepted
time: 1ms
memory: 4456kb
input:
8 100 8856 8864 8858 8860 8856 8863 8859 8857
output:
17589
result:
ok 1 number(s): "17589"
Test #7:
score: 5
Accepted
time: 1ms
memory: 4460kb
input:
8 100 8238 8239 8245 8244 8245 8244 8238 8244
output:
32475
result:
ok 1 number(s): "32475"
Test #8:
score: 5
Accepted
time: 1ms
memory: 4260kb
input:
8 100 9804 9806 9807 9802 9801 9803 9801 9806
output:
37012
result:
ok 1 number(s): "37012"
Test #9:
score: 5
Accepted
time: 4ms
memory: 11632kb
input:
10 200 8002 8014 8011 8013 8002 8003 8002 8016 8009 8004
output:
606309
result:
ok 1 number(s): "606309"
Test #10:
score: 5
Accepted
time: 8ms
memory: 11596kb
input:
10 200 8324 8323 8328 8322 8325 8328 8328 8323 8334 8323
output:
2504995
result:
ok 1 number(s): "2504995"
Test #11:
score: 5
Accepted
time: 4ms
memory: 11560kb
input:
10 200 9416 9415 9417 9404 9408 9409 9410 9416 9415 9411
output:
2553164
result:
ok 1 number(s): "2553164"
Test #12:
score: 5
Accepted
time: 4ms
memory: 11556kb
input:
10 200 9422 9430 9425 9425 9425 9423 9431 9428 9432 9434
output:
2687280
result:
ok 1 number(s): "2687280"
Test #13:
score: 5
Accepted
time: 47ms
memory: 62844kb
input:
12 300 9281 9292 9279 9280 9289 9291 9285 9279 9280 9281 9290 9281
output:
197821618
result:
ok 1 number(s): "197821618"
Test #14:
score: 5
Accepted
time: 52ms
memory: 62760kb
input:
12 300 9737 9726 9731 9736 9723 9727 9722 9732 9736 9733 9737 9728
output:
196607151
result:
ok 1 number(s): "196607151"
Test #15:
score: 5
Accepted
time: 40ms
memory: 62772kb
input:
12 300 8707 8708 8712 8704 8705 8704 8716 8711 8713 8712 8702 8710
output:
337047589
result:
ok 1 number(s): "337047589"
Test #16:
score: 5
Accepted
time: 53ms
memory: 62756kb
input:
12 300 9200 9194 9191 9195 9197 9192 9206 9206 9197 9198 9192 9202
output:
164570332
result:
ok 1 number(s): "164570332"
Test #17:
score: 5
Accepted
time: 187ms
memory: 215612kb
input:
13 500 8217 8233 8238 8217 8237 8237 8217 8217 8230 8234 8225 8223 8220
output:
1500488819
result:
ok 1 number(s): "1500488819"
Test #18:
score: 5
Accepted
time: 177ms
memory: 215612kb
input:
13 500 9781 9780 9772 9779 9785 9788 9788 9777 9791 9784 9782 9777 9768
output:
4627756434
result:
ok 1 number(s): "4627756434"
Test #19:
score: 5
Accepted
time: 159ms
memory: 215684kb
input:
13 500 8096 8078 8103 8104 8085 8089 8081 8085 8102 8095 8097 8100 8090
output:
1388414345
result:
ok 1 number(s): "1388414345"
Test #20:
score: 5
Accepted
time: 180ms
memory: 215788kb
input:
13 500 8739 8728 8743 8727 8730 8735 8733 8738 8731 8743 8728 8722 8722
output:
3106123719
result:
ok 1 number(s): "3106123719"
Extra Test:
score: 0
Extra Test Passed