QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#615845#9449. New School Termucup-team296#WA 0ms2304kbRust43.8kb2024-10-05 20:36:142024-10-05 20:36:15

Judging History

你现在查看的是最新测评结果

  • [2024-10-05 20:36:15]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:2304kb
  • [2024-10-05 20:36:14]
  • 提交

answer

// 
pub mod solution {
//{"name":"ucucp_11_o","group":"Manual","url":"","interactive":false,"timeLimit":2000,"tests":[{"input":"","output":""},{"input":"","output":""}],"testType":"single","input":{"type":"stdin","fileName":null,"pattern":null},"output":{"type":"stdout","fileName":null,"pattern":null},"languages":{"java":{"taskClass":"ucucp_11_o"}}}

use crate::algo_lib::collections::bit_set::BitSet;
use crate::algo_lib::collections::dsu::DSU;
use crate::algo_lib::collections::iter_ext::collect::IterCollect;
use crate::algo_lib::collections::md_arr::arr2d::Arr2d;
use crate::algo_lib::collections::slice_ext::indices::Indices;
use crate::algo_lib::collections::vec_ext::inc_dec::IncDec;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::misc::test_type::TaskType;
use crate::algo_lib::misc::test_type::TestType;
use std::collections::HashSet;
use std::mem::swap;

type PreCalc = ();

fn solve(input: &mut Input, out: &mut Output, _test_case: usize, _data: &mut PreCalc) {
    let n = input.read_size();
    let m = input.read_size();
    let edges = input.read_size_pair_vec(m).dec();

    let mut dsu = DSU::new(2 * n);
    let mut sets = (0..2 * n).map(|i| vec![i]).collect_vec();
    let mut size = vec![(1, 0); 2 * n];
    let mut col = vec![0; 2 * n];
    let mut sizes = vec![(0..2 * n).map(|i| (1, 0, i)).collect_vec()];
    let mut present = (0..2 * n).collect::<HashSet<_>>();
    for i in (0..m).rev() {
        let (mut u, mut v) = edges[i];
        if dsu.get(u) == dsu.get(v) {
            continue;
        }
        let sw = col[u] == col[v];
        u = dsu.get(u);
        v = dsu.get(v);
        if sets[u].len() < sets[v].len() {
            swap(&mut u, &mut v);
        }
        if sw {
            for &j in &sets[v] {
                col[j] ^= 1;
            }
        }
        size[u] = (size[u].0 + size[v].1, size[u].1 + size[v].0 + 0);
        let mut sv = Vec::new();
        swap(&mut sv, &mut sets[v]);
        sets[u].extend(sv);
        dsu.join(u, v);
        present.remove(&v);
        let mut cur_sizes = Vec::with_capacity(present.len());
        for &j in &present {
            cur_sizes.push((size[j].0, size[j].1, j));
        }
        sizes.push(cur_sizes);
    }
    let mut left = 0;
    let mut right = sizes.len() - 1;
    while left < right {
        let mid = (left + right + 1) / 2;
        let mut can_do = BitSet::new(n + 1);
        can_do.set(0);
        let mut next_can_do = BitSet::new(n + 1);
        for &(x, y, _) in &sizes[mid] {
            next_can_do.fill(false);
            for i in (0..=n).rev() {
                if can_do[i] {
                    if i + x <= n {
                        next_can_do.set(i + x);
                    }
                    if i + y <= n {
                        next_can_do.set(i + y);
                    }
                }
            }
            swap(&mut can_do, &mut next_can_do);
        }
        if can_do[n] {
            left = mid;
        } else {
            right = mid - 1;
        }
    }

    let mut dsu = DSU::new(2 * n);
    let mut sets = (0..2 * n).map(|i| vec![i]).collect_vec();
    let mut size = vec![(1, 0); 2 * n];
    let mut col = vec![0; 2 * n];
    let mut sizes = vec![(0..2 * n).map(|i| (1, 0, i)).collect_vec()];
    let mut present = (0..2 * n).collect::<HashSet<_>>();
    for i in (0..m).rev() {
        let (mut u, mut v) = edges[i];
        if dsu.get(u) == dsu.get(v) {
            continue;
        }
        let sw = col[u] == col[v];
        u = dsu.get(u);
        v = dsu.get(v);
        if sets[u].len() < sets[v].len() {
            swap(&mut u, &mut v);
        }
        if sw {
            for &j in &sets[v] {
                col[j] ^= 1;
            }
        }
        size[u] = (size[u].0 + size[v].1, size[u].1 + size[v].0 + 0);
        let mut sv = Vec::new();
        swap(&mut sv, &mut sets[v]);
        sets[u].extend(sv);
        dsu.join(u, v);
        present.remove(&v);
        let mut cur_sizes = Vec::with_capacity(present.len());
        for &j in &present {
            cur_sizes.push((size[j].0, size[j].1, j));
        }
        sizes.push(cur_sizes);
        if sizes.len() == left + 1 {
            break;
        }
    }
    let sizes = sizes[left].clone();
    let mut last = Arr2d::new(sizes.len() + 1, n + 1, None);
    last[(0, 0)] = Some(true);
    for i in sizes.indices() {
        let (x, y, _) = sizes[i];
        for j in 0..=n {
            if last[(i, j)].is_some() {
                if j + x <= n {
                    last[(i + 1, j + x)] = Some(false);
                } else {
                    last[(i + 1, j + y)] = Some(true);
                }
            }
        }
    }
    assert!(last[(sizes.len(), n)].is_some());
    let mut cur = n;
    for i in sizes.indices().rev() {
        if last[(i + 1, cur)].unwrap() {
            cur -= sizes[i].1;
            for &j in &sets[sizes[i].2] {
                col[j] ^= 1;
            }
        } else {
            cur -= sizes[i].0;
        }
    }
    for i in col {
        out.print(i);
    }
    out.print_line(());
}

pub static TEST_TYPE: TestType = TestType::Single;
pub static TASK_TYPE: TaskType = TaskType::Classic;

pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
    let mut pre_calc = ();

    match TEST_TYPE {
        TestType::Single => solve(&mut input, &mut output, 1, &mut pre_calc),
        TestType::MultiNumber => {
            let t = input.read();
            for i in 1..=t {
                solve(&mut input, &mut output, i, &mut pre_calc);
            }
        }
        TestType::MultiEof => {
            let mut i = 1;
            while input.peek().is_some() {
                solve(&mut input, &mut output, i, &mut pre_calc);
                i += 1;
            }
        }
    }
    output.flush();
    match TASK_TYPE {
        TaskType::Classic => {
            input.skip_whitespace();
            input.peek().is_none()
        }
        TaskType::Interactive => true,
    }
}

}
pub mod algo_lib {
pub mod collections {
pub mod bit_set {
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use crate::algo_lib::numbers::num_traits::bit_ops::BitOps;
use std::ops::BitAndAssign;
use std::ops::BitOrAssign;
use std::ops::Index;
use std::ops::ShlAssign;
use std::ops::ShrAssign;

const TRUE: bool = true;
const FALSE: bool = false;

#[derive(Clone, Eq, PartialEq, Hash)]
pub struct BitSet {
    data: Vec<u64>,
    len: usize,
}

impl BitSet {
    pub fn new(len: usize) -> Self {
        let data_len = if len == 0 {
            0
        } else {
            Self::index(len - 1) + 1
        };
        Self {
            data: vec![0; data_len],
            len,
        }
    }

    pub fn from_slice(len: usize, set: &[usize]) -> Self {
        let mut res = Self::new(len);
        for &i in set {
            res.set(i);
        }
        res
    }

    pub fn set(&mut self, at: usize) {
        assert!(at < self.len);
        self.data[Self::index(at)].set_bit(at & 63);
    }

    pub fn unset(&mut self, at: usize) {
        assert!(at < self.len);
        self.data[Self::index(at)].unset_bit(at & 63);
    }

    pub fn change(&mut self, at: usize, value: bool) {
        if value {
            self.set(at);
        } else {
            self.unset(at);
        }
    }

    pub fn flip(&mut self, at: usize) {
        self.change(at, !self[at]);
    }

    #[allow(clippy::len_without_is_empty)]
    pub fn len(&self) -> usize {
        self.len
    }

    pub fn fill(&mut self, value: bool) {
        // 1.43
        self.data.legacy_fill(if value { std::u64::MAX } else { 0 });
        if value {
            self.fix_last();
        }
    }

    pub fn is_superset(&self, other: &Self) -> bool {
        assert_eq!(self.len, other.len);
        for i in 0..self.data.len() {
            if self.data[i] & other.data[i] != other.data[i] {
                return false;
            }
        }
        true
    }

    pub fn is_subset(&self, other: &Self) -> bool {
        other.is_superset(self)
    }

    pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
        self.into_iter()
    }

    fn index(at: usize) -> usize {
        at >> 6
    }

    pub fn count_ones(&self) -> usize {
        self.data.iter().map(|x| x.count_ones() as usize).sum()
    }

    fn fix_last(&mut self) {
        if self.len & 63 != 0 {
            let mask = (1 << (self.len & 63)) - 1;
            *self.data.last_mut().unwrap() &= mask;
        }
    }
}

pub struct BitSetIter<'s> {
    at: usize,
    inside: usize,
    set: &'s BitSet,
}

impl<'s> Iterator for BitSetIter<'s> {
    type Item = usize;

    fn next(&mut self) -> Option<Self::Item> {
        while self.at < self.set.data.len()
            && (self.inside == 64 || (self.set.data[self.at] >> self.inside) == 0)
        {
            self.at += 1;
            self.inside = 0;
        }
        if self.at == self.set.data.len() {
            None
        } else {
            while !self.set.data[self.at].is_set(self.inside) {
                self.inside += 1;
            }
            let res = self.at * 64 + self.inside;
            if res < self.set.len {
                self.inside += 1;
                Some(res)
            } else {
                None
            }
        }
    }
}

impl<'a> IntoIterator for &'a BitSet {
    type Item = usize;
    type IntoIter = BitSetIter<'a>;

    fn into_iter(self) -> Self::IntoIter {
        BitSetIter {
            at: 0,
            inside: 0,
            set: self,
        }
    }
}

impl BitOrAssign<&BitSet> for BitSet {
    fn bitor_assign(&mut self, rhs: &BitSet) {
        assert_eq!(self.len, rhs.len);
        for (i, &j) in self.data.iter_mut().zip(rhs.data.iter()) {
            *i |= j;
        }
    }
}

impl BitAndAssign<&BitSet> for BitSet {
    fn bitand_assign(&mut self, rhs: &BitSet) {
        assert_eq!(self.len, rhs.len);
        for (i, &j) in self.data.iter_mut().zip(rhs.data.iter()) {
            *i &= j;
        }
    }
}

impl ShlAssign<usize> for BitSet {
    fn shl_assign(&mut self, rhs: usize) {
        if rhs == 0 {
            return;
        }
        let small_shift = rhs & 63;
        if small_shift != 0 {
            let mut carry = 0;
            for i in 0..self.data.len() {
                let new_carry = self.data[i] >> (64 - small_shift);
                self.data[i] <<= small_shift;
                self.data[i] |= carry;
                carry = new_carry;
            }
        }
        let big_shift = rhs >> 6;
        if big_shift != 0 {
            self.data.rotate_right(big_shift);
            self.data[..big_shift].fill(0);
        }
        self.fix_last();
    }
}

impl ShrAssign<usize> for BitSet {
    fn shr_assign(&mut self, rhs: usize) {
        if rhs == 0 {
            return;
        }
        let small_shift = rhs & 63;
        if small_shift != 0 {
            let mut carry = 0;
            for i in (0..self.data.len()).rev() {
                let new_carry = self.data[i] << (64 - small_shift);
                self.data[i] >>= small_shift;
                self.data[i] |= carry;
                carry = new_carry;
            }
        }
        let big_shift = rhs >> 6;
        if big_shift != 0 {
            self.data.rotate_left(big_shift);
            let from = self.data.len() - big_shift;
            self.data[from..].fill(0);
        }
    }
}

impl Index<usize> for BitSet {
    type Output = bool;

    fn index(&self, at: usize) -> &Self::Output {
        assert!(at < self.len);
        if self.data[Self::index(at)].is_set(at & 63) {
            &TRUE
        } else {
            &FALSE
        }
    }
}

impl From<Vec<bool>> for BitSet {
    fn from(data: Vec<bool>) -> Self {
        let mut res = Self::new(data.len());
        for (i, &value) in data.iter().enumerate() {
            res.change(i, value);
        }
        res
    }
}
}
pub mod dsu {
use crate::algo_lib::collections::iter_ext::collect::IterCollect;
use crate::algo_lib::collections::slice_ext::bounds::Bounds;
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use std::cell::Cell;

#[derive(Clone)]
pub struct DSU {
    id: Vec<Cell<u32>>,
    size: Vec<u32>,
    count: usize,
}

impl DSU {
    pub fn new(n: usize) -> Self {
        Self {
            id: (0..n).map(|i| Cell::new(i as u32)).collect_vec(),
            size: vec![1; n],
            count: n,
        }
    }

    pub fn size(&self, i: usize) -> usize {
        self.size[self.get(i)] as usize
    }

    #[allow(clippy::len_without_is_empty)]
    pub fn len(&self) -> usize {
        self.id.len()
    }

    pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
        self.id.iter().enumerate().filter_map(|(i, id)| {
            if (i as u32) == id.get() {
                Some(i)
            } else {
                None
            }
        })
    }

    pub fn set_count(&self) -> usize {
        self.count
    }

    pub fn join(&mut self, mut a: usize, mut b: usize) -> bool {
        a = self.get(a);
        b = self.get(b);
        if a == b {
            false
        } else {
            self.size[a] += self.size[b];
            self.id[b].replace(a as u32);
            self.count -= 1;
            true
        }
    }

    pub fn get(&self, i: usize) -> usize {
        if self.id[i].get() != i as u32 {
            let res = self.get(self.id[i].get() as usize);
            self.id[i].replace(res as u32);
        }
        self.id[i].get() as usize
    }

    pub fn clear(&mut self) {
        self.count = self.id.len();
        self.size.legacy_fill(1);
        self.id.iter().enumerate().for_each(|(i, id)| {
            id.replace(i as u32);
        });
    }

    pub fn parts(&self) -> Vec<Vec<usize>> {
        let roots = self.iter().collect_vec();
        let mut res = vec![Vec::new(); roots.len()];
        for i in 0..self.id.len() {
            res[roots.as_slice().bin_search(&self.get(i)).unwrap()].push(i);
        }
        res
    }
}
}
pub mod iter_ext {
pub mod collect {
pub trait IterCollect<T>: Iterator<Item = T> + Sized {
    fn collect_vec(self) -> Vec<T> {
        self.collect()
    }
}

impl<T, I: Iterator<Item = T> + Sized> IterCollect<T> for I {}
}
}
pub mod md_arr {
pub mod arr2d {
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::input::Readable;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::io::output::Writable;
use std::ops::Index;
use std::ops::IndexMut;
use std::ops::Range;
use std::slice::Iter;
use std::vec::IntoIter;

#[derive(Clone, Eq, PartialEq, Default)]
pub struct Arr2d<T> {
    d1: usize,
    d2: usize,
    data: Vec<T>,
}

impl<T: Clone> Arr2d<T> {
    pub fn new(d1: usize, d2: usize, value: T) -> Self {
        Self {
            d1,
            d2,
            data: vec![value; d1 * d2],
        }
    }
}

impl<T> Arr2d<T> {
    pub fn generate<F>(d1: usize, d2: usize, mut gen: F) -> Self
    where
        F: FnMut(usize, usize) -> T,
    {
        let mut data = Vec::with_capacity(d1 * d2);
        for i in 0usize..d1 {
            for j in 0usize..d2 {
                data.push(gen(i, j));
            }
        }
        Self { d1, d2, data }
    }

    pub fn d1(&self) -> usize {
        self.d1
    }

    pub fn d2(&self) -> usize {
        self.d2
    }

    pub fn iter(&self) -> Iter<'_, T> {
        self.data.iter()
    }

    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> {
        self.data.iter_mut()
    }

    pub fn row(&self, row: usize) -> impl Iterator<Item = &T> {
        assert!(row < self.d1);
        self.data.iter().skip(row * self.d2).take(self.d2)
    }

    pub fn row_mut(&mut self, row: usize) -> impl Iterator<Item = &mut T> {
        assert!(row < self.d1);
        self.data.iter_mut().skip(row * self.d2).take(self.d2)
    }

    pub fn column(&self, col: usize) -> impl Iterator<Item = &T> {
        assert!(col < self.d2);
        self.data.iter().skip(col).step_by(self.d2)
    }

    pub fn column_mut(&mut self, col: usize) -> impl Iterator<Item = &mut T> {
        assert!(col < self.d2);
        self.data.iter_mut().skip(col).step_by(self.d2)
    }

    pub fn swap(&mut self, r1: usize, c1: usize, r2: usize, c2: usize) {
        assert!(r1 < self.d1);
        assert!(r2 < self.d1);
        assert!(c1 < self.d2);
        assert!(c2 < self.d2);
        self.data.swap(r1 * self.d2 + c1, r2 * self.d2 + c2);
    }

    pub fn rows(&self) -> Range<usize> {
        0..self.d1
    }

    pub fn cols(&self) -> Range<usize> {
        0..self.d2
    }

    pub fn swap_rows(&mut self, r1: usize, r2: usize) {
        assert!(r1 < self.d1);
        assert!(r2 < self.d1);
        if r1 == r2 {
            return;
        }
        let (r1, r2) = (r1.min(r2), r1.max(r2));
        let (head, tail) = self.data.split_at_mut(r2 * self.d2);
        head[r1 * self.d2..(r1 + 1) * self.d2].swap_with_slice(&mut tail[..self.d2]);
    }
}

impl<T: Clone> Arr2d<T> {
    pub fn fill(&mut self, elem: T) {
        self.data.legacy_fill(elem);
    }

    pub fn transpose(&self) -> Self {
        Self::generate(self.d2, self.d1, |i, j| self[(j, i)].clone())
    }
}

impl<T> Index<(usize, usize)> for Arr2d<T> {
    type Output = T;

    fn index(&self, (row, col): (usize, usize)) -> &Self::Output {
        assert!(row < self.d1);
        assert!(col < self.d2);
        &self.data[self.d2 * row + col]
    }
}

impl<T> Index<usize> for Arr2d<T> {
    type Output = [T];

    fn index(&self, index: usize) -> &Self::Output {
        &self.data[self.d2 * index..self.d2 * (index + 1)]
    }
}

impl<T> IndexMut<(usize, usize)> for Arr2d<T> {
    fn index_mut(&mut self, (row, col): (usize, usize)) -> &mut T {
        assert!(row < self.d1);
        assert!(col < self.d2);
        &mut self.data[self.d2 * row + col]
    }
}

impl<T> IndexMut<usize> for Arr2d<T> {
    fn index_mut(&mut self, index: usize) -> &mut [T] {
        &mut self.data[self.d2 * index..self.d2 * (index + 1)]
    }
}

impl<T> AsRef<Vec<T>> for Arr2d<T> {
    fn as_ref(&self) -> &Vec<T> {
        &self.data
    }
}

impl<T> AsMut<Vec<T>> for Arr2d<T> {
    fn as_mut(&mut self) -> &mut Vec<T> {
        &mut self.data
    }
}

impl<T: Writable> Writable for Arr2d<T> {
    fn write(&self, output: &mut Output) {
        let mut at = 0usize;
        for i in 0usize..self.d1 {
            if i != 0 {
                output.put(b'\n');
            }
            for j in 0usize..self.d2 {
                if j != 0 {
                    output.put(b' ');
                }
                self.data[at].write(output);
                at += 1;
            }
        }
    }
}

impl<T> IntoIterator for Arr2d<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        self.data.into_iter()
    }
}

impl<'a, T> IntoIterator for &'a Arr2d<T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

pub trait Arr2dRead {
    fn read_table<T: Readable>(&mut self, d1: usize, d2: usize) -> Arr2d<T>;
    fn read_int_table(&mut self, d1: usize, d2: usize) -> Arr2d<i32>;
    fn read_long_table(&mut self, d1: usize, d2: usize) -> Arr2d<i64>;
    fn read_size_table(&mut self, d1: usize, d2: usize) -> Arr2d<usize>;
    fn read_char_table(&mut self, d1: usize, d2: usize) -> Arr2d<char>;
}

impl Arr2dRead for Input<'_> {
    fn read_table<T: Readable>(&mut self, d1: usize, d2: usize) -> Arr2d<T> {
        Arr2d::generate(d1, d2, |_, _| self.read())
    }

    fn read_int_table(&mut self, d1: usize, d2: usize) -> Arr2d<i32> {
        self.read_table(d1, d2)
    }

    fn read_long_table(&mut self, d1: usize, d2: usize) -> Arr2d<i64> {
        self.read_table(d1, d2)
    }

    fn read_size_table(&mut self, d1: usize, d2: usize) -> Arr2d<usize> {
        self.read_table(d1, d2)
    }

    fn read_char_table(&mut self, d1: usize, d2: usize) -> Arr2d<char> {
        self.read_table(d1, d2)
    }
}

pub trait Arr2dCharWrite {
    fn print_table(&mut self, table: &Arr2d<char>);
}

impl Arr2dCharWrite for Output<'_> {
    fn print_table(&mut self, table: &Arr2d<char>) {
        let mut at = 0usize;
        for _ in 0..table.d1 {
            for _ in 0..table.d2 {
                self.print(table.data[at]);
                at += 1;
            }
            self.put(b'\n');
        }
    }
}

impl<T: Readable> Readable for Arr2d<T> {
    fn read(input: &mut Input) -> Self {
        let d1 = input.read();
        let d2 = input.read();
        input.read_table(d1, d2)
    }
}
}
}
pub mod slice_ext {
pub mod bounds {
pub trait Bounds<T: PartialOrd> {
    fn lower_bound(&self, el: &T) -> usize;
    fn upper_bound(&self, el: &T) -> usize;
    fn bin_search(&self, el: &T) -> Option<usize>;
    fn more(&self, el: &T) -> usize;
    fn more_or_eq(&self, el: &T) -> usize;
    fn less(&self, el: &T) -> usize;
    fn less_or_eq(&self, el: &T) -> usize;
}

impl<T: PartialOrd> Bounds<T> for [T] {
    fn lower_bound(&self, el: &T) -> usize {
        let mut left = 0;
        let mut right = self.len();
        while left < right {
            let mid = left + ((right - left) >> 1);
            if &self[mid] < el {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        left
    }

    fn upper_bound(&self, el: &T) -> usize {
        let mut left = 0;
        let mut right = self.len();
        while left < right {
            let mid = left + ((right - left) >> 1);
            if &self[mid] <= el {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        left
    }

    fn bin_search(&self, el: &T) -> Option<usize> {
        let at = self.lower_bound(el);
        if at == self.len() || &self[at] != el {
            None
        } else {
            Some(at)
        }
    }

    fn more(&self, el: &T) -> usize {
        self.len() - self.upper_bound(el)
    }

    fn more_or_eq(&self, el: &T) -> usize {
        self.len() - self.lower_bound(el)
    }

    fn less(&self, el: &T) -> usize {
        self.lower_bound(el)
    }

    fn less_or_eq(&self, el: &T) -> usize {
        self.upper_bound(el)
    }
}
}
pub mod indices {
use std::ops::Range;

pub trait Indices {
    fn indices(&self) -> Range<usize>;
}

impl<T> Indices for [T] {
    fn indices(&self) -> Range<usize> {
        0..self.len()
    }
}
}
pub mod legacy_fill {
// 1.50
pub trait LegacyFill<T> {
    fn legacy_fill(&mut self, val: T);
}

impl<T: Clone> LegacyFill<T> for [T] {
    fn legacy_fill(&mut self, val: T) {
        for el in self.iter_mut() {
            *el = val.clone();
        }
    }
}
}
}
pub mod vec_ext {
pub mod default {
pub fn default_vec<T: Default>(len: usize) -> Vec<T> {
    let mut v = Vec::with_capacity(len);
    for _ in 0..len {
        v.push(T::default());
    }
    v
}
}
pub mod inc_dec {
use crate::algo_lib::numbers::num_traits::algebra::AdditionMonoidWithSub;
use crate::algo_lib::numbers::num_traits::algebra::One;

pub trait IncDec {
    #[must_use]
    fn inc(self) -> Self;
    #[must_use]
    fn dec(self) -> Self;
}

impl<T: AdditionMonoidWithSub + One> IncDec for T {
    fn inc(self) -> Self {
        self + T::one()
    }

    fn dec(self) -> Self {
        self - T::one()
    }
}

impl<T: AdditionMonoidWithSub + One> IncDec for Vec<T> {
    fn inc(mut self) -> Self {
        self.iter_mut().for_each(|i| *i += T::one());
        self
    }

    fn dec(mut self) -> Self {
        self.iter_mut().for_each(|i| *i -= T::one());
        self
    }
}

impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One> IncDec for Vec<(T, U)> {
    fn inc(mut self) -> Self {
        self.iter_mut().for_each(|(i, j)| {
            *i += T::one();
            *j += U::one();
        });
        self
    }

    fn dec(mut self) -> Self {
        self.iter_mut().for_each(|(i, j)| {
            *i -= T::one();
            *j -= U::one();
        });
        self
    }
}

impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V> IncDec for Vec<(T, U, V)> {
    fn inc(mut self) -> Self {
        self.iter_mut().for_each(|(i, j, _)| {
            *i += T::one();
            *j += U::one();
        });
        self
    }

    fn dec(mut self) -> Self {
        self.iter_mut().for_each(|(i, j, _)| {
            *i -= T::one();
            *j -= U::one();
        });
        self
    }
}

impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V, W> IncDec
    for Vec<(T, U, V, W)>
{
    fn inc(mut self) -> Self {
        self.iter_mut().for_each(|(i, j, ..)| {
            *i += T::one();
            *j += U::one();
        });
        self
    }

    fn dec(mut self) -> Self {
        self.iter_mut().for_each(|(i, j, ..)| {
            *i -= T::one();
            *j -= U::one();
        });
        self
    }
}

impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V, W, X> IncDec
    for Vec<(T, U, V, W, X)>
{
    fn inc(mut self) -> Self {
        self.iter_mut().for_each(|(i, j, ..)| {
            *i += T::one();
            *j += U::one();
        });
        self
    }

    fn dec(mut self) -> Self {
        self.iter_mut().for_each(|(i, j, ..)| {
            *i -= T::one();
            *j -= U::one();
        });
        self
    }
}

impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One> IncDec for (T, U) {
    fn inc(mut self) -> Self {
        self.0 += T::one();
        self.1 += U::one();
        self
    }

    fn dec(mut self) -> Self {
        self.0 -= T::one();
        self.1 -= U::one();
        self
    }
}
}
}
}
pub mod io {
pub mod input {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::io::Read;

pub struct Input<'s> {
    input: &'s mut dyn Read,
    buf: Vec<u8>,
    at: usize,
    buf_read: usize,
}

macro_rules! read_impl {
    ($t: ty, $read_name: ident, $read_vec_name: ident) => {
        pub fn $read_name(&mut self) -> $t {
            self.read()
        }

        pub fn $read_vec_name(&mut self, len: usize) -> Vec<$t> {
            self.read_vec(len)
        }
    };

    ($t: ty, $read_name: ident, $read_vec_name: ident, $read_pair_vec_name: ident) => {
        read_impl!($t, $read_name, $read_vec_name);

        pub fn $read_pair_vec_name(&mut self, len: usize) -> Vec<($t, $t)> {
            self.read_vec(len)
        }
    };
}

impl<'s> Input<'s> {
    const DEFAULT_BUF_SIZE: usize = 4096;

    pub fn new(input: &'s mut dyn Read) -> Self {
        Self {
            input,
            buf: default_vec(Self::DEFAULT_BUF_SIZE),
            at: 0,
            buf_read: 0,
        }
    }

    pub fn new_with_size(input: &'s mut dyn Read, buf_size: usize) -> Self {
        Self {
            input,
            buf: default_vec(buf_size),
            at: 0,
            buf_read: 0,
        }
    }

    pub fn get(&mut self) -> Option<u8> {
        if self.refill_buffer() {
            let res = self.buf[self.at];
            self.at += 1;
            if res == b'\r' {
                if self.refill_buffer() && self.buf[self.at] == b'\n' {
                    self.at += 1;
                }
                return Some(b'\n');
            }
            Some(res)
        } else {
            None
        }
    }

    pub fn peek(&mut self) -> Option<u8> {
        if self.refill_buffer() {
            let res = self.buf[self.at];
            Some(if res == b'\r' { b'\n' } else { res })
        } else {
            None
        }
    }

    pub fn skip_whitespace(&mut self) {
        while let Some(b) = self.peek() {
            if !b.is_ascii_whitespace() {
                return;
            }
            self.get();
        }
    }

    pub fn next_token(&mut self) -> Option<Vec<u8>> {
        self.skip_whitespace();
        let mut res = Vec::new();
        while let Some(c) = self.get() {
            if c.is_ascii_whitespace() {
                break;
            }
            res.push(c);
        }
        if res.is_empty() {
            None
        } else {
            Some(res)
        }
    }

    //noinspection RsSelfConvention
    pub fn is_exhausted(&mut self) -> bool {
        self.peek().is_none()
    }

    //noinspection RsSelfConvention
    pub fn is_empty(&mut self) -> bool {
        self.skip_whitespace();
        self.is_exhausted()
    }

    pub fn read<T: Readable>(&mut self) -> T {
        T::read(self)
    }

    pub fn read_vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
        let mut res = Vec::with_capacity(size);
        for _ in 0..size {
            res.push(self.read());
        }
        res
    }

    pub fn read_char(&mut self) -> char {
        self.skip_whitespace();
        self.get().unwrap().into()
    }

    read_impl!(u32, read_unsigned, read_unsigned_vec);
    read_impl!(u64, read_u64, read_u64_vec);
    read_impl!(usize, read_size, read_size_vec, read_size_pair_vec);
    read_impl!(i32, read_int, read_int_vec, read_int_pair_vec);
    read_impl!(i64, read_long, read_long_vec, read_long_pair_vec);
    read_impl!(i128, read_i128, read_i128_vec);

    fn refill_buffer(&mut self) -> bool {
        if self.at == self.buf_read {
            self.at = 0;
            self.buf_read = self.input.read(&mut self.buf).unwrap();
            self.buf_read != 0
        } else {
            true
        }
    }
}

pub trait Readable {
    fn read(input: &mut Input) -> Self;
}

impl Readable for char {
    fn read(input: &mut Input) -> Self {
        input.read_char()
    }
}

impl<T: Readable> Readable for Vec<T> {
    fn read(input: &mut Input) -> Self {
        let size = input.read();
        input.read_vec(size)
    }
}

macro_rules! read_integer {
    ($($t:ident)+) => {$(
        impl Readable for $t {
            fn read(input: &mut Input) -> Self {
                input.skip_whitespace();
                let mut c = input.get().unwrap();
                let sgn = match c {
                    b'-' => {
                        c = input.get().unwrap();
                        true
                    }
                    b'+' => {
                        c = input.get().unwrap();
                        false
                    }
                    _ => false,
                };
                let mut res = 0;
                loop {
                    assert!(c.is_ascii_digit());
                    res *= 10;
                    let d = (c - b'0') as $t;
                    if sgn {
                        res -= d;
                    } else {
                        res += d;
                    }
                    match input.get() {
                        None => break,
                        Some(ch) => {
                            if ch.is_ascii_whitespace() {
                                break;
                            } else {
                                c = ch;
                            }
                        }
                    }
                }
                res
            }
        }
    )+};
}

read_integer!(i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize);

macro_rules! tuple_readable {
    ($($name:ident)+) => {
        impl<$($name: Readable), +> Readable for ($($name,)+) {
            fn read(input: &mut Input) -> Self {
                ($($name::read(input),)+)
            }
        }
    }
}

tuple_readable! {T}
tuple_readable! {T U}
tuple_readable! {T U V}
tuple_readable! {T U V X}
tuple_readable! {T U V X Y}
tuple_readable! {T U V X Y Z}
tuple_readable! {T U V X Y Z A}
tuple_readable! {T U V X Y Z A B}
tuple_readable! {T U V X Y Z A B C}
tuple_readable! {T U V X Y Z A B C D}
tuple_readable! {T U V X Y Z A B C D E}
tuple_readable! {T U V X Y Z A B C D E F}

impl Read for Input<'_> {
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        if self.at == self.buf_read {
            self.input.read(buf)
        } else {
            let mut i = 0;
            while i < buf.len() && self.at < self.buf_read {
                buf[i] = self.buf[self.at];
                i += 1;
                self.at += 1;
            }
            Ok(i)
        }
    }
}
}
pub mod output {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::cmp::Reverse;
use std::io::stderr;
use std::io::Stderr;
use std::io::Write;

#[derive(Copy, Clone)]
pub enum BoolOutput {
    YesNo,
    YesNoCaps,
    PossibleImpossible,
    Custom(&'static str, &'static str),
}

impl BoolOutput {
    pub fn output(&self, output: &mut Output, val: bool) {
        (if val { self.yes() } else { self.no() }).write(output);
    }

    fn yes(&self) -> &str {
        match self {
            BoolOutput::YesNo => "Yes",
            BoolOutput::YesNoCaps => "YES",
            BoolOutput::PossibleImpossible => "Possible",
            BoolOutput::Custom(yes, _) => yes,
        }
    }

    fn no(&self) -> &str {
        match self {
            BoolOutput::YesNo => "No",
            BoolOutput::YesNoCaps => "NO",
            BoolOutput::PossibleImpossible => "Impossible",
            BoolOutput::Custom(_, no) => no,
        }
    }
}

pub struct Output<'s> {
    output: &'s mut dyn Write,
    buf: Vec<u8>,
    at: usize,
    auto_flush: bool,
    bool_output: BoolOutput,
}

impl<'s> Output<'s> {
    const DEFAULT_BUF_SIZE: usize = 4096;

    pub fn new(output: &'s mut dyn Write) -> Self {
        Self {
            output,
            buf: default_vec(Self::DEFAULT_BUF_SIZE),
            at: 0,
            auto_flush: false,
            bool_output: BoolOutput::YesNoCaps,
        }
    }

    pub fn new_with_auto_flush(output: &'s mut dyn Write) -> Self {
        Self {
            output,
            buf: default_vec(Self::DEFAULT_BUF_SIZE),
            at: 0,
            auto_flush: true,
            bool_output: BoolOutput::YesNoCaps,
        }
    }

    pub fn flush(&mut self) {
        if self.at != 0 {
            self.output.write_all(&self.buf[..self.at]).unwrap();
            self.output.flush().unwrap();
            self.at = 0;
        }
    }

    pub fn print<T: Writable>(&mut self, s: T) {
        s.write(self);
        self.maybe_flush();
    }

    pub fn print_line<T: Writable>(&mut self, s: T) {
        self.print(s);
        self.put(b'\n');
        self.maybe_flush();
    }

    pub fn put(&mut self, b: u8) {
        self.buf[self.at] = b;
        self.at += 1;
        if self.at == self.buf.len() {
            self.flush();
        }
    }

    pub fn maybe_flush(&mut self) {
        if self.auto_flush {
            self.flush();
        }
    }

    pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
        self.print_per_line_iter(arg.iter());
    }

    pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
        let mut first = true;
        for e in iter {
            if first {
                first = false;
            } else {
                self.put(b' ');
            }
            e.write(self);
        }
    }

    pub fn print_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
        self.print_iter(iter);
        self.put(b'\n');
    }

    pub fn print_per_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
        for e in iter {
            e.write(self);
            self.put(b'\n');
        }
    }

    pub fn set_bool_output(&mut self, bool_output: BoolOutput) {
        self.bool_output = bool_output;
    }
}

impl Write for Output<'_> {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        let mut start = 0usize;
        let mut rem = buf.len();
        while rem > 0 {
            let len = (self.buf.len() - self.at).min(rem);
            self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
            self.at += len;
            if self.at == self.buf.len() {
                self.flush();
            }
            start += len;
            rem -= len;
        }
        self.maybe_flush();
        Ok(buf.len())
    }

    fn flush(&mut self) -> std::io::Result<()> {
        self.flush();
        Ok(())
    }
}

pub trait Writable {
    fn write(&self, output: &mut Output);
}

impl Writable for &str {
    fn write(&self, output: &mut Output) {
        output.write_all(self.as_bytes()).unwrap();
    }
}

impl Writable for String {
    fn write(&self, output: &mut Output) {
        output.write_all(self.as_bytes()).unwrap();
    }
}

impl Writable for char {
    fn write(&self, output: &mut Output) {
        output.put(*self as u8);
    }
}

impl<T: Writable> Writable for [T] {
    fn write(&self, output: &mut Output) {
        output.print_iter(self.iter());
    }
}

impl<T: Writable, const N: usize> Writable for [T; N] {
    fn write(&self, output: &mut Output) {
        output.print_iter(self.iter());
    }
}

impl<T: Writable + ?Sized> Writable for &T {
    fn write(&self, output: &mut Output) {
        T::write(self, output)
    }
}

impl<T: Writable> Writable for Vec<T> {
    fn write(&self, output: &mut Output) {
        self.as_slice().write(output);
    }
}

impl Writable for () {
    fn write(&self, _output: &mut Output) {}
}

macro_rules! write_to_string {
    ($($t:ident)+) => {$(
        impl Writable for $t {
            fn write(&self, output: &mut Output) {
                self.to_string().write(output);
            }
        }
    )+};
}

write_to_string!(u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);

macro_rules! tuple_writable {
    ($name0:ident $($name:ident: $id:tt )*) => {
        impl<$name0: Writable, $($name: Writable,)*> Writable for ($name0, $($name,)*) {
            fn write(&self, out: &mut Output) {
                self.0.write(out);
                $(
                out.put(b' ');
                self.$id.write(out);
                )*
            }
        }
    }
}

tuple_writable! {T}
tuple_writable! {T U:1}
tuple_writable! {T U:1 V:2}
tuple_writable! {T U:1 V:2 X:3}
tuple_writable! {T U:1 V:2 X:3 Y:4}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7 C:8}

impl<T: Writable> Writable for Option<T> {
    fn write(&self, output: &mut Output) {
        match self {
            None => (-1).write(output),
            Some(t) => t.write(output),
        }
    }
}

impl Writable for bool {
    fn write(&self, output: &mut Output) {
        let bool_output = output.bool_output;
        bool_output.output(output, *self)
    }
}

impl<T: Writable> Writable for Reverse<T> {
    fn write(&self, output: &mut Output) {
        self.0.write(output);
    }
}

static mut ERR: Option<Stderr> = None;

pub fn err() -> Output<'static> {
    unsafe {
        if ERR.is_none() {
            ERR = Some(stderr());
        }
        Output::new_with_auto_flush(ERR.as_mut().unwrap())
    }
}
}
}
pub mod misc {
pub mod test_type {
pub enum TestType {
    Single,
    MultiNumber,
    MultiEof,
}

pub enum TaskType {
    Classic,
    Interactive,
}
}
}
pub mod numbers {
pub mod num_traits {
pub mod algebra {
use crate::algo_lib::numbers::num_traits::invertible::Invertible;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Neg;
use std::ops::Rem;
use std::ops::RemAssign;
use std::ops::Sub;
use std::ops::SubAssign;

pub trait Zero {
    fn zero() -> Self;
}

pub trait One {
    fn one() -> Self;
}

pub trait AdditionMonoid: Add<Output = Self> + AddAssign + Zero + Eq + Sized {}

impl<T: Add<Output = Self> + AddAssign + Zero + Eq> AdditionMonoid for T {}

pub trait AdditionMonoidWithSub: AdditionMonoid + Sub<Output = Self> + SubAssign {}

impl<T: AdditionMonoid + Sub<Output = Self> + SubAssign> AdditionMonoidWithSub for T {}

pub trait AdditionGroup: AdditionMonoidWithSub + Neg<Output = Self> {}

impl<T: AdditionMonoidWithSub + Neg<Output = Self>> AdditionGroup for T {}

pub trait MultiplicationMonoid: Mul<Output = Self> + MulAssign + One + Eq + Sized {}

impl<T: Mul<Output = Self> + MulAssign + One + Eq> MultiplicationMonoid for T {}

pub trait IntegerMultiplicationMonoid:
    MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign
{
}

impl<T: MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign>
    IntegerMultiplicationMonoid for T
{
}

pub trait MultiplicationGroup:
    MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>
{
}

impl<T: MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>>
    MultiplicationGroup for T
{
}

pub trait SemiRing: AdditionMonoid + MultiplicationMonoid {}

impl<T: AdditionMonoid + MultiplicationMonoid> SemiRing for T {}

pub trait SemiRingWithSub: AdditionMonoidWithSub + SemiRing {}

impl<T: AdditionMonoidWithSub + SemiRing> SemiRingWithSub for T {}

pub trait Ring: SemiRing + AdditionGroup {}

impl<T: SemiRing + AdditionGroup> Ring for T {}

pub trait IntegerSemiRing: SemiRing + IntegerMultiplicationMonoid {}

impl<T: SemiRing + IntegerMultiplicationMonoid> IntegerSemiRing for T {}

pub trait IntegerSemiRingWithSub: SemiRingWithSub + IntegerSemiRing {}

impl<T: SemiRingWithSub + IntegerSemiRing> IntegerSemiRingWithSub for T {}

pub trait IntegerRing: IntegerSemiRing + Ring {}

impl<T: IntegerSemiRing + Ring> IntegerRing for T {}

pub trait Field: Ring + MultiplicationGroup {}

impl<T: Ring + MultiplicationGroup> Field for T {}

macro_rules! zero_one_integer_impl {
    ($($t: ident)+) => {$(
        impl Zero for $t {
            fn zero() -> Self {
                0
            }
        }

        impl One for $t {
            fn one() -> Self {
                1
            }
        }
    )+};
}

zero_one_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod bit_ops {
use crate::algo_lib::numbers::num_traits::algebra::One;
use crate::algo_lib::numbers::num_traits::algebra::Zero;
use std::ops::BitAnd;
use std::ops::BitAndAssign;
use std::ops::BitOr;
use std::ops::BitOrAssign;
use std::ops::BitXor;
use std::ops::BitXorAssign;
use std::ops::Not;
use std::ops::RangeInclusive;
use std::ops::Shl;
use std::ops::ShlAssign;
use std::ops::Shr;
use std::ops::ShrAssign;

pub trait BitOps:
    Copy
    + BitAnd<Output = Self>
    + BitAndAssign
    + BitOr<Output = Self>
    + BitOrAssign
    + BitXor<Output = Self>
    + BitXorAssign
    + Not<Output = Self>
    + Shl<usize, Output = Self>
    + ShlAssign<usize>
    + Shr<usize, Output = Self>
    + ShrAssign<usize>
    + Zero
    + One
    + PartialEq
{
    fn bit(at: usize) -> Self {
        Self::one() << at
    }

    fn is_set(&self, at: usize) -> bool {
        (*self >> at & Self::one()) == Self::one()
    }

    fn set_bit(&mut self, at: usize) {
        *self |= Self::bit(at)
    }

    fn unset_bit(&mut self, at: usize) {
        *self &= !Self::bit(at)
    }

    #[must_use]
    fn with_bit(mut self, at: usize) -> Self {
        self.set_bit(at);
        self
    }

    #[must_use]
    fn without_bit(mut self, at: usize) -> Self {
        self.unset_bit(at);
        self
    }

    fn flip_bit(&mut self, at: usize) {
        *self ^= Self::bit(at)
    }

    fn all_bits(n: usize) -> Self {
        let mut res = Self::zero();
        for i in 0..n {
            res.set_bit(i);
        }
        res
    }

    fn iter_all(n: usize) -> RangeInclusive<Self> {
        Self::zero()..=Self::all_bits(n)
    }
}

impl<
        T: Copy
            + BitAnd<Output = Self>
            + BitAndAssign
            + BitOr<Output = Self>
            + BitOrAssign
            + BitXor<Output = Self>
            + BitXorAssign
            + Not<Output = Self>
            + Shl<usize, Output = Self>
            + ShlAssign<usize>
            + Shr<usize, Output = Self>
            + ShrAssign<usize>
            + One
            + Zero
            + PartialEq,
    > BitOps for T
{
}

pub trait Bits: BitOps {
    fn bits() -> u32;
}

macro_rules! bits_integer_impl {
    ($($t: ident $bits: expr),+) => {$(
        impl Bits for $t {
            fn bits() -> u32 {
                $bits
            }
        }
    )+};
}

bits_integer_impl!(i128 128, i64 64, i32 32, i16 16, i8 8, isize 64, u128 128, u64 64, u32 32, u16 16, u8 8, usize 64);
}
pub mod invertible {
pub trait Invertible {
    type Output;

    fn inv(&self) -> Option<Self::Output>;
}
}
}
}
}
fn main() {
    let mut sin = std::io::stdin();
    let input = algo_lib::io::input::Input::new(&mut sin);
    let mut stdout = std::io::stdout();
    let output = algo_lib::io::output::Output::new(&mut stdout);
    solution::run(input, output);
}

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 2132kb

input:

2 4
1 3
2 4
1 4
1 2

output:

0101

result:

ok Output is valid. OK

Test #2:

score: 0
Accepted
time: 0ms
memory: 2304kb

input:

3 7
2 5
1 3
4 6
2 6
4 5
2 4
5 6

output:

001101

result:

ok Output is valid. OK

Test #3:

score: 0
Accepted
time: 0ms
memory: 2148kb

input:

1 0

output:

01

result:

ok Output is valid. OK

Test #4:

score: 0
Accepted
time: 0ms
memory: 2160kb

input:

1 1
1 2

output:

01

result:

ok Output is valid. OK

Test #5:

score: 0
Accepted
time: 0ms
memory: 2172kb

input:

2 3
2 4
3 4
1 2

output:

0110

result:

ok Output is valid. OK

Test #6:

score: -100
Wrong Answer
time: 0ms
memory: 2168kb

input:

3 8
4 6
3 5
1 4
2 4
1 6
1 2
3 4
4 5

output:

011011

result:

wrong answer The number of 0s must be equal to that of 1s.