QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#60977 | #4887. Fast Bridges | Qingyu | Compile Error | / | / | C++14 | 10.4kb | 2022-11-08 23:49:11 | 2022-11-08 23:49:12 |
Judging History
你现在查看的是最新测评结果
- [2023-08-10 23:21:45]
- System Update: QOJ starts to keep a history of the judgings of all the submissions.
- [2022-11-08 23:49:12]
- 评测
- 测评结果:Compile Error
- 用时:0ms
- 内存:0kb
- [2022-11-08 23:49:11]
- 提交
answer
/**
* author: tourist
* created: 01.09.2022 11:45:36
**/
#undef _GLIBCXX_DEBUG
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include "algo/debug.h"
#else
#define debug(...) 42
#endif
template <typename T>
T inverse(T a, T m) {
T u = 0, v = 1;
while (a != 0) {
T t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return u;
}
template <typename T>
class Modular {
public:
using Type = typename decay<decltype(T::value)>::type;
constexpr Modular() : value() {}
template <typename U>
Modular(const U& x) {
value = normalize(x);
}
template <typename U>
static Type normalize(const U& x) {
Type v;
if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
else v = static_cast<Type>(x % mod());
if (v < 0) v += mod();
return v;
}
const Type& operator()() const { return value; }
template <typename U>
explicit operator U() const { return static_cast<U>(value); }
constexpr static Type mod() { return T::value; }
Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; }
template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }
template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); }
Modular& operator++() { return *this += 1; }
Modular& operator--() { return *this -= 1; }
Modular operator++(int) { Modular result(*this); *this += 1; return result; }
Modular operator--(int) { Modular result(*this); *this -= 1; return result; }
Modular operator-() const { return Modular(-value); }
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
#ifdef _WIN32
uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value);
uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m;
asm(
"divl %4; \n\t"
: "=a" (d), "=d" (m)
: "d" (xh), "a" (xl), "r" (mod())
);
value = m;
#else
value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
#endif
return *this;
}
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, long long>::value, Modular>::type& operator*=(const Modular& rhs) {
long long q = static_cast<long long>(static_cast<long double>(value) * rhs.value / mod());
value = normalize(value * rhs.value - q * mod());
return *this;
}
template <typename U = T>
typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) {
value = normalize(value * rhs.value);
return *this;
}
Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }
friend const Type& abs(const Modular& x) { return x.value; }
template <typename U>
friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);
template <typename U>
friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);
template <typename V, typename U>
friend V& operator>>(V& stream, Modular<U>& number);
private:
Type value;
};
template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }
template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }
template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template<typename T, typename U>
Modular<T> power(const Modular<T>& a, const U& b) {
assert(b >= 0);
Modular<T> x = a, res = 1;
U p = b;
while (p > 0) {
if (p & 1) res *= x;
x *= x;
p >>= 1;
}
return res;
}
template <typename T>
bool IsZero(const Modular<T>& number) {
return number() == 0;
}
template <typename T>
string to_string(const Modular<T>& number) {
return to_string(number());
}
// U == std::ostream? but done this way because of fastoutput
template <typename U, typename T>
U& operator<<(U& stream, const Modular<T>& number) {
return stream << number();
}
// U == std::istream? but done this way because of fastinput
template <typename U, typename T>
U& operator>>(U& stream, Modular<T>& number) {
typename common_type<typename Modular<T>::Type, long long>::type x;
stream >> x;
number.value = Modular<T>::normalize(x);
return stream;
}
/*
using ModType = int;
struct VarMod { static ModType value; };
ModType VarMod::value;
ModType& md = VarMod::value;
using Mint = Modular<VarMod>;
*/
constexpr int md = 998244353;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;
/*vector<Mint> fact(1, 1);
vector<Mint> inv_fact(1, 1);
Mint C(int n, int k) {
if (k < 0 || k > n) {
return 0;
}
while ((int) fact.size() < n + 1) {
fact.push_back(fact.back() * (int) fact.size());
inv_fact.push_back(1 / fact.back());
}
return fact[n] * inv_fact[k] * inv_fact[n - k];
}*/
template <typename T>
class fenwick {
public:
vector<T> fenw;
int n;
fenwick(int _n) : n(_n) {
fenw.resize(n);
}
void modify(int x, T v) {
while (x < n) {
fenw[x] += v;
x |= (x + 1);
}
}
T get(int x) {
T v{};
while (x >= 0) {
v += fenw[x];
x = (x & (x + 1)) - 1;
}
return v;
}
};
struct node {
int a = 0;
inline void operator += (node &other) {
a = max(a, other.a);
}
};
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, k;
cin >> n >> k;
vector<int> xa(n), ya(n), xb(n), yb(n);
for (int i = 0; i < n; i++) {
cin >> xa[i] >> ya[i] >> xb[i] >> yb[i];
}
mt19937_64 rng(787788);
vector<uint64_t> coeff(n);
for (int i = 0; i < n; i++) {
coeff[i] = rng();
}
Mint ans = 0;
for (int rot = 0; rot < 2; rot++) {
vector<int> ids;
vector<int> xs;
vector<int> ys;
for (int i = 0; i < n; i++) {
if (ya[i] < yb[i]) {
ids.push_back(i);
xs.push_back(xa[i]);
ys.push_back(ya[i]);
}
}
sort(xs.begin(), xs.end());
xs.resize(unique(xs.begin(), xs.end()) - xs.begin());
sort(ys.begin(), ys.end());
ys.resize(unique(ys.begin(), ys.end()) - ys.begin());
xs.insert(xs.begin(), 0);
ys.insert(ys.begin(), 0);
vector<int> ya_c(n);
vector<int> yb_c(n);
for (int i = 0; i < n; i++) {
ya_c[i] = (int) (lower_bound(ys.begin(), ys.end(), ya[i]) - ys.begin());
yb_c[i] = (int) (lower_bound(ys.begin(), ys.end(), yb[i]) - ys.begin());
}
int nx = (int) xs.size();
int ny = (int) ys.size();
unordered_map<uint64_t, Mint> mp;
vector<array<int, 3>> events;
for (int i : ids) {
events.push_back({xa[i], ya[i], i});
events.push_back({xb[i], yb[i], ~i});
}
sort(events.begin(), events.end());
vector<int> dp(n);
for (int x = 1; x < nx; x++) {
for (int y = 1; y < ny; y++) {
Mint cell_area = Mint(xs[x] - xs[x - 1]) * (ys[y] - ys[y - 1]);
long long h = 0;
int cnt = 0;
for (int i : ids) {
if (xa[i] >= xs[x] && ya[i] >= ys[y]) {
h ^= coeff[i];
cnt += 1;
}
}
auto iter = mp.find(h);
if (iter != mp.end()) {
ans += cell_area * iter->second;
continue;
}
Mint res = 0;
fenwick<node> fenw(ny);
vector<int> lim(cnt + 1, k + 1);
for (auto& e : events) {
int i = e[2];
if (i >= 0) {
if (xa[i] >= xs[x] && ya[i] >= ys[y]) {
dp[i] = 1 + fenw.get(ya_c[i]).a;
}
} else {
i = ~i;
if (xa[i] >= xs[x] && ya[i] >= ys[y]) {
fenw.modify(yb_c[i], {dp[i]});
if (yb[i] < lim[dp[i]]) {
res += Mint(lim[dp[i]] - yb[i]) * (k - xb[i] + 1);
lim[dp[i]] = yb[i];
}
}
}
}
ans += cell_area * res;
mp[h] = res;
}
}
for (int i = 0; i < n; i++) {
ya[i] = k - ya[i] + 1;
yb[i] = k - yb[i] + 1;
}
}
Mint total = Mint(k) * k * k * (k - 1) * (k + 1) / 3;
cout << total - ans << '\n';
return 0;
}
Details
Compile Failed