QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#605997#8529. Balance of PermutationmaspyAC ✓228ms4168kbC++2020.9kb2024-10-02 21:19:092024-10-02 21:19:09

Judging History

你现在查看的是最新测评结果

  • [2024-10-02 21:19:09]
  • 评测
  • 测评结果:AC
  • 用时:228ms
  • 内存:4168kb
  • [2024-10-02 21:19:09]
  • 提交

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "library/mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "library/mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1004535809) return {21, 836905998};
    if (mod == 1045430273) return {20, 363};
    if (mod == 1051721729) return {20, 330};
    if (mod == 1053818881) return {20, 2789};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 5 "main.cpp"

using I = i128;

void solve() {
  LL(N, B);
  I K;
  read(K);
  B /= 2;

  auto solve = [&](vc<int> A) -> I {
    vc<int> pos(N, infty<int>);
    FOR(i, len(A)) pos[A[i]] = i;

    ll M = len(A);
    vv(I, dp, 1, 1, 1);
    FOR(i, N) {
      vv(I, newdp, i + 2, (i + 1) * (i + 2) / 2 + 1);
      FOR(n, len(dp)) {
        vc<pair<int, I>> nxt;
        if (i < M) {
          if (A[i] == i) nxt.eb(0, 1);
          if (n > 0 && A[i] < i && pos[i] < i) nxt.eb(-1, 1);
          if (n > 0 && A[i] < i && pos[i] > i) nxt.eb(0, 1);
          if (n > 0 && A[i] > i && pos[i] < i) nxt.eb(0, 1);
          if (A[i] > i && pos[i] > i) nxt.eb(1, 1);
          assert(len(nxt) <= 1);
        } else {
          if (pos[i] == infty<int>) {
            // A[i] を選ぶときは自由に選ぶ
            // i の行き先を選ぶときは予約さけるところを避ける
            ll ng = 0;
            FOR(j, M) ng += (A[j] > i);
            nxt.eb(0, 1);
            if (n > 0) nxt.eb(-1, n * (n - ng));
            if (n > 0) nxt.eb(0, n);
            if (n > 0) nxt.eb(0, n - ng);
            nxt.eb(1, 1);
          } else {
            // i が左に行くのは確定で, A[i] をどっちにするかだけ
            if (n > 0) nxt.eb(-1, n);
            nxt.eb(0, 1);
          }
        }
        for (auto& [k, c]: nxt) {
          FOR(x, len(dp[n])) { newdp[n + k][x + n + k] += dp[n][x] * c; }
        }
      }
      swap(dp, newdp);
    }
    return dp[0][B];
  };

  --K;
  vc<int> used(N);
  vc<int> A;
  FOR(i, N) {
    FOR(x, N) {
      if (used[x]) continue;
      A.eb(x);
      I cnt = solve(A);
      if (cnt <= K) {
        K -= cnt;
        POP(A);
        continue;
      }
      used[x] = 1;
      break;
    }
  }

  for (auto& x: A) ++x;
  print(A);
}

signed main() { solve(); }

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3972kb

input:

6 6 6

output:

1 2 6 3 4 5

result:

ok 6 numbers

Test #2:

score: 0
Accepted
time: 149ms
memory: 3860kb

input:

30 300 3030303030303030303030

output:

1 2 3 4 9 23 20 28 24 16 21 17 27 29 8 26 25 30 19 18 22 12 7 13 6 10 5 15 14 11

result:

ok 30 numbers

Test #3:

score: 0
Accepted
time: 0ms
memory: 3560kb

input:

1 0 1

output:

1

result:

ok 1 number(s): "1"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3640kb

input:

2 0 1

output:

1 2

result:

ok 2 number(s): "1 2"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3924kb

input:

2 2 1

output:

2 1

result:

ok 2 number(s): "2 1"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3676kb

input:

5 8 3

output:

1 5 4 2 3

result:

ok 5 number(s): "1 5 4 2 3"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3664kb

input:

7 20 100

output:

3 6 7 4 1 5 2

result:

ok 7 numbers

Test #8:

score: 0
Accepted
time: 0ms
memory: 3740kb

input:

7 2 6

output:

2 1 3 4 5 6 7

result:

ok 7 numbers

Test #9:

score: 0
Accepted
time: 0ms
memory: 3676kb

input:

7 24 1

output:

4 5 6 7 1 2 3

result:

ok 7 numbers

Test #10:

score: 0
Accepted
time: 0ms
memory: 3552kb

input:

7 22 360

output:

7 6 4 3 5 2 1

result:

ok 7 numbers

Test #11:

score: 0
Accepted
time: 0ms
memory: 3696kb

input:

7 20 358

output:

5 7 2 4 6 3 1

result:

ok 7 numbers

Test #12:

score: 0
Accepted
time: 1ms
memory: 3944kb

input:

10 48 10001

output:

7 5 8 9 6 10 3 4 1 2

result:

ok 10 numbers

Test #13:

score: 0
Accepted
time: 1ms
memory: 3684kb

input:

10 42 10101

output:

3 9 6 8 10 5 7 2 1 4

result:

ok 10 numbers

Test #14:

score: 0
Accepted
time: 55ms
memory: 4116kb

input:

25 300 1

output:

7 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 8 9 10 11 12 13

result:

ok 25 numbers

Test #15:

score: 0
Accepted
time: 74ms
memory: 3828kb

input:

25 300 283788388040048639877

output:

25 24 23 22 21 20 19 18 17 16 11 12 13 14 15 10 9 8 7 5 6 4 2 1 3

result:

ok 25 numbers

Test #16:

score: 0
Accepted
time: 84ms
memory: 4104kb

input:

26 302 105773752969551707419545

output:

19 22 25 13 17 18 23 20 10 26 16 6 5 11 14 12 24 4 3 21 1 15 7 8 2 9

result:

ok 26 numbers

Test #17:

score: 0
Accepted
time: 96ms
memory: 3904kb

input:

27 308 8781128321749037280676555

output:

16 18 17 21 25 6 20 24 22 15 27 5 7 8 2 9 26 13 1 3 14 10 23 19 4 11 12

result:

ok 27 numbers

Test #18:

score: 0
Accepted
time: 110ms
memory: 3860kb

input:

28 304 806517199954337651602356955

output:

12 17 5 16 23 26 25 15 20 2 19 7 22 24 6 13 11 10 28 8 1 21 18 14 27 3 4 9

result:

ok 28 numbers

Test #19:

score: 0
Accepted
time: 131ms
memory: 3868kb

input:

29 322 40281026669581503094652149519

output:

16 21 10 25 17 29 9 28 2 8 26 27 22 4 3 5 18 14 19 1 23 20 15 11 13 7 6 12 24

result:

ok 29 numbers

Test #20:

score: 0
Accepted
time: 188ms
memory: 3876kb

input:

30 400 46479902466857426153849991132

output:

25 19 30 29 9 20 26 21 14 27 28 10 22 11 24 2 7 4 18 17 5 13 12 6 8 1 15 23 16 3

result:

ok 30 numbers

Test #21:

score: 0
Accepted
time: 162ms
memory: 3872kb

input:

30 450 1140008168482799670544355

output:

26 16 17 18 19 20 21 22 23 24 25 27 28 29 30 1 2 3 5 9 4 8 14 10 6 11 12 15 7 13

result:

ok 30 numbers

Test #22:

score: 0
Accepted
time: 94ms
memory: 3912kb

input:

30 150 480087379811286955791425915

output:

7 4 8 5 16 3 1 12 13 11 9 10 15 25 18 17 20 30 28 2 6 14 23 21 24 26 27 22 19 29

result:

ok 30 numbers

Test #23:

score: 0
Accepted
time: 77ms
memory: 3900kb

input:

30 150 480087379811286955791439470

output:

7 4 8 5 16 3 1 12 13 11 9 10 15 25 18 17 20 30 28 2 19 6 22 24 21 23 26 14 29 27

result:

ok 30 numbers

Test #24:

score: 0
Accepted
time: 178ms
memory: 4168kb

input:

30 440 41509275104334759322587324

output:

22 23 20 24 18 30 19 26 21 28 4 29 17 25 27 16 3 1 2 5 8 13 10 15 7 12 9 14 11 6

result:

ok 30 numbers

Test #25:

score: 0
Accepted
time: 172ms
memory: 3864kb

input:

30 450 1140008168482800727111311

output:

26 16 17 18 19 20 21 22 23 24 25 27 28 29 30 1 2 5 7 14 4 15 8 11 3 13 10 9 6 12

result:

ok 30 numbers

Test #26:

score: 0
Accepted
time: 172ms
memory: 3892kb

input:

30 400 52289890275214604423031772929

output:

26 27 29 21 28 16 18 11 2 25 24 23 6 30 20 13 17 10 15 4 9 12 8 22 19 1 5 7 3 14

result:

ok 30 numbers

Test #27:

score: 0
Accepted
time: 15ms
memory: 3692kb

input:

30 0 1

output:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

result:

ok 30 numbers

Test #28:

score: 0
Accepted
time: 172ms
memory: 4128kb

input:

30 450 1

output:

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

result:

ok 30 numbers

Test #29:

score: 0
Accepted
time: 228ms
memory: 3848kb

input:

30 450 1710012252724199424000000

output:

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

result:

ok 30 numbers

Test #30:

score: 0
Accepted
time: 203ms
memory: 3724kb

input:

30 450 1692383260428073656742269

output:

30 27 26 28 18 29 21 19 25 17 20 16 24 22 23 7 13 4 6 3 5 12 1 15 14 9 11 8 2 10

result:

ok 30 numbers

Test #31:

score: 0
Accepted
time: 193ms
memory: 4104kb

input:

30 302 5918364042599361729860937331200

output:

30 29 28 27 26 25 14 8 9 10 11 12 13 7 15 16 17 18 19 20 21 22 23 24 6 5 4 3 2 1

result:

ok 30 numbers

Test #32:

score: 0
Accepted
time: 133ms
memory: 3832kb

input:

30 254 2256781660157136563723839089600

output:

25 2 3 12 7 16 19 8 22 6 11 17 27 26 10 24 15 21 20 18 28 9 30 23 14 13 5 29 4 1

result:

ok 30 numbers

Test #33:

score: 0
Accepted
time: 200ms
memory: 3856kb

input:

30 448 3131906441000512625049600

output:

23 20 28 18 26 30 19 29 27 22 17 24 21 25 2 13 16 15 14 12 11 10 9 8 7 6 5 4 3 1

result:

ok 30 numbers

Test #34:

score: 0
Accepted
time: 23ms
memory: 4124kb

input:

30 2 20

output:

1 2 3 4 5 6 7 8 9 11 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

result:

ok 30 numbers

Test #35:

score: 0
Accepted
time: 23ms
memory: 4156kb

input:

30 2 29

output:

2 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

result:

ok 30 numbers

Extra Test:

score: 0
Extra Test Passed