QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#605315 | #8082. Minimum Euclidean Distance | Qingyyx | AC ✓ | 11ms | 4220kb | C++20 | 8.2kb | 2024-10-02 16:40:47 | 2024-10-02 16:40:48 |
Judging History
answer
#include <bits/stdc++.h>
#define ll long long
#define enl putchar('\n')
#define all(x) (x).begin(),(x).end()
#define debug(x) printf(" "#x":%d\n",x);
using namespace std;
const int MAXN = 5000 + 5;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 998244353;
typedef pair<int, int> pii;
char buf[1 << 21], * p1 = buf, * p2 = buf, obuf[1 << 21], * o = obuf, of[35];
#define gc()(p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
inline ll qpow(ll a, ll n) { ll res = 1; while (n) { if (n & 1)res = res * a % mod; n >>= 1; a = a * a % mod; }return res; }
template <class T = int>inline T read() { T s = 0, f = 1; char c = gc(); for (; !isdigit(c); c = gc())if (c == '-')f = -1; for (; isdigit(c); c = gc())s = s * 10 + c - '0'; return s * f; }
inline void read(int* a, int n) { for (int i = 1; i <= n; ++i)a[i] = read(); }
inline int inal(char* s) { int n = 0; for (s[0] = gc(); !isalpha(s[0]); s[0] = gc()); for (; isalpha(s[n]); s[++n] = gc()); return s[n] = 0, n; }
inline void outd(auto* a, int n) { for (int i = 1; i <= n; ++i)printf("%d ", a[i]); enl; }
int n, m, q;
const double eps = 1e-9;
int sgn(double x) { return (x > eps) - (x < -eps); }
// #define sgn(x) (((x) > eps) - ((x) < -eps))
struct Point {
double x, y;
double ang;
Point(double x = 0, double y = 0) :x(x), y(y) {}
Point operator -(const Point& b)const { return Point(x - b.x, y - b.y); }
Point operator +(const Point& b)const { return Point(x + b.x, y + b.y); }
Point operator *(double k)const { return Point(x * k, y * k); }
double operator ^(const Point& b)const { return x * b.y - y * b.x; }
double operator *(const Point& b)const { return x * b.x + y * b.y; }
double operator !()const { return sqrt(*this * *this); }
bool operator <(const Point& b) const { return sgn(y - b.y) < 0 || (sgn(y - b.y) == 0 && sgn(x - b.x) < 0); }
bool operator ==(const Point& b)const { return !(*this < b) && !(b < *this); }
bool operator >(const Point& b)const { return b < *this; }
bool operator <=(const Point& b)const { return !(*this > b); }
bool operator >=(const Point& b)const { return !(*this < b); }
bool operator !=(const Point& b)const { return !(*this == b); }
Point operator /(double k)const { return Point(x / k, y / k); }
double operator ~()const { return atan2(y, x); }
Point operator -()const { return Point(-x, -y); }
double len2()const { return x * x + y * y; }
double len()const { return !*this; }
double dis(const Point& b)const { return (*this - b).len(); }
double dis2(const Point& b)const { return (*this - b).len2(); }
Point rotate(double a)const { return Point(x * cos(a) - y * sin(a), x * sin(a) + y * cos(a)); }
Point rotate(double a, const Point& o)const { return Point(x * cos(a) - y * sin(a) + o.x, x * sin(a) + y * cos(a) + o.y); }
Point unit()const { return *this / len(); }
double sqr(const Point& b, const Point& c) {
return (b - *this) ^ (c - *this);
}
double proj(const Point& b, const Point& c) {
return (b - *this) * (c - *this);
}
};
struct Line {
Point s, e;
double ang;
Line(Point s = Point(0, 0), Point e = Point(0, 0)) :s(s), e(e) {}
Line(double x1, double y1, double x2, double y2) :s(x1, y1), e(x2, y2) {}
bool pojInLine(const Point& p)const {
return sgn((p - s) * (e - s)) >= 0 && sgn((p - e) * (s - e)) >= 0;
}
bool inLine(const Point& p)const {
return sgn((p - s) ^ (e - s)) == 0 && pojInLine(p);
}
bool isparallel(const Line& b)const {
return sgn((e - s) ^ (b.e - b.s)) == 0;
}
bool isperpendicular(const Line& b)const {
return sgn((e - s) * (b.e - b.s)) == 0;
}
static Point intersection(const Line& a, const Line& b) { // 判交点 要判平行
return a.s + (a.e - a.s) * ((a.s - b.s) ^ (b.e - b.s)) / ((b.e - b.s) ^ (a.e - a.s));
}
// bool isinter(const Line& b)const {
// if (isparallel(b)) return b.inLine(s) || b.inLine(e) || inLine(b.s) || inLine(b.e);
// Point p = intersection(*this, b);
// return b.inLine(p) && (*this).inLine(p);
// }
double angle() {
return atan2(e.y - s.y, e.x - s.x);
}
bool isright(const Point& p)const {
return sgn((p - s) ^ (e - s)) > 0;
}
bool isleft(const Point& p)const {
return sgn((p - s) ^ (e - s)) < 0;
}
bool isinter(const Line& b)const {
if (b.inLine(s) || b.inLine(e) || (*this).inLine(b.s) || (*this).inLine(b.e))return true;
return (b.isright(s) ^ b.isright(e)) && ((*this).isright(b.s) ^ (*this).isright(b.e));
}
double dis(Point p) {
if (!sgn(s.dis2(e)))return s.dis(p);
if (sgn(s.proj(p, e)) < 0)return p.dis(s);
if (sgn(e.proj(p, s)) < 0)return p.dis(e);
return fabs(e.sqr(p, s)) / s.dis(e);
}
double dis(Line l) {
return min({l.dis(s), l.dis(e), (*this).dis(l.s), (*this).dis(l.e)});
}
};
struct polygon {
int n;
vector<Point>pt;
vector<Line>le;
bool inploygon(Point p) {
if ((p ^ pt[1]) > 0 || (pt.back() ^ p) > 0) return 0;
int ps = lower_bound(pt.begin() + 1, pt.end(), p, [&](const Point& a, const Point& b) {return sgn(a ^ b) > 0 || sgn(a ^ b) == 0 && a.dis2(p) < b.dis2(p); }) - pt.begin() - 1;
if (Line(pt[ps], pt[(ps + 1) % n]).inLine(p))return 1;
return sgn((p - pt[ps]) ^ (pt[(ps + 1) % n] - pt[ps])) < 0;
}
bool turn_left(auto a, auto b, auto c) { return sgn((b - a) ^ (c - a)) > 0; }
Point at(int i) { return pt[i % n]; }
int search(auto f) {
int l = 0, r = (int)pt.size() - 1;
if (f(pt[0], pt.back())) {
while (l + 1 < r) {
int mid = (l + r) / 2;
if (f(pt[mid], pt[l]) && f(pt[mid], pt[mid - 1])) l = mid;
else r = mid;
} return l;
} else {
while (l + 1 < r) {
int mid = (l + r) / 2;
if (f(pt[mid], pt[r]) && f(pt[mid], pt[mid + 1])) r = mid;
else l = mid;
} return r;
}
}
vector<int> get_tan(auto u) {
return {
search([&](auto x, auto y) {return turn_left(u, y, x); }),
search([&](auto x, auto y) {return turn_left(u, x, y); })};
}
double dis(Point p) {
if (inploygon(p))return 0;
vector<int> tan = get_tan(p);
double res = min(le[tan[0]].dis(p), le[(tan[1] - 1 + n) % n].dis(p));
int l = tan[0], r = tan[1];
int ss = sgn((at(l + 1) - at(l)) * (p - at(l)));
while (l != r) {
int mid = (l + r);
if (l > r) mid += n;
mid /= 2; mid %= n;
int ms = sgn((at(mid + 1) - at(mid)) * (p - at(mid)));
res = min(res, le[mid].dis(p));
if (ss == ms) l = (mid + 1) % n;
else r = mid;
}
return min(res, le[r].dis(p));
}
}A;
void solve() {
cin >> n >> q;
A.pt.resize(n);
A.le.resize(n);
A.n = n;
int p = 0;
for (int i = 0; i < n; ++i) {
cin >> A.pt[i].x >> A.pt[i].y;
if (A.pt[p] < A.pt[i])p = i;
}
rotate(A.pt.begin(), A.pt.begin() + p, A.pt.end());
Point bs = A.pt[0];
for (int i = 0; i < n; ++i)
A.pt[i] = A.pt[i] - bs;
for (int i = 0; i < n; ++i)
A.le[i] = Line(A.pt[i], A.pt[(i + 1) % n]);
for (int i = 1; i <= q; ++i) {
Point S, T;
cin >> S.x >> S.y >> T.x >> T.y;
S = S - bs; T = T - bs;
Point cent = (S + T) / 2;
double AC = A.dis(cent);
printf("%.12lf\n", 0.5 * cent.dis2(S) + AC * AC);
}
}
signed main(signed argc, char const* argv[]) {
clock_t c1 = clock();
#ifdef LOCAL
freopen("in.in", "r", stdin);
freopen("out.out", "w", stdout);
#endif
//=============================================================
ios::sync_with_stdio(false); cin.tie(nullptr);
int TxT = 1;
while (TxT--)
solve();
//=============================================================
#ifdef LOCAL
end :
cerr << "Time Used:" << clock() - c1 << "ms" << endl;
#endif
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 4032kb
input:
4 3 0 0 1 0 1 1 0 1 0 0 1 1 1 1 2 2 1 1 2 3
output:
0.250000000000 0.750000000000 1.875000000000
result:
ok Your answer is acceptable!^ ^
Test #2:
score: 0
Accepted
time: 0ms
memory: 4044kb
input:
48 10 -30 0 -29 -4 -28 -7 -27 -9 -25 -12 -22 -16 -21 -17 -17 -20 -14 -22 -12 -23 -9 -24 -5 -25 -4 -25 0 -24 3 -23 5 -22 8 -20 12 -17 13 -16 16 -12 18 -9 19 -7 20 -4 21 0 21 1 20 5 19 8 18 10 16 13 13 17 12 18 8 21 5 23 3 24 0 25 -4 26 -5 26 -9 25 -12 24 -14 23 -17 21 -21 18 -22 17 -25 13 -27 10 -28 ...
output:
589.500000000000 51.470588235294 1051.250000000000 66.625000000000 174.125000000000 562.675000000000 272.394230769231 287.385000000000 689.625000000000 436.250000000000
result:
ok Your answer is acceptable!^ ^
Test #3:
score: 0
Accepted
time: 10ms
memory: 4220kb
input:
5000 5000 -50000000 0 -49999885 -49450 -49999770 -85675 -49999604 -122394 -49999391 -157604 -49999130 -192731 -49998803 -229143 -49998399 -267196 -49997956 -303872 -49997469 -339362 -49996891 -377221 -49996257 -414903 -49995577 -451819 -49994843 -488600 -49994059 -524941 -49993173 -563137 -49992252 ...
output:
2214785369560633.000000000000 1632645104370924.500000000000 3954739966640761.000000000000 5405105667896786.000000000000 817274719687553.000000000000 902260846427661.125000000000 3194363161448624.000000000000 1619744446324385.000000000000 363457485421825.250000000000 4776425533214309.000000000000 826...
result:
ok Your answer is acceptable!^ ^
Test #4:
score: 0
Accepted
time: 9ms
memory: 4100kb
input:
2224 5000 -500000 0 -499999 -30 -499998 -59 -499997 -87 -499996 -114 -499995 -140 -499994 -165 -499993 -189 -499992 -212 -499991 -234 -499990 -255 -499989 -275 -499988 -294 -499987 -312 -499986 -329 -499985 -345 -499984 -360 -499982 -389 -499981 -403 -499979 -430 -499978 -443 -499976 -468 -499975 -4...
output:
931340796015.375000000000 410570465847.750000000000 225774975043.750000000000 686588110927.374877929688 803635163394.875000000000 440321806244.750000000000 781364862674.500000000000 303496624306.750000000000 146653887864.750000000000 1361017661096.749755859375 409649028457.500000000000 417747460932....
result:
ok Your answer is acceptable!^ ^
Test #5:
score: 0
Accepted
time: 7ms
memory: 4144kb
input:
4672 5000 -300 0 -299 -43 -298 -85 -297 -126 -296 -166 -295 -205 -294 -243 -293 -280 -292 -316 -291 -351 -290 -385 -289 -418 -288 -450 -287 -481 -286 -511 -285 -540 -284 -568 -283 -595 -282 -621 -281 -646 -280 -670 -279 -693 -278 -715 -276 -758 -275 -779 -273 -820 -272 -840 -270 -879 -269 -898 -267 ...
output:
356616.500000000000 121018.500000000000 0.250000000000 189.625000000000 103099.625000000000 83253.125000000000 131701.250000000000 58352.500000000000 355863.125000000000 197638.859724047303 605772.412162162131 2062.445897740785 113763.250000000000 134694.500000000000 74679.652054794511 114481.250000...
result:
ok Your answer is acceptable!^ ^
Test #6:
score: 0
Accepted
time: 6ms
memory: 4084kb
input:
576 5000 -300 0 -299 -15 -298 -29 -297 -42 -296 -54 -295 -65 -294 -75 -293 -84 -292 -92 -290 -107 -289 -114 -287 -127 -286 -133 -284 -144 -283 -149 -280 -163 -278 -172 -275 -185 -274 -189 -270 -204 -267 -215 -265 -222 -262 -232 -258 -245 -257 -248 -252 -262 -248 -273 -245 -281 -240 -294 -238 -299 -2...
output:
189295.250000000000 377943.294416243676 299473.000000000000 243821.917197452218 559270.992227979354 100367.592339667433 472743.125000000000 374450.625000000000 77260.625000000000 106891.230769230766 193578.125000000000 98895.065414507786 124020.000000000000 296138.874999999942 1209.125000000000 4800...
result:
ok Your answer is acceptable!^ ^
Test #7:
score: 0
Accepted
time: 5ms
memory: 4124kb
input:
336 5000 -300 0 -299 -11 -298 -21 -297 -30 -296 -38 -295 -45 -294 -51 -292 -62 -291 -67 -289 -76 -288 -80 -285 -91 -283 -98 -280 -108 -279 -111 -275 -122 -272 -130 -270 -135 -267 -142 -263 -151 -258 -162 -257 -164 -251 -175 -246 -184 -242 -191 -239 -196 -234 -204 -227 -215 -225 -218 -218 -228 -213 -...
output:
478.125000000000 408.125000000000 1341.250000000000 861.250000000000 4210.000000000000 1709.125000000000 846.250000000000 1389.125000000000 722.500000000000 753.125000000000 574.250000000000 1167.125000000000 439.625000000000 5650.250000000000 619.625000000000 2664.500000000000 2138.625000000000 213...
result:
ok Your answer is acceptable!^ ^
Test #8:
score: 0
Accepted
time: 6ms
memory: 3876kb
input:
336 5000 -300 0 -299 -11 -298 -21 -297 -30 -296 -38 -295 -45 -294 -51 -292 -62 -291 -67 -289 -76 -288 -80 -285 -91 -283 -98 -280 -108 -279 -111 -275 -122 -272 -130 -270 -135 -267 -142 -263 -151 -258 -162 -257 -164 -251 -175 -246 -184 -242 -191 -239 -196 -234 -204 -227 -215 -225 -218 -218 -228 -213 -...
output:
95.125000000000 8382.625000000000 77361.125000000000 142408.125000000000 98056.250000000000 110581.250000000000 20413.000000000000 1253.125000000000 64468.625000000000 8915.625000000000 93179.125000000000 26286.250000000000 35118.250000000000 129681.250000000000 59545.625000000000 49997.910377358487...
result:
ok Your answer is acceptable!^ ^
Test #9:
score: 0
Accepted
time: 11ms
memory: 4160kb
input:
5000 5000 -50000000 0 -49999912 -33572 -49999824 -59400 -49999710 -83347 -49999578 -105149 -49999382 -130924 -49999166 -154591 -49998916 -178069 -49998599 -203894 -49998262 -228398 -49997905 -251647 -49997466 -277451 -49997003 -302413 -49996511 -326907 -49995964 -352128 -49995393 -376671 -49994795 -...
output:
481990667522174080.000000000000 900047257776892032.000000000000 84250235108292080.000000000000 357963472278544256.000000000000 758024710210129280.000000000000 651805790712522752.000000000000 422072215223185920.000000000000 571948904059660608.000000000000 685946954834849920.000000000000 7810175274046...
result:
ok Your answer is acceptable!^ ^
Test #10:
score: 0
Accepted
time: 11ms
memory: 4160kb
input:
5000 5000 -50000000 0 -49999762 -138397 -49999461 -244153 -49999007 -349713 -49998392 -456086 -49997577 -566637 -49996632 -673023 -49995462 -784273 -49994137 -894156 -49992625 -1005080 -49990945 -1115094 -49989066 -1226720 -49987021 -1337531 -49984788 -1449227 -49982415 -1559155 -49979887 -1668061 -...
output:
259053256470500448.000000000000 472297859897907072.000000000000 271976522374482752.000000000000 930648882061705984.000000000000 110596174224097024.000000000000 385963660067947136.000000000000 441658538323309440.000000000000 259108189662189408.000000000000 379723545376251136.000000000000 432939510223...
result:
ok Your answer is acceptable!^ ^
Extra Test:
score: 0
Extra Test Passed