QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#605073 | #9424. Stop the Castle 2 | maspy | AC ✓ | 158ms | 30696kb | C++20 | 28.3kb | 2024-10-02 15:21:54 | 2024-10-02 15:21:58 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "library/graph/bipartite_vertex_coloring.hpp"
#line 2 "library/ds/unionfind/unionfind.hpp"
struct UnionFind {
int n, n_comp;
vc<int> dat; // par or (-size)
UnionFind(int n = 0) { build(n); }
void build(int m) {
n = m, n_comp = m;
dat.assign(n, -1);
}
void reset() { build(n); }
int operator[](int x) {
while (dat[x] >= 0) {
int pp = dat[dat[x]];
if (pp < 0) { return dat[x]; }
x = dat[x] = pp;
}
return x;
}
ll size(int x) {
x = (*this)[x];
return -dat[x];
}
bool merge(int x, int y) {
x = (*this)[x], y = (*this)[y];
if (x == y) return false;
if (-dat[x] < -dat[y]) swap(x, y);
dat[x] += dat[y], dat[y] = x, n_comp--;
return true;
}
vc<int> get_all() {
vc<int> A(n);
FOR(i, n) A[i] = (*this)[i];
return A;
}
};
#line 5 "library/graph/bipartite_vertex_coloring.hpp"
// 二部グラフでなかった場合には empty
template <typename GT>
vc<int> bipartite_vertex_coloring(GT& G) {
assert(!GT::is_directed);
assert(G.is_prepared());
int n = G.N;
UnionFind uf(2 * n);
for (auto&& e: G.edges) {
int u = e.frm, v = e.to;
uf.merge(u + n, v), uf.merge(u, v + n);
}
vc<int> color(2 * n, -1);
FOR(v, n) if (uf[v] == v && color[uf[v]] < 0) {
color[uf[v]] = 0;
color[uf[v + n]] = 1;
}
FOR(v, n) color[v] = color[uf[v]];
color.resize(n);
FOR(v, n) if (uf[v] == uf[v + n]) return {};
return color;
}
#line 3 "library/graph/strongly_connected_component.hpp"
template <typename GT>
pair<int, vc<int>> strongly_connected_component(GT& G) {
static_assert(GT::is_directed);
assert(G.is_prepared());
int N = G.N;
int C = 0;
vc<int> comp(N), low(N), ord(N, -1), path;
int now = 0;
auto dfs = [&](auto& dfs, int v) -> void {
low[v] = ord[v] = now++;
path.eb(v);
for (auto&& [frm, to, cost, id]: G[v]) {
if (ord[to] == -1) {
dfs(dfs, to), chmin(low[v], low[to]);
} else {
chmin(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (1) {
int u = POP(path);
ord[u] = N, comp[u] = C;
if (u == v) break;
}
++C;
}
};
FOR(v, N) {
if (ord[v] == -1) dfs(dfs, v);
}
FOR(v, N) comp[v] = C - 1 - comp[v];
return {C, comp};
}
template <typename GT>
Graph<int, 1> scc_dag(GT& G, int C, vc<int>& comp) {
Graph<int, 1> DAG(C);
vvc<int> edges(C);
for (auto&& e: G.edges) {
int x = comp[e.frm], y = comp[e.to];
if (x == y) continue;
edges[x].eb(y);
}
FOR(c, C) {
UNIQUE(edges[c]);
for (auto&& to: edges[c]) DAG.add(c, to);
}
DAG.build();
return DAG;
}
#line 4 "library/flow/bipartite.hpp"
template <typename GT>
struct BipartiteMatching {
int N;
GT& G;
vc<int> color;
vc<int> dist, match;
vc<int> vis;
BipartiteMatching(GT& G) : N(G.N), G(G), dist(G.N, -1), match(G.N, -1) {
color = bipartite_vertex_coloring(G);
if (N > 0) assert(!color.empty());
while (1) {
bfs();
vis.assign(N, false);
int flow = 0;
FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow;
if (!flow) break;
}
}
BipartiteMatching(GT& G, vc<int> color)
: N(G.N), G(G), color(color), dist(G.N, -1), match(G.N, -1) {
while (1) {
bfs();
vis.assign(N, false);
int flow = 0;
FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow;
if (!flow) break;
}
}
void bfs() {
dist.assign(N, -1);
queue<int> que;
FOR(v, N) if (!color[v] && match[v] == -1) que.emplace(v), dist[v] = 0;
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto&& e: G[v]) {
dist[e.to] = 0;
int w = match[e.to];
if (w != -1 && dist[w] == -1) dist[w] = dist[v] + 1, que.emplace(w);
}
}
}
bool dfs(int v) {
vis[v] = 1;
for (auto&& e: G[v]) {
int w = match[e.to];
if (w == -1 || (!vis[w] && dist[w] == dist[v] + 1 && dfs(w))) {
match[e.to] = v, match[v] = e.to;
return true;
}
}
return false;
}
vc<pair<int, int>> matching() {
vc<pair<int, int>> res;
FOR(v, N) if (v < match[v]) res.eb(v, match[v]);
return res;
}
vc<int> vertex_cover() {
vc<int> res;
FOR(v, N) if (color[v] ^ (dist[v] == -1)) { res.eb(v); }
return res;
}
vc<int> independent_set() {
vc<int> res;
FOR(v, N) if (!(color[v] ^ (dist[v] == -1))) { res.eb(v); }
return res;
}
vc<int> edge_cover() {
vc<bool> done(N);
vc<int> res;
for (auto&& e: G.edges) {
if (done[e.frm] || done[e.to]) continue;
if (match[e.frm] == e.to) {
res.eb(e.id);
done[e.frm] = done[e.to] = 1;
}
}
for (auto&& e: G.edges) {
if (!done[e.frm]) {
res.eb(e.id);
done[e.frm] = 1;
}
if (!done[e.to]) {
res.eb(e.id);
done[e.to] = 1;
}
}
sort(all(res));
return res;
}
/* Dulmage–Mendelsohn decomposition
https://en.wikipedia.org/wiki/Dulmage%E2%80%93Mendelsohn_decomposition
http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-ouyousurigaku/dm050410.pdf
https://hitonanode.github.io/cplib-cpp/graph/dulmage_mendelsohn_decomposition.hpp.html
- 最大マッチングとしてありうる iff 同じ W を持つ
- 辺 uv が必ず使われる:同じ W を持つ辺が唯一
- color=0 から 1 への辺:W[l] <= W[r]
- color=0 の点が必ず使われる:W=1,2,...,K
- color=1 の点が必ず使われる:W=0,1,...,K-1
*/
pair<int, vc<int>> DM_decomposition() {
// 非飽和点からの探索
vc<int> W(N, -1);
vc<int> que;
auto add = [&](int v, int x) -> void {
if (W[v] == -1) {
W[v] = x;
que.eb(v);
}
};
FOR(v, N) if (match[v] == -1 && color[v] == 0) add(v, 0);
FOR(v, N) if (match[v] == -1 && color[v] == 1) add(v, infty<int>);
while (len(que)) {
auto v = POP(que);
if (match[v] != -1) add(match[v], W[v]);
if (color[v] == 0 && W[v] == 0) {
for (auto&& e: G[v]) { add(e.to, W[v]); }
}
if (color[v] == 1 && W[v] == infty<int>) {
for (auto&& e: G[v]) { add(e.to, W[v]); }
}
}
// 残った点からなるグラフを作って強連結成分分解
vc<int> V;
FOR(v, N) if (W[v] == -1) V.eb(v);
int n = len(V);
Graph<bool, 1> DG(n);
FOR(i, n) {
int v = V[i];
if (match[v] != -1) {
int j = LB(V, match[v]);
DG.add(i, j);
}
if (color[v] == 0) {
for (auto&& e: G[v]) {
if (W[e.to] != -1 || e.to == match[v]) continue;
int j = LB(V, e.to);
DG.add(i, j);
}
}
}
DG.build();
auto [K, comp] = strongly_connected_component(DG);
K += 1;
// 答
FOR(i, n) { W[V[i]] = 1 + comp[i]; }
FOR(v, N) if (W[v] == infty<int>) W[v] = K;
return {K, W};
}
#ifdef FASTIO
void debug() {
print("match", match);
print("min vertex covor", vertex_cover());
print("max indep set", independent_set());
print("min edge cover", edge_cover());
}
#endif
};
#line 6 "main.cpp"
void solve() {
vc<tuple<int, int, int>> XYI;
vc<tuple<int, int, int>> YXI;
LL(N, M, K);
FOR(i, N) {
INT(x, y);
XYI.eb(x, y, i);
YXI.eb(y, x, i);
}
sort(all(XYI));
sort(all(YXI));
Graph<int, 0> G(2 * N);
auto get_ij = [&](int x, int y) -> pair<int, int> {
int a = LB(XYI, mt(x, y, -1)) - 1;
int b = LB(YXI, mt(y, x, -1)) - 1;
if (0 <= a && a + 1 < N) {
auto [x1, y1, i] = XYI[a];
auto [x2, y2, j] = XYI[a + 1];
if (x1 == x && x2 == x) {
assert(y1 < y && y < y2);
a = i;
} else {
a = -1;
}
} else {
a = -1;
}
if (0 <= b && b + 1 < N) {
auto [y1, x1, i] = YXI[b];
auto [y2, x2, j] = YXI[b + 1];
if (y1 == y && y2 == y) {
assert(x1 < x && x < x2);
b = i;
} else {
b = -1;
}
} else {
b = -1;
}
return {b, a};
};
vvc<int> A(N), B(N);
map<pi, int> MP;
FOR(e, M) {
INT(x, y);
auto [i, j] = get_ij(x, y);
if (i != -1) A[i].eb(e);
if (j != -1) B[j].eb(e);
if (i != -1 && j != -1) G.add(i, N + j);
MP[mp(i, j)] = e;
}
G.build();
BipartiteMatching<decltype(G)> BM(G);
auto MATCH = BM.matching();
ll ans = 0;
ll match = len(MATCH);
ll can = 0;
for (auto& x: A) can += (x.empty() ? 0 : 1);
for (auto& x: B) can += (x.empty() ? 0 : 1);
FOR(k, N - 1) {
auto [x1, y1, i] = XYI[k];
auto [x2, y2, j] = XYI[k + 1];
if (x1 == x2) ++ans;
}
FOR(k, N - 1) {
auto [y1, x1, i] = YXI[k];
auto [y2, x2, j] = YXI[k + 1];
if (y1 == y2) ++ans;
}
// 置く個数は?
K = M - K;
ll x2 = min(K, match);
ans -= 2 * x2;
K -= x2;
ll x1 = min(can - 2 * match, K);
ans -= x1;
K -= x1;
vc<int> USE(M);
vc<int> doneL(N), doneR(N);
MATCH.resize(x2);
for (auto& [a, b]: MATCH) {
if (a > b) swap(a, b);
b -= N;
assert(!doneL[a]);
assert(!doneR[b]);
doneL[a] = doneR[b] = 1;
int eid = MP[mp(a, b)];
USE[eid] = 1;
}
FOR(i, N) {
if (A[i].empty()) continue;
if (doneL[i]) continue;
if (x1 == 0) continue;
--x1;
int eid = POP(A[i]);
USE[eid] = 1;
}
FOR(i, N) {
if (B[i].empty()) continue;
if (doneR[i]) continue;
if (x1 == 0) continue;
--x1;
int eid = POP(B[i]);
USE[eid] = 1;
}
// 無意味に使うようにする
FOR(i, M) {
if (USE[i] == 0 && K > 0) {
--K;
USE[i] = 1;
}
}
vc<int> ANS;
FOR(i, M) {
if (!USE[i]) ANS.eb(1 + i);
}
print(ans);
print(ANS);
}
signed main() {
INT(T);
FOR(T) solve();
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3928kb
input:
3 8 6 4 1 3 2 1 2 6 4 1 4 7 6 1 6 3 6 6 2 3 3 1 4 3 4 6 5 2 6 4 3 2 1 10 12 10 10 10 11 1 4 1 5 1 3 2 1 1 2 1 2 2 2 3
output:
4 2 3 5 6 2 2 0 2 3
result:
ok ok 3 cases (3 test cases)
Test #2:
score: 0
Accepted
time: 55ms
memory: 6960kb
input:
1224 11 17 14 7 3 4 2 8 13 3 15 3 4 5 11 10 2 3 3 8 6 7 11 2 3 10 4 1 3 12 1 2 5 11 9 11 6 11 10 8 15 1 5 9 14 4 11 1 6 10 7 7 6 11 4 8 4 1 11 18 3 2 14 8 2 14 13 13 9 12 14 12 5 6 8 1 10 5 8 6 8 9 6 6 7 5 12 11 6 11 13 5 1 10 7 6 14 5 6 15 2 4 11 1 1 6 4 14 14 13 9 9 3 10 12 7 5 8 13 9 14 1 9 8 4 9...
output:
7 3 4 5 6 7 8 9 10 11 12 13 15 16 17 15 2 3 0 3 4 5 6 0 2 3 4 5 6 7 8 9 11 1 3 8 1 2 3 0 1 2 3 4 5 6 7 8 9 10 11 12 1 5 6 7 9 10 11 12 8 17 18 19 1 1 2 3 4 5 6 7 8 7 6 8 10 13 14 15 1 10 11 12 13 14 15 16 17 18 19 20 0 1 1 2 3 0 5 6 7 7 8 11 12 13 14 2 10 11 12 13 14 4 3 4 5 6 7 8 1 18 1 4 5 6 7 8 9...
result:
ok ok 1224 cases (1224 test cases)
Test #3:
score: 0
Accepted
time: 145ms
memory: 28412kb
input:
1 86289 95092 40401 911 152 1 270 135 731 347 451 283 224 338 348 166 346 12 385 590 763 939 176 232 405 122 946 397 576 795 823 546 392 33 718 444 598 954 852 185 662 732 539 172 681 386 148 76 495 163 323 711 201 278 363 531 275 66 122 823 983 234 792 102 188 985 423 804 712 419 636 318 331 693 68...
output:
81531 5375 5376 5377 5378 5379 5380 5382 5384 5385 5386 5387 5389 5391 5392 5400 5402 5403 5404 5406 5411 5414 5415 5416 5417 5420 5422 5423 5425 5426 5429 5431 5434 5435 5436 5437 5444 5447 5448 5449 5451 5456 5460 5462 5465 5466 5468 5470 5471 5475 5476 5477 5479 5482 5483 5484 5486 5488 5490 5492...
result:
ok ok 1 cases (1 test case)
Test #4:
score: 0
Accepted
time: 109ms
memory: 23352kb
input:
1 99057 99722 73893 190482185 274379837 466851670 641324039 993028302 128875937 102891466 286559847 526771097 794238060 565736409 328262657 190329865 598878250 790626887 595298790 308031819 470646878 341575785 374318107 257299536 280924175 64420619 591124604 323023069 811512407 428956686 719615923 2...
output:
82045 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 24 25 26 27 28 29 30 31 33 34 35 36 37 39 41 43 45 46 48 49 50 51 52 54 55 56 58 59 60 61 62 63 65 67 68 69 70 71 72 74 75 77 79 80 81 82 83 85 87 89 90 91 93 94 95 96 97 99 100 101 102 104 105 106 107 109 110 111 112 113 114 117 119 120 121 ...
result:
ok ok 1 cases (1 test case)
Test #5:
score: 0
Accepted
time: 158ms
memory: 29912kb
input:
1 100000 99990 27662 913840909 999962982 690565691 31053 780601566 31053 54745498 31053 5383 859704869 538124857 999962982 5383 66851413 1444277 31053 119603839 999962982 999833258 543197820 999833258 349576387 999833258 759855830 999833258 124692224 266093388 999962982 5383 100041707 999833258 2843...
output:
100891 65621 65623 65625 65626 65628 65631 65632 65633 65635 65636 65637 65638 65639 65640 65642 65643 65644 65645 65646 65647 65649 65650 65651 65652 65654 65655 65656 65657 65658 65659 65660 65661 65662 65663 65664 65665 65667 65668 65669 65671 65672 65675 65676 65677 65679 65680 65681 65682 65683...
result:
ok ok 1 cases (1 test case)
Test #6:
score: 0
Accepted
time: 61ms
memory: 25304kb
input:
1 100000 49997 21428 9380 4333 9380 999999628 49202 4333 49202 999999628 50841 4333 50841 999999628 77418 4333 77418 999999628 95722 4333 95722 999999628 144002 4333 144002 999999628 234359 4333 234359 999999628 268942 4333 268942 999999628 288956 4333 288956 999999628 415094 4333 415094 999999628 4...
output:
100000 7099 7100 7102 7103 7104 7105 7106 7108 7110 7113 7114 7117 7119 7120 7122 7123 7126 7130 7131 7134 7135 7136 7140 7145 7149 7151 7154 7157 7158 7160 7162 7163 7167 7170 7172 7173 7174 7176 7178 7182 7183 7184 7188 7190 7197 7199 7201 7204 7205 7206 7208 7209 7211 7212 7213 7215 7216 7221 722...
result:
ok ok 1 cases (1 test case)
Test #7:
score: 0
Accepted
time: 97ms
memory: 22016kb
input:
1 100000 100000 76259 931427170 7 367311884 7 646435086 7 925372747 7 371054451 7 284185575 7 695090232 7 889183241 7 615617158 7 44230096 7 293281406 7 758261641 7 685549291 7 679471071 7 723138327 7 901136691 7 49281635 7 256352978 7 320188290 7 78730802 7 788131872 7 234735044 7 664906524 7 79430...
output:
76258 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 30 31 32 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 78 79 80 81 82 83 84 86 87 88 89 90 91 92 93 94 95 96 97 98 99 101 102 104 105 107 1...
result:
ok ok 1 cases (1 test case)
Test #8:
score: 0
Accepted
time: 39ms
memory: 23700kb
input:
1 100000 49999 24999 2 1 2 1000000000 3 1 3 1000000000 4 1 4 1000000000 5 1 5 1000000000 6 1 6 1000000000 7 1 7 1000000000 8 1 8 1000000000 9 1 9 1000000000 10 1 10 1000000000 11 1 11 1000000000 12 1 12 1000000000 13 1 13 1000000000 14 1 14 1000000000 15 1 15 1000000000 16 1 16 1000000000 17 1 17 10...
output:
99996 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10...
result:
ok ok 1 cases (1 test case)
Test #9:
score: 0
Accepted
time: 42ms
memory: 11736kb
input:
556 16 6 3 2 1 2 1000000000 3 1 3 1000000000 4 1 4 1000000000 1 2 1000000000 2 1 3 1000000000 3 1 4 1000000000 4 1 5 1000000000 5 1 6 1000000000 6 2 3 3 3 3 2 4 2 2 4 4 4 32 12 6 2 1 2 1000000000 3 1 3 1000000000 4 1 4 1000000000 5 1 5 1000000000 6 1 6 1000000000 7 1 7 1000000000 8 1 8 1000000000 9 ...
output:
14 2 4 5 32 1 3 6 7 8 9 31 1 2 4 9 10 12 13 15 8 1 13 2 4 19 4 5 7 8 9 11 1 5 6 20 3 5 6 15 1 2 5 8 33 4 6 8 9 10 12 14 31 1 2 3 5 8 10 14 15 19 2 3 4 7 8 31 2 5 6 9 10 15 3 4 5 8 28 4 6 7 8 10 11 1 19 2 3 5 7 10 23 1 5 6 9 10 12 34 1 7 10 11 12 13 14 16 31 3 5 7 8 9 12 13 14 29 1 3 8 9 10 11 17 3 4...
result:
ok ok 556 cases (556 test cases)
Test #10:
score: 0
Accepted
time: 75ms
memory: 24736kb
input:
1 100000 50000 25000 2 1 2 1000000000 3 1 3 1000000000 4 1 4 1000000000 5 1 5 1000000000 6 1 6 1000000000 7 1 7 1000000000 8 1 8 1000000000 9 1 9 1000000000 10 1 10 1000000000 11 1 11 1000000000 12 1 12 1000000000 13 1 13 1000000000 14 1 14 1000000000 15 1 15 1000000000 16 1 16 1000000000 17 1 17 10...
output:
99996 1 4 5 7 8 10 11 14 15 18 19 20 22 25 28 30 33 34 36 38 39 41 43 45 46 47 48 51 54 55 56 57 60 61 63 64 65 68 78 82 85 88 89 90 91 94 97 102 103 104 109 111 113 114 115 117 118 119 121 122 124 129 130 132 135 137 138 141 143 145 146 147 148 149 151 152 153 155 156 157 158 159 160 162 164 165 17...
result:
ok ok 1 cases (1 test case)
Test #11:
score: 0
Accepted
time: 33ms
memory: 12004kb
input:
556 32 15 7 2 1 2 1000000000 3 1 3 1000000000 4 1 4 1000000000 5 1 5 1000000000 6 1 6 1000000000 7 1 7 1000000000 8 1 8 1000000000 9 1 9 1000000000 1 2 1000000000 2 1 3 1000000000 3 1 4 1000000000 4 1 5 1000000000 5 1 6 1000000000 6 1 7 1000000000 7 1 8 1000000000 8 1 9 1000000000 9 7 6 4 3 5 4 2 2 ...
output:
28 1 2 3 7 8 10 15 11 1 4 20 3 4 23 4 7 8 9 10 26 1 2 6 7 8 17 1 10 2 31 2 3 6 8 14 1 31 2 3 4 5 7 11 14 34 2 3 4 5 7 8 15 16 3 32 1 2 6 7 8 29 3 5 28 1 6 7 8 10 12 15 31 1 2 4 5 6 8 14 25 3 5 8 9 15 2 4 5 29 1 5 6 9 11 31 1 4 7 8 15 1 2 7 29 1 3 27 1 3 6 19 5 6 7 9 25 1 6 7 9 2 1 16 2 32 2 3 9 11 1...
result:
ok ok 556 cases (556 test cases)
Test #12:
score: 0
Accepted
time: 51ms
memory: 25208kb
input:
1 100000 49999 24999 2 1 2 1000000000 3 1 3 1000000000 4 1 4 1000000000 5 1 5 1000000000 6 1 6 1000000000 7 1 7 1000000000 8 1 8 1000000000 9 1 9 1000000000 10 1 10 1000000000 11 1 11 1000000000 12 1 12 1000000000 13 1 13 1000000000 14 1 14 1000000000 15 1 15 1000000000 16 1 16 1000000000 17 1 17 10...
output:
99996 1 3 4 6 8 10 12 17 20 22 25 26 27 29 30 32 33 34 35 37 39 42 44 47 48 49 51 54 58 59 60 61 68 69 70 72 74 75 77 78 81 82 84 85 88 89 90 91 93 94 96 97 98 100 103 110 111 112 114 115 116 120 123 124 127 129 130 133 135 136 139 140 143 145 146 149 150 152 153 160 163 169 171 174 175 176 178 179 ...
result:
ok ok 1 cases (1 test case)
Test #13:
score: 0
Accepted
time: 34ms
memory: 11900kb
input:
556 22 1 1 2 1 2 1000000000 1 2 1000000000 2 1 3 1000000000 3 1 4 1000000000 4 1 5 1000000000 5 1 6 1000000000 6 1 7 1000000000 7 1 8 1000000000 8 1 9 1000000000 9 1 10 1000000000 10 1 11 1000000000 11 2 2 18 3 1 2 1 2 1000000000 3 1 3 1000000000 1 2 1000000000 2 1 3 1000000000 3 1 4 1000000000 4 1 ...
output:
29 1 19 1 20 1 5 14 2 5 25 2 28 1 2 3 4 6 8 9 23 1 29 3 5 8 10 11 28 2 3 5 6 5 1 23 6 7 8 9 11 31 2 3 5 10 13 14 15 29 2 3 7 1 26 1 27 2 3 6 9 12 13 24 1 5 7 14 3 5 32 3 4 5 6 10 11 13 14 24 1 2 5 27 1 2 3 6 7 10 32 1 2 3 4 5 9 14 15 30 1 3 5 24 2 3 7 15 2 3 6 26 1 18 1 2 6 22 2 34 5 6 7 8 11 14 15 ...
result:
ok ok 556 cases (556 test cases)
Test #14:
score: 0
Accepted
time: 64ms
memory: 24136kb
input:
1 100000 49999 24999 2 1 2 1000000000 3 1 3 1000000000 4 1 4 1000000000 5 1 5 1000000000 6 1 6 1000000000 7 1 7 1000000000 8 1 8 1000000000 9 1 9 1000000000 10 1 10 1000000000 11 1 11 1000000000 12 1 12 1000000000 13 1 13 1000000000 14 1 14 1000000000 15 1 15 1000000000 16 1 16 1000000000 17 1 17 10...
output:
99996 1 2 8 11 13 14 15 16 17 19 20 21 26 29 31 36 39 42 45 46 49 51 53 54 55 57 61 62 64 67 68 69 71 73 74 76 78 79 80 81 82 84 85 88 89 91 94 100 101 103 104 109 110 112 113 115 116 120 123 127 130 131 132 133 136 141 147 149 150 151 153 154 155 158 159 161 163 167 168 170 171 173 174 175 177 178 ...
result:
ok ok 1 cases (1 test case)
Test #15:
score: 0
Accepted
time: 77ms
memory: 23456kb
input:
1 100000 49998 34141 2 1 2 1000000000 3 1 3 1000000000 4 1 4 1000000000 5 1 5 1000000000 6 1 6 1000000000 7 1 7 1000000000 8 1 8 1000000000 9 1 9 1000000000 10 1 10 1000000000 11 1 11 1000000000 12 1 12 1000000000 13 1 13 1000000000 14 1 14 1000000000 15 1 15 1000000000 16 1 16 1000000000 17 1 17 10...
output:
118282 1 3 4 5 6 7 8 10 11 12 14 15 16 19 23 25 26 27 28 30 31 32 33 34 35 37 38 39 42 43 44 45 46 47 48 50 51 53 54 55 56 57 58 59 60 63 65 66 67 68 69 71 72 73 74 75 76 77 79 82 83 84 85 86 87 88 89 91 92 93 95 98 100 101 102 103 104 108 109 111 112 113 114 115 116 117 119 120 121 122 124 127 128 ...
result:
ok ok 1 cases (1 test case)
Test #16:
score: 0
Accepted
time: 96ms
memory: 28036kb
input:
1 100000 82275 67072 2 1 2 1000000000 3 1 3 1000000000 4 1 4 1000000000 5 1 5 1000000000 6 1 6 1000000000 7 1 7 1000000000 8 1 8 1000000000 9 1 9 1000000000 10 1 10 1000000000 11 1 11 1000000000 12 1 12 1000000000 13 1 13 1000000000 14 1 14 1000000000 15 1 15 1000000000 16 1 16 1000000000 17 1 17 10...
output:
119590 7 8 9 10 14 15 20 21 22 26 27 28 29 31 32 34 37 41 45 46 47 51 53 54 56 58 59 60 61 63 64 65 66 68 69 71 75 76 83 85 89 92 94 97 98 101 104 105 110 111 113 118 119 122 125 127 128 129 130 132 133 134 136 138 139 140 143 149 152 153 154 155 160 163 164 165 166 168 171 175 176 177 179 180 183 1...
result:
ok ok 1 cases (1 test case)
Test #17:
score: 0
Accepted
time: 57ms
memory: 14084kb
input:
556 30 12 6 2 1 2 1000000000 3 1 3 1000000000 4 1 4 1000000000 5 1 5 1000000000 6 1 6 1000000000 7 1 7 1000000000 8 1 8 1000000000 1 2 1000000000 2 1 3 1000000000 3 1 4 1000000000 4 1 5 1000000000 5 1 6 1000000000 6 1 7 1000000000 7 1 8 1000000000 8 1 9 1000000000 9 2 6 2 8 3 4 4 4 4 8 5 3 5 7 5 8 6...
output:
29 2 4 7 8 10 11 19 2 3 5 6 7 8 9 10 11 25 2 3 4 5 6 8 9 10 11 12 13 3 4 5 31 2 3 5 6 8 9 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 28 36 1 4 5 8 9 10 13 18 2 3 4 5 20 3 4 6 7 8 20 2 3 4 5 6 8 9 10 11 12 13 14 16 17 18 12 2 3 4 5 8 2 3 4 6 7 8 15 2 3 4 5 6 22 2 3 5 6 7 8 9 11 12 13 15 16 17 25...
result:
ok ok 556 cases (556 test cases)
Test #18:
score: 0
Accepted
time: 127ms
memory: 30696kb
input:
1 100000 99991 75553 2 1 2 1000000000 3 1 3 1000000000 4 1 4 1000000000 5 1 5 1000000000 6 1 6 1000000000 7 1 7 1000000000 8 1 8 1000000000 9 1 9 1000000000 10 1 10 1000000000 11 1 11 1000000000 12 1 12 1000000000 13 1 13 1000000000 14 1 14 1000000000 15 1 15 1000000000 16 1 16 1000000000 17 1 17 10...
output:
101120 1 3 5 6 7 9 11 12 13 15 16 17 18 19 20 21 24 25 26 27 28 30 31 33 34 35 37 39 41 42 43 44 47 48 50 51 54 55 57 58 59 60 61 62 64 65 66 68 69 70 71 73 74 76 77 78 79 80 81 82 85 86 87 88 89 90 91 92 93 95 97 98 99 101 102 103 104 105 107 108 109 110 111 112 114 115 116 117 119 120 121 122 124 ...
result:
ok ok 1 cases (1 test case)
Extra Test:
score: 0
Extra Test Passed