QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#604865 | #8022. Walker | ucup-team3519# | WA | 1ms | 3956kb | C++17 | 1.5kb | 2024-10-02 14:18:04 | 2024-10-02 14:18:06 |
Judging History
answer
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef double db;
#define V vector
#define pb push_back
int main() {
cout << fixed << setprecision(15);
ios::sync_with_stdio(0), cin.tie(0);
int t; cin >> t;
while(t--) {
db n; cin >> n;
db a, v1, b, v2; cin >> a >> v1 >> b >> v2;
if(a > b) swap(a, b), swap(v1, v2);
db l = a, r = b;
auto cal = [&](db x) {
return max(min((a + (x - a) * 2) / v1, ((x - a) * 2 + a) / v1), min(((n - b) + (b - x) * 2) / v2, ((n - b) * 2 + (b - x)) / v2));
};
for(int i = 1; i <= 200; i++) {
db mid1 = l + (r - l) / 3;
db mid2 = l + (r - l) * 2 / 3;
if(cal(mid1) > cal(mid2)) l = mid1;
else r = mid2;
}
cout << min({
(n + (n - b)) / v2,
(n + b) / v2,
(n + a) / v1,
(n + (n - a)) / v1,
(n + a + (n - b)) / (v1 + v2),
max(a / v1, (n - a + (n - b)) / v2),
max((n - b) / v2, (n - (n - b) + a) / v1),
max((n - a) / v1, (n - (n - b)) / v2),
max(a / v1, ((b - a) * 2 + (n - b)) / v2),
max((n - b) / v2, (a + (b - a) * 2) / v1),
2 * (b - a) / (v1 + v2) + max(a / v1, (n - b) / v2),
cal(l)
}) << endl;
// cout << l << endl;
// cout << cal(l) << endl;
// cout << cal(2300) << endl;
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3880kb
input:
2 10000.0 1.0 0.001 9999.0 0.001 4306.063 4079.874 0.607 1033.423 0.847
output:
5001000.000000000000000 3827.837001375516138
result:
ok 2 numbers
Test #2:
score: 0
Accepted
time: 0ms
memory: 3844kb
input:
1 10.0 1.0 10.0 9.0 0.1
output:
1.100000000000000
result:
ok found '1.1000000', expected '1.1000000', error '0.0000000'
Test #3:
score: 0
Accepted
time: 0ms
memory: 3888kb
input:
1 10.0 8.0 10.0 9.0 0.1
output:
1.200000000000000
result:
ok found '1.2000000', expected '1.2000000', error '0.0000000'
Test #4:
score: 0
Accepted
time: 0ms
memory: 3956kb
input:
1 10.0 8.0 0.1 9.0 10
output:
1.100000000000000
result:
ok found '1.1000000', expected '1.1000000', error '0.0000000'
Test #5:
score: 0
Accepted
time: 0ms
memory: 3904kb
input:
1 10.0 2.0 0.1 3.0 10
output:
1.300000000000000
result:
ok found '1.3000000', expected '1.3000000', error '0.0000000'
Test #6:
score: 0
Accepted
time: 0ms
memory: 3896kb
input:
1 10.0 9.0 0.1 8.0 10.0
output:
1.200000000000000
result:
ok found '1.2000000', expected '1.2000000', error '0.0000000'
Test #7:
score: 0
Accepted
time: 0ms
memory: 3840kb
input:
1 10.0 4.0 0.1 6.0 0.1
output:
60.000000000000000
result:
ok found '60.0000000', expected '60.0000000', error '0.0000000'
Test #8:
score: 0
Accepted
time: 0ms
memory: 3860kb
input:
1 10.0 4.5 0.1 6.0 0.1
output:
57.500000000000014
result:
ok found '57.5000000', expected '57.5000000', error '0.0000000'
Test #9:
score: 0
Accepted
time: 0ms
memory: 3844kb
input:
1 10.0 1.0 1.0 8.0 1.0
output:
6.500000000000000
result:
ok found '6.5000000', expected '6.5000000', error '0.0000000'
Test #10:
score: -100
Wrong Answer
time: 0ms
memory: 3840kb
input:
1 10.0 3.0 2.0 7.0 1.0
output:
4.666666666666668
result:
wrong answer 1st numbers differ - expected: '4.6000000', found: '4.6666667', error = '0.0144928'