QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#597987 | #9434. Italian Cuisine | ucup-team133# | WA | 0ms | 3852kb | C++23 | 10.2kb | 2024-09-28 19:51:39 | 2024-09-28 19:51:41 |
Judging History
answer
#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif
template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
for (auto& e : v) {
is >> e;
}
return is;
}
template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
for (std::string_view sep = ""; const auto& e : v) {
os << std::exchange(sep, " ") << e;
}
return os;
}
template <class T, class U = T> bool chmin(T& x, U&& y) {
return y < x and (x = std::forward<U>(y), true);
}
template <class T, class U = T> bool chmax(T& x, U&& y) {
return x < y and (x = std::forward<U>(y), true);
}
template <class T> void mkuni(std::vector<T>& v) {
std::ranges::sort(v);
auto result = std::ranges::unique(v);
v.erase(result.begin(), result.end());
}
template <class T> int lwb(const std::vector<T>& v, const T& x) {
return std::distance(v.begin(), std::ranges::lower_bound(v, x));
}
#include <type_traits>
namespace geometry {
template <typename T> struct Point {
static T EPS;
static void set_eps(T eps) { EPS = eps; }
T x, y;
Point() {}
Point(T x, T y) : x(x), y(y) {}
Point operator+(const Point& p) const { return Point(x + p.x, y + p.y); }
Point operator-(const Point& p) const { return Point(x - p.x, y - p.y); }
Point operator*(T t) const { return Point(x * t, y * t); }
Point operator/(T t) const { return Point(x / t, y / t); }
bool operator==(const Point& p) const { return x == p.x and y == p.y; }
bool operator!=(const Point& p) const { return not((*this) == p); }
bool operator<(const Point& p) const { return x != p.x ? x < p.x : y < p.y; }
friend std::istream& operator>>(std::istream& is, Point& p) { return is >> p.x >> p.y; }
friend std::ostream& operator<<(std::ostream& os, const Point& p) { return os << p.x << ' ' << p.y; }
T norm() { return std::sqrt(x * x + y * y); }
T norm2() { return x * x + y * y; }
T arg() { return std::atan2(y, x); }
T dot(const Point& p) { return x * p.x + y * p.y; }
T det(const Point& p) { return x * p.y - y * p.x; }
Point perp() { return Point(-y, x); }
Point unit() { return *this / norm(); }
Point normal() { return perp().unit(); }
Point rotate(T rad) { return Point(std::cos(rad) * x - std::sin(rad) * y, std::sin(rad) * x + std::cos(rad) * y); }
};
template <> double Point<double>::EPS = 1e-9;
template <> long double Point<long double>::EPS = 1e-12;
template <> int Point<int>::EPS = 0;
template <> long long Point<long long>::EPS = 0;
template <typename T> int sgn(T x) { return x < -Point<T>::EPS ? -1 : x > Point<T>::EPS ? 1 : 0; }
} // namespace geometry
namespace geometry {
template <typename T> struct Circle {
Point<T> c;
T r;
Circle() {}
Circle(Point<T> c, T r) : c(c), r(r) {}
friend std::istream& operator>>(std::istream& is, Circle& c) { return is >> c.c >> c.r; }
friend std::ostream& operator<<(std::ostream& os, const Circle& c) { return os << c.c << ' ' << c.r; }
};
} // namespace geometry
namespace geometry {
enum Position { COUNTER_CLOCKWISE = +1, CLOCKWISE = -1, ONLINE_BACK = +2, ONLINE_FRONT = -2, ON_SEGMENT = 0 };
template <typename T> Position ccw(const Point<T>& a, Point<T> b, Point<T> c) {
b = b - a;
c = c - a;
if (sgn(b.det(c)) == 1) return COUNTER_CLOCKWISE;
if (sgn(b.det(c)) == -1) return CLOCKWISE;
if (sgn(b.dot(c)) == -1) return ONLINE_BACK;
if (b.norm2() < c.norm2()) return ONLINE_FRONT;
return ON_SEGMENT;
}
} // namespace geometry
namespace geometry {
template <typename T> struct Polygon : std::vector<Point<T>> {
using std::vector<Point<T>>::vector;
Polygon(int n) : std::vector<Point<T>>(n) {}
T area2() {
T sum = 0;
int n = this->size();
for (int i = 0; i < n; i++) sum += (*this)[i].det((*this)[i + 1 == n ? 0 : i + 1]);
return sum < 0 ? -sum : sum;
}
T area() { return area2() / 2; }
bool is_convex() {
int n = this->size();
for (int j = 0; j < n; j++) {
int i = (j == 0 ? n - 1 : j - 1), k = (j == n - 1 ? 0 : j + 1);
if (ccw((*this)[i], (*this)[j], (*this)[k]) == CLOCKWISE) return false;
}
return true;
}
};
} // namespace geometry
namespace geometry {
template <typename T> struct Line {
Point<T> a, b;
Line() {}
Line(const Point<T>& a, const Point<T>& b) : a(a), b(b) {}
// A * x + B * y + C = 0
Line(T A, T B, T C) {}
friend std::istream& operator>>(std::istream& is, Line& l) { return is >> l.a >> l.b; }
friend std::ostream& operator<<(std::ostream& os, const Line& l) { return os << l.a << " to " << l.b; }
};
template <typename T> struct Segment : Line<T> {
Segment() {}
Segment(const Point<T>& a, const Point<T>& b) : Line<T>(a, b) {}
};
} // namespace geometry
namespace geometry {
template <typename T> Point<T> projection(const Line<T>& l, const Point<T>& p) {
Point<T> a = p - l.a, b = l.b - l.a;
return l.a + b * a.dot(b) / b.norm2();
}
} // namespace geometry
namespace geometry {
template <typename T> bool is_parallel(const Line<T>& l, const Line<T>& m) {
return sgn((l.b - l.a).det(m.b - m.a)) == 0;
}
template <typename T> bool is_orthogonal(const Line<T>& l, const Line<T>& m) {
return sgn((l.b - l.a).dot(m.b - m.a)) == 0;
}
template <typename T> bool has_crosspoint(const Segment<T>& s, const Segment<T>& t) {
return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 and ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}
template <typename T> int count_common_tangent(const Circle<T>& c, const Circle<T>& d) {
T dist = (c.c - d.c).norm();
int tmp = sgn(dist - (c.r + d.r));
if (tmp > 0) return 4;
if (tmp == 0) return 3;
tmp = sgn(dist - (sgn(c.r - d.r) > 0 ? c.r - d.r : d.r - c.r));
if (tmp > 0) return 2;
if (tmp == 0) return 1;
return 0;
}
template <typename T> Point<T> crosspoint(const Line<T>& l, const Line<T>& m) {
assert(not is_parallel(l, m));
Point<T> u = l.b - l.a, v = m.b - m.a;
return l.a + u * v.det(m.a - l.a) / v.det(u);
}
template <typename T> Point<T> crosspoint(const Segment<T>& s, const Segment<T>& t) {
assert(has_crosspoint(s, t));
if (not is_parallel(s, t)) return crosspoint(Line(s.a, s.b), Line(t.a, t.b));
std::vector<Point<T>> v = {s.a, s.b, t.a, t.b};
for (int i = 0; i <= 2; i++) {
for (int j = 2; j >= i; j--) {
if (v[j + 1] < v[j]) {
std::swap(v[j], v[j + 1]);
}
}
}
return v[1];
}
template <typename T> std::vector<Point<T>> crosspoint(const Circle<T>& c, const Line<T>& l) {
Point<T> h = projection(l, c.c);
T x = c.r * c.r - (c.c - h).norm2();
if (sgn(x) < 0) return {};
if (sgn(x) == 0) return {h};
Point<T> v = (l.b - l.a).unit() * std::sqrt(x);
return {h - v, h + v};
}
template <typename T> std::vector<Point<T>> crosspoint(const Circle<T>& c, const Segment<T>& s) {}
template <typename T> std::vector<Point<T>> crosspoint(const Circle<T>& c1, const Circle<T>& c2) {
T r1 = c1.r, r2 = c2.r;
if (r1 < r2) return crosspoint(c2, c1);
T d = (c2.c - c1.c).norm();
if (sgn(d - (r1 + r2)) > 0 or sgn(d - (r1 - r2)) < 0) return {};
Point<T> v = c2.c - c1.c;
if (sgn(d - (r1 + r2)) == 0 or sgn(d - (r1 - r2)) == 0) return {c1.c + v.unit() * r1};
T p = ((r1 * r1 - r2 * r2) / d + d) / 2, q = std::sqrt(r1 * r1 - p * p);
Point<T> h = c1.c + v.unit() * p;
Point<T> i = v.normal();
return {h + i * q, h - i * q};
}
} // namespace geometry
namespace geometry {
template <typename T> T distance(const Point<T>& p, const Point<T>& q) { return (p - q).norm(); }
template <typename T> T distance(const Line<T>& l, const Point<T>& p) { return distance(p, projection(l, p)); }
template <typename T> T distance(const Segment<T>& s, const Point<T>& p) {
Point<T> h = projection(s, p);
return ccw(s.a, s.b, h) == ON_SEGMENT ? distance(p, h) : std::min(distance(p, s.a), distance(p, s.b));
}
template <typename T> T distance(const Segment<T>& s, const Segment<T>& t) {
return has_crosspoint(s, t) ? 0
: std::min({distance(s, t.a), distance(s, t.b), distance(t, s.a), distance(t, s.b)});
}
} // namespace geometry
using ll = long long;
using namespace std;
using namespace geometry;
void solve() {
int n;
cin >> n;
Circle<double> c;
cin >> c;
vector<int> x(n), y(n);
for (int i = 0; i < n; i++) cin >> x[i] >> y[i];
Polygon<double> p;
Polygon<ll> q;
for (int i = 0; i < n; i++) {
p.emplace_back(x[i], y[i]);
q.emplace_back(x[i], y[i]);
}
vector<ll> area(2 * n);
for (int i = 0; i < 2 * n; i++) area[i] = q[i % n].det(q[(i + 1) % n]);
vector<ll> sum(2 * n + 1);
sum[0] = 0;
for (int i = 0; i < 2 * n; i++) sum[i + 1] = sum[i] + area[i];
auto calc = [&](int l, int r) -> ll {
int R = r < l ? r + n : r;
if (R - l < 2) return 0;
ll res = sum[R] - sum[l];
res += q[r].det(q[l]);
return abs(res);
};
ll ans = 0;
for (int i = 0; i < n; i++) {
auto m = (p[i] + c.c) / 2;
auto tan = crosspoint(c, Circle<double>(m, distance(p[i], m)));
if (int(tan.size()) != 2) continue;
{
int lb = 0, ub = n;
while (ub - lb > 1) {
int mid = (lb + ub) >> 1;
(ccw(p[i], tan[0], p[(i + mid) % n]) != COUNTER_CLOCKWISE and
ccw(p[i], tan[1], p[(i + mid) % n]) != COUNTER_CLOCKWISE
? lb
: ub) = mid;
}
chmax(ans, calc(i, (i + lb) % n));
}
{
int lb = 0, ub = n - 1;
while (ub - lb > 1) {
int mid = (lb + ub) >> 1;
(ccw(p[i], tan[0], p[(i + mid) % n]) != CLOCKWISE and ccw(p[i], tan[1], p[(i + mid) % n]) != CLOCKWISE
? ub
: lb) = mid;
}
chmax(ans, calc((i + ub) % n, i));
}
}
cout << ans << "\n";
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
int T;
cin >> T;
for (; T--;) solve();
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 3616kb
input:
3 5 1 1 1 0 0 1 0 5 0 3 3 0 5 6 2 4 1 2 0 4 0 6 3 4 6 2 6 0 3 4 3 3 1 3 0 6 3 3 6 0 3
output:
5 24 0
result:
ok 3 number(s): "5 24 0"
Test #2:
score: -100
Wrong Answer
time: 0ms
memory: 3852kb
input:
1 6 0 0 499999993 197878055 -535013568 696616963 -535013568 696616963 40162440 696616963 499999993 -499999993 499999993 -499999993 -535013568
output:
286862654137719264
result:
wrong answer 1st numbers differ - expected: '0', found: '286862654137719264'