QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#597710 | #9424. Stop the Castle 2 | ucup-team296# | WA | 109ms | 6576kb | Rust | 57.3kb | 2024-09-28 18:31:05 | 2024-09-28 18:31:05 |
Judging History
answer
//
pub mod solution {
//{"name":"ucup_10_g","group":"Manual","url":"","interactive":false,"timeLimit":2000,"tests":[{"input":"","output":""}],"testType":"multiNumber","input":{"type":"stdin","fileName":null,"pattern":null},"output":{"type":"stdout","fileName":null,"pattern":null},"languages":{"java":{"taskClass":"ucup_10_g"}}}
use crate::algo_lib::collections::bit_set::BitSet;
use crate::algo_lib::collections::iter_ext::collect::IterCollect;
use crate::algo_lib::collections::vec_ext::inc_dec::IncDec;
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
use crate::algo_lib::graph::edges::flow_edge::FlowEdge;
use crate::algo_lib::graph::edges::flow_edge_trait::FlowEdgeTrait;
use crate::algo_lib::graph::graph::Graph;
use crate::algo_lib::graph::max_flow::MaxFlow;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::misc::test_type::TaskType;
use crate::algo_lib::misc::test_type::TestType;
type PreCalc = ();
fn solve(input: &mut Input, out: &mut Output, _test_case: usize, _data: &mut PreCalc) {
let n = input.read_size();
let m = input.read_size();
let k = input.read_size();
let castles = input.read_size_pair_vec(n);
let obstacles = input.read_size_pair_vec(m);
let mut base = 0;
#[derive(Copy, Clone)]
enum ObjectType {
Castle,
Obstacle,
}
#[derive(Copy, Clone)]
struct Object {
id: usize,
x: usize,
y: usize,
t: ObjectType,
}
let mut objects = castles
.iter()
.enumerate()
.map(|(i, &(x, y))| Object {
id: i,
x,
y,
t: ObjectType::Castle,
})
.chain(obstacles.iter().enumerate().map(|(i, &(x, y))| Object {
id: i,
x,
y,
t: ObjectType::Obstacle,
}))
.collect::<Vec<_>>();
objects.sort_by_key(|o| (o.x, o.y));
let mut last_x = 0;
let mut obstacles_in_gap = Vec::new();
let mut castle_started = false;
let mut hor_gap_id = 0;
let mut obst_hor_gap = vec![None; m];
for obj in &objects {
if obj.x != last_x {
obstacles_in_gap.clear();
castle_started = false;
}
match obj.t {
ObjectType::Castle => {
if castle_started {
if obstacles_in_gap.is_empty() {
base += 1;
} else {
for &obstacle in &obstacles_in_gap {
obst_hor_gap[obstacle] = Some(hor_gap_id);
}
hor_gap_id += 1;
}
}
castle_started = true;
}
ObjectType::Obstacle => {
if castle_started {
obstacles_in_gap.push(obj.id);
}
}
}
last_x = obj.x;
}
objects.sort_by_key(|o| (o.y, o.x));
let mut last_y = 0;
let mut obstacles_in_gap = Vec::new();
let mut castle_started = false;
let mut ver_gap_id = 0;
let mut obst_ver_gap = vec![None; m];
for obj in &objects {
if obj.y != last_y {
obstacles_in_gap.clear();
castle_started = false;
}
match obj.t {
ObjectType::Castle => {
if castle_started {
if obstacles_in_gap.is_empty() {
base += 1;
} else {
for &obstacle in &obstacles_in_gap {
obst_ver_gap[obstacle] = Some(ver_gap_id);
}
ver_gap_id += 1;
}
}
castle_started = true;
}
ObjectType::Obstacle => {
if castle_started {
obstacles_in_gap.push(obj.id);
}
}
}
last_y = obj.y;
}
let mut graph = Graph::new(hor_gap_id + ver_gap_id + 3);
let source = hor_gap_id + ver_gap_id;
let sink = source + 1;
let real_source = sink + 1;
for i in 0..hor_gap_id {
graph.add_edge(FlowEdge::with_payload(source, i, 1, 0));
}
for i in 0..ver_gap_id {
graph.add_edge(FlowEdge::with_payload(hor_gap_id + i, sink, 1, 0));
}
for i in 0..m {
if let Some(hor_gap) = obst_hor_gap[i] {
if let Some(ver_gap) = obst_ver_gap[i] {
graph.add_edge(FlowEdge::with_payload(hor_gap, hor_gap_id + ver_gap, 1, i));
}
}
}
graph.add_edge(FlowEdge::with_payload(real_source, source, m - k, 0));
let mut ans = base + hor_gap_id + ver_gap_id;
let max_flow = graph.max_flow(real_source, sink);
ans -= 2 * max_flow;
let mut to_remove = BitSet::new(m);
to_remove.fill(true);
let mut left_done = BitSet::new(hor_gap_id);
let mut right_done = BitSet::new(ver_gap_id);
for i in 0..hor_gap_id {
for e in &graph[i] {
if e.to() != source && e.flow(&graph) == 1 {
to_remove.unset(*e.payload());
left_done.set(i);
right_done.set(e.to() - hor_gap_id);
}
}
}
let mut can_do = m - k - max_flow;
for i in 0..m {
if let Some(hor_gap) = obst_hor_gap[i] {
if !left_done[hor_gap] && can_do > 0 {
can_do -= 1;
to_remove.unset(i);
left_done.set(hor_gap);
ans -= 1;
}
}
if let Some(ver_gap) = obst_ver_gap[i] {
if !right_done[ver_gap] && can_do > 0 {
can_do -= 1;
to_remove.unset(i);
right_done.set(ver_gap);
ans -= 1;
}
}
}
for i in 0..m {
if to_remove[i] && can_do > 0 {
can_do -= 1;
to_remove.unset(i);
}
}
out.print_line(ans);
out.print_line(to_remove.iter().collect_vec().inc());
}
pub static TEST_TYPE: TestType = TestType::MultiNumber;
pub static TASK_TYPE: TaskType = TaskType::Classic;
pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
let mut pre_calc = ();
match TEST_TYPE {
TestType::Single => solve(&mut input, &mut output, 1, &mut pre_calc),
TestType::MultiNumber => {
let t = input.read();
for i in 1..=t {
solve(&mut input, &mut output, i, &mut pre_calc);
}
}
TestType::MultiEof => {
let mut i = 1;
while input.peek().is_some() {
solve(&mut input, &mut output, i, &mut pre_calc);
i += 1;
}
}
}
output.flush();
match TASK_TYPE {
TaskType::Classic => {
input.skip_whitespace();
input.peek().is_none()
}
TaskType::Interactive => true,
}
}
}
pub mod algo_lib {
pub mod collections {
pub mod bit_set {
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use crate::algo_lib::numbers::num_traits::bit_ops::BitOps;
use std::ops::BitAndAssign;
use std::ops::BitOrAssign;
use std::ops::Index;
use std::ops::ShlAssign;
use std::ops::ShrAssign;
const TRUE: bool = true;
const FALSE: bool = false;
#[derive(Clone, Eq, PartialEq, Hash)]
pub struct BitSet {
data: Vec<u64>,
len: usize,
}
impl BitSet {
pub fn new(len: usize) -> Self {
let data_len = if len == 0 {
0
} else {
Self::index(len - 1) + 1
};
Self {
data: vec![0; data_len],
len,
}
}
pub fn from_slice(len: usize, set: &[usize]) -> Self {
let mut res = Self::new(len);
for &i in set {
res.set(i);
}
res
}
pub fn set(&mut self, at: usize) {
assert!(at < self.len);
self.data[Self::index(at)].set_bit(at & 63);
}
pub fn unset(&mut self, at: usize) {
assert!(at < self.len);
self.data[Self::index(at)].unset_bit(at & 63);
}
pub fn change(&mut self, at: usize, value: bool) {
if value {
self.set(at);
} else {
self.unset(at);
}
}
pub fn flip(&mut self, at: usize) {
self.change(at, !self[at]);
}
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.len
}
pub fn fill(&mut self, value: bool) {
// 1.43
self.data.legacy_fill(if value { std::u64::MAX } else { 0 });
if value {
self.fix_last();
}
}
pub fn is_superset(&self, other: &Self) -> bool {
assert_eq!(self.len, other.len);
for i in 0..self.data.len() {
if self.data[i] & other.data[i] != other.data[i] {
return false;
}
}
true
}
pub fn is_subset(&self, other: &Self) -> bool {
other.is_superset(self)
}
pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
self.into_iter()
}
fn index(at: usize) -> usize {
at >> 6
}
pub fn count_ones(&self) -> usize {
self.data.iter().map(|x| x.count_ones() as usize).sum()
}
fn fix_last(&mut self) {
if self.len & 63 != 0 {
let mask = (1 << (self.len & 63)) - 1;
*self.data.last_mut().unwrap() &= mask;
}
}
}
pub struct BitSetIter<'s> {
at: usize,
inside: usize,
set: &'s BitSet,
}
impl<'s> Iterator for BitSetIter<'s> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
while self.at < self.set.data.len()
&& (self.inside == 64 || (self.set.data[self.at] >> self.inside) == 0)
{
self.at += 1;
self.inside = 0;
}
if self.at == self.set.data.len() {
None
} else {
while !self.set.data[self.at].is_set(self.inside) {
self.inside += 1;
}
let res = self.at * 64 + self.inside;
if res < self.set.len {
self.inside += 1;
Some(res)
} else {
None
}
}
}
}
impl<'a> IntoIterator for &'a BitSet {
type Item = usize;
type IntoIter = BitSetIter<'a>;
fn into_iter(self) -> Self::IntoIter {
BitSetIter {
at: 0,
inside: 0,
set: self,
}
}
}
impl BitOrAssign<&BitSet> for BitSet {
fn bitor_assign(&mut self, rhs: &BitSet) {
assert_eq!(self.len, rhs.len);
for (i, &j) in self.data.iter_mut().zip(rhs.data.iter()) {
*i |= j;
}
}
}
impl BitAndAssign<&BitSet> for BitSet {
fn bitand_assign(&mut self, rhs: &BitSet) {
assert_eq!(self.len, rhs.len);
for (i, &j) in self.data.iter_mut().zip(rhs.data.iter()) {
*i &= j;
}
}
}
impl ShlAssign<usize> for BitSet {
fn shl_assign(&mut self, rhs: usize) {
if rhs == 0 {
return;
}
let small_shift = rhs & 63;
if small_shift != 0 {
let mut carry = 0;
for i in 0..self.data.len() {
let new_carry = self.data[i] >> (64 - small_shift);
self.data[i] <<= small_shift;
self.data[i] |= carry;
carry = new_carry;
}
}
let big_shift = rhs >> 6;
if big_shift != 0 {
self.data.rotate_right(big_shift);
self.data[..big_shift].fill(0);
}
self.fix_last();
}
}
impl ShrAssign<usize> for BitSet {
fn shr_assign(&mut self, rhs: usize) {
if rhs == 0 {
return;
}
let small_shift = rhs & 63;
if small_shift != 0 {
let mut carry = 0;
for i in (0..self.data.len()).rev() {
let new_carry = self.data[i] << (64 - small_shift);
self.data[i] >>= small_shift;
self.data[i] |= carry;
carry = new_carry;
}
}
let big_shift = rhs >> 6;
if big_shift != 0 {
self.data.rotate_left(big_shift);
let from = self.data.len() - big_shift;
self.data[from..].fill(0);
}
}
}
impl Index<usize> for BitSet {
type Output = bool;
fn index(&self, at: usize) -> &Self::Output {
assert!(at < self.len);
if self.data[Self::index(at)].is_set(at & 63) {
&TRUE
} else {
&FALSE
}
}
}
impl From<Vec<bool>> for BitSet {
fn from(data: Vec<bool>) -> Self {
let mut res = Self::new(data.len());
for (i, &value) in data.iter().enumerate() {
res.change(i, value);
}
res
}
}
}
pub mod dsu {
use crate::algo_lib::collections::iter_ext::collect::IterCollect;
use crate::algo_lib::collections::slice_ext::bounds::Bounds;
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use std::cell::Cell;
#[derive(Clone)]
pub struct DSU {
id: Vec<Cell<u32>>,
size: Vec<u32>,
count: usize,
}
impl DSU {
pub fn new(n: usize) -> Self {
Self {
id: (0..n).map(|i| Cell::new(i as u32)).collect_vec(),
size: vec![1; n],
count: n,
}
}
pub fn size(&self, i: usize) -> usize {
self.size[self.get(i)] as usize
}
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.id.len()
}
pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
self.id.iter().enumerate().filter_map(|(i, id)| {
if (i as u32) == id.get() {
Some(i)
} else {
None
}
})
}
pub fn set_count(&self) -> usize {
self.count
}
pub fn join(&mut self, mut a: usize, mut b: usize) -> bool {
a = self.get(a);
b = self.get(b);
if a == b {
false
} else {
self.size[a] += self.size[b];
self.id[b].replace(a as u32);
self.count -= 1;
true
}
}
pub fn get(&self, i: usize) -> usize {
if self.id[i].get() != i as u32 {
let res = self.get(self.id[i].get() as usize);
self.id[i].replace(res as u32);
}
self.id[i].get() as usize
}
pub fn clear(&mut self) {
self.count = self.id.len();
self.size.legacy_fill(1);
self.id.iter().enumerate().for_each(|(i, id)| {
id.replace(i as u32);
});
}
pub fn parts(&self) -> Vec<Vec<usize>> {
let roots = self.iter().collect_vec();
let mut res = vec![Vec::new(); roots.len()];
for i in 0..self.id.len() {
res[roots.as_slice().bin_search(&self.get(i)).unwrap()].push(i);
}
res
}
}
}
pub mod iter_ext {
pub mod collect {
pub trait IterCollect<T>: Iterator<Item = T> + Sized {
fn collect_vec(self) -> Vec<T> {
self.collect()
}
}
impl<T, I: Iterator<Item = T> + Sized> IterCollect<T> for I {}
}
}
pub mod slice_ext {
pub mod bounds {
pub trait Bounds<T: PartialOrd> {
fn lower_bound(&self, el: &T) -> usize;
fn upper_bound(&self, el: &T) -> usize;
fn bin_search(&self, el: &T) -> Option<usize>;
fn more(&self, el: &T) -> usize;
fn more_or_eq(&self, el: &T) -> usize;
fn less(&self, el: &T) -> usize;
fn less_or_eq(&self, el: &T) -> usize;
}
impl<T: PartialOrd> Bounds<T> for [T] {
fn lower_bound(&self, el: &T) -> usize {
let mut left = 0;
let mut right = self.len();
while left < right {
let mid = left + ((right - left) >> 1);
if &self[mid] < el {
left = mid + 1;
} else {
right = mid;
}
}
left
}
fn upper_bound(&self, el: &T) -> usize {
let mut left = 0;
let mut right = self.len();
while left < right {
let mid = left + ((right - left) >> 1);
if &self[mid] <= el {
left = mid + 1;
} else {
right = mid;
}
}
left
}
fn bin_search(&self, el: &T) -> Option<usize> {
let at = self.lower_bound(el);
if at == self.len() || &self[at] != el {
None
} else {
Some(at)
}
}
fn more(&self, el: &T) -> usize {
self.len() - self.upper_bound(el)
}
fn more_or_eq(&self, el: &T) -> usize {
self.len() - self.lower_bound(el)
}
fn less(&self, el: &T) -> usize {
self.lower_bound(el)
}
fn less_or_eq(&self, el: &T) -> usize {
self.upper_bound(el)
}
}
}
pub mod legacy_fill {
// 1.50
pub trait LegacyFill<T> {
fn legacy_fill(&mut self, val: T);
}
impl<T: Clone> LegacyFill<T> for [T] {
fn legacy_fill(&mut self, val: T) {
for el in self.iter_mut() {
*el = val.clone();
}
}
}
}
}
pub mod vec_ext {
pub mod default {
pub fn default_vec<T: Default>(len: usize) -> Vec<T> {
let mut v = Vec::with_capacity(len);
for _ in 0..len {
v.push(T::default());
}
v
}
}
pub mod inc_dec {
use crate::algo_lib::numbers::num_traits::algebra::AdditionMonoidWithSub;
use crate::algo_lib::numbers::num_traits::algebra::One;
pub trait IncDec {
#[must_use]
fn inc(self) -> Self;
#[must_use]
fn dec(self) -> Self;
}
impl<T: AdditionMonoidWithSub + One> IncDec for T {
fn inc(self) -> Self {
self + T::one()
}
fn dec(self) -> Self {
self - T::one()
}
}
impl<T: AdditionMonoidWithSub + One> IncDec for Vec<T> {
fn inc(mut self) -> Self {
self.iter_mut().for_each(|i| *i += T::one());
self
}
fn dec(mut self) -> Self {
self.iter_mut().for_each(|i| *i -= T::one());
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One> IncDec for Vec<(T, U)> {
fn inc(mut self) -> Self {
self.iter_mut().for_each(|(i, j)| {
*i += T::one();
*j += U::one();
});
self
}
fn dec(mut self) -> Self {
self.iter_mut().for_each(|(i, j)| {
*i -= T::one();
*j -= U::one();
});
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V> IncDec for Vec<(T, U, V)> {
fn inc(mut self) -> Self {
self.iter_mut().for_each(|(i, j, _)| {
*i += T::one();
*j += U::one();
});
self
}
fn dec(mut self) -> Self {
self.iter_mut().for_each(|(i, j, _)| {
*i -= T::one();
*j -= U::one();
});
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V, W> IncDec
for Vec<(T, U, V, W)>
{
fn inc(mut self) -> Self {
self.iter_mut().for_each(|(i, j, ..)| {
*i += T::one();
*j += U::one();
});
self
}
fn dec(mut self) -> Self {
self.iter_mut().for_each(|(i, j, ..)| {
*i -= T::one();
*j -= U::one();
});
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V, W, X> IncDec
for Vec<(T, U, V, W, X)>
{
fn inc(mut self) -> Self {
self.iter_mut().for_each(|(i, j, ..)| {
*i += T::one();
*j += U::one();
});
self
}
fn dec(mut self) -> Self {
self.iter_mut().for_each(|(i, j, ..)| {
*i -= T::one();
*j -= U::one();
});
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One> IncDec for (T, U) {
fn inc(mut self) -> Self {
self.0 += T::one();
self.1 += U::one();
self
}
fn dec(mut self) -> Self {
self.0 -= T::one();
self.1 -= U::one();
self
}
}
}
}
}
pub mod graph {
pub mod edges {
pub mod bi_edge {
use crate::algo_lib::graph::edges::bi_edge_trait::BiEdgeTrait;
use crate::algo_lib::graph::edges::edge_id::EdgeId;
use crate::algo_lib::graph::edges::edge_id::NoId;
use crate::algo_lib::graph::edges::edge_id::WithId;
use crate::algo_lib::graph::edges::edge_trait::BidirectionalEdgeTrait;
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
#[derive(Clone)]
pub struct BiEdgeRaw<Id: EdgeId, P> {
to: u32,
id: Id,
payload: P,
}
impl<Id: EdgeId> BiEdgeRaw<Id, ()> {
pub fn new(from: usize, to: usize) -> (usize, Self) {
(
from,
Self {
to: to as u32,
id: Id::new(),
payload: (),
},
)
}
}
impl<Id: EdgeId, P> BiEdgeRaw<Id, P> {
pub fn with_payload(from: usize, to: usize, payload: P) -> (usize, Self) {
(from, Self::with_payload_impl(to, payload))
}
fn with_payload_impl(to: usize, payload: P) -> BiEdgeRaw<Id, P> {
Self {
to: to as u32,
id: Id::new(),
payload,
}
}
}
impl<Id: EdgeId, P: Clone> BidirectionalEdgeTrait for BiEdgeRaw<Id, P> {}
impl<Id: EdgeId, P: Clone> EdgeTrait for BiEdgeRaw<Id, P> {
type Payload = P;
const REVERSABLE: bool = true;
fn to(&self) -> usize {
self.to as usize
}
fn id(&self) -> usize {
self.id.id()
}
fn set_id(&mut self, id: usize) {
self.id.set_id(id);
}
fn reverse_id(&self) -> usize {
panic!("no reverse id")
}
fn set_reverse_id(&mut self, _: usize) {}
fn reverse_edge(&self, from: usize) -> Self {
Self::with_payload_impl(from, self.payload.clone())
}
fn payload(&self) -> &P {
&self.payload
}
}
impl<Id: EdgeId, P: Clone> BiEdgeTrait for BiEdgeRaw<Id, P> {}
pub type BiEdge<P> = BiEdgeRaw<NoId, P>;
pub type BiEdgeWithId<P> = BiEdgeRaw<WithId, P>;
}
pub mod bi_edge_trait {
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
pub trait BiEdgeTrait: EdgeTrait {}
}
pub mod edge {
use crate::algo_lib::graph::edges::edge_id::EdgeId;
use crate::algo_lib::graph::edges::edge_id::NoId;
use crate::algo_lib::graph::edges::edge_id::WithId;
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
#[derive(Clone)]
pub struct EdgeRaw<Id: EdgeId, P> {
to: u32,
id: Id,
payload: P,
}
impl<Id: EdgeId> EdgeRaw<Id, ()> {
pub fn new(from: usize, to: usize) -> (usize, Self) {
(
from,
Self {
to: to as u32,
id: Id::new(),
payload: (),
},
)
}
}
impl<Id: EdgeId, P> EdgeRaw<Id, P> {
pub fn with_payload(from: usize, to: usize, payload: P) -> (usize, Self) {
(from, Self::with_payload_impl(to, payload))
}
fn with_payload_impl(to: usize, payload: P) -> Self {
Self {
to: to as u32,
id: Id::new(),
payload,
}
}
}
impl<Id: EdgeId, P: Clone> EdgeTrait for EdgeRaw<Id, P> {
type Payload = P;
const REVERSABLE: bool = false;
fn to(&self) -> usize {
self.to as usize
}
fn id(&self) -> usize {
self.id.id()
}
fn set_id(&mut self, id: usize) {
self.id.set_id(id);
}
fn reverse_id(&self) -> usize {
panic!("no reverse")
}
fn set_reverse_id(&mut self, _: usize) {
panic!("no reverse")
}
fn reverse_edge(&self, _: usize) -> Self {
panic!("no reverse")
}
fn payload(&self) -> &P {
&self.payload
}
}
pub type Edge<P> = EdgeRaw<NoId, P>;
pub type EdgeWithId<P> = EdgeRaw<WithId, P>;
}
pub mod edge_id {
pub trait EdgeId: Clone {
fn new() -> Self;
fn id(&self) -> usize;
fn set_id(&mut self, id: usize);
}
#[derive(Clone)]
pub struct WithId {
id: u32,
}
impl EdgeId for WithId {
fn new() -> Self {
Self { id: 0 }
}
fn id(&self) -> usize {
self.id as usize
}
fn set_id(&mut self, id: usize) {
self.id = id as u32;
}
}
#[derive(Clone)]
pub struct NoId {}
impl EdgeId for NoId {
fn new() -> Self {
Self {}
}
fn id(&self) -> usize {
panic!("Id called on no id")
}
fn set_id(&mut self, _: usize) {}
}
}
pub mod edge_trait {
pub trait EdgeTrait: Clone {
type Payload;
const REVERSABLE: bool;
fn to(&self) -> usize;
fn id(&self) -> usize;
fn set_id(&mut self, id: usize);
fn reverse_id(&self) -> usize;
fn set_reverse_id(&mut self, reverse_id: usize);
#[must_use]
fn reverse_edge(&self, from: usize) -> Self;
fn payload(&self) -> &Self::Payload;
}
pub trait BidirectionalEdgeTrait: EdgeTrait {}
}
pub mod flow_edge {
use crate::algo_lib::graph::edges::edge_id::EdgeId;
use crate::algo_lib::graph::edges::edge_id::NoId;
use crate::algo_lib::graph::edges::edge_id::WithId;
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
use crate::algo_lib::graph::edges::flow_edge_trait::FlowEdgeTrait;
use crate::algo_lib::graph::graph::Graph;
use crate::algo_lib::numbers::num_traits::algebra::AdditionMonoidWithSub;
#[derive(Clone)]
pub struct FlowEdgeRaw<C: AdditionMonoidWithSub + PartialOrd + Copy, Id: EdgeId, P> {
to: u32,
capacity: C,
reverse_id: u32,
id: Id,
payload: P,
}
impl<C: AdditionMonoidWithSub + PartialOrd + Copy, Id: EdgeId> FlowEdgeRaw<C, Id, ()> {
pub fn new(from: usize, to: usize, c: C) -> (usize, Self) {
(
from,
Self {
to: to as u32,
capacity: c,
reverse_id: 0,
id: Id::new(),
payload: (),
},
)
}
}
impl<C: AdditionMonoidWithSub + PartialOrd + Copy, Id: EdgeId, P> FlowEdgeRaw<C, Id, P> {
pub fn with_payload(from: usize, to: usize, c: C, payload: P) -> (usize, Self) {
(from, Self::with_payload_impl(to, c, payload))
}
fn with_payload_impl(to: usize, c: C, payload: P) -> Self {
Self {
to: to as u32,
capacity: c,
reverse_id: 0,
id: Id::new(),
payload,
}
}
}
impl<C: AdditionMonoidWithSub + PartialOrd + Copy, Id: EdgeId, P: Clone> EdgeTrait
for FlowEdgeRaw<C, Id, P>
{
type Payload = P;
const REVERSABLE: bool = true;
fn to(&self) -> usize {
self.to as usize
}
fn id(&self) -> usize {
self.id.id()
}
fn set_id(&mut self, id: usize) {
self.id.set_id(id);
}
fn reverse_id(&self) -> usize {
self.reverse_id as usize
}
fn set_reverse_id(&mut self, reverse_id: usize) {
self.reverse_id = reverse_id as u32;
}
fn reverse_edge(&self, from: usize) -> Self {
Self::with_payload_impl(from, C::zero(), self.payload.clone())
}
fn payload(&self) -> &P {
&self.payload
}
}
impl<C: AdditionMonoidWithSub + PartialOrd + Copy, Id: EdgeId, P: Clone> FlowEdgeTrait<C>
for FlowEdgeRaw<C, Id, P>
{
fn capacity(&self) -> C {
self.capacity
}
fn capacity_mut(&mut self) -> &mut C {
&mut self.capacity
}
fn flow(&self, graph: &Graph<Self>) -> C {
graph[self.to as usize][self.reverse_id as usize].capacity
}
}
pub type FlowEdge<C, P> = FlowEdgeRaw<C, NoId, P>;
pub type FlowEdgeWithId<C, P> = FlowEdgeRaw<C, WithId, P>;
}
pub mod flow_edge_trait {
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
use crate::algo_lib::graph::graph::Graph;
use crate::algo_lib::numbers::num_traits::algebra::AdditionMonoidWithSub;
pub trait FlowEdgeTrait<C: AdditionMonoidWithSub + PartialOrd + Copy>: EdgeTrait {
fn capacity(&self) -> C;
fn capacity_mut(&mut self) -> &mut C;
fn flow(&self, graph: &Graph<Self>) -> C;
fn push_flow(&self, flow: C) -> (usize, usize, C) {
(self.to(), self.reverse_id(), flow)
}
}
}
}
pub mod flow_graph {
use crate::algo_lib::graph::edges::flow_edge_trait::FlowEdgeTrait;
use crate::algo_lib::graph::graph::Graph;
use crate::algo_lib::numbers::num_traits::algebra::AdditionMonoidWithSub;
pub trait FlowGraph<C: AdditionMonoidWithSub + PartialOrd + Copy, E: FlowEdgeTrait<C>> {
fn push_flow(&mut self, push_data: (usize, usize, C));
}
impl<C: AdditionMonoidWithSub + PartialOrd + Copy, E: FlowEdgeTrait<C>> FlowGraph<C, E>
for Graph<E>
{
fn push_flow(&mut self, (to, reverse_id, flow): (usize, usize, C)) {
*self.edges[to][reverse_id].capacity_mut() += flow;
let from = self.edges[to][reverse_id].to();
let direct_id = self.edges[to][reverse_id].reverse_id();
let direct = &mut self.edges[from][direct_id];
assert!(flow >= C::zero() && flow <= direct.capacity());
*direct.capacity_mut() -= flow;
}
}
}
pub mod graph {
use crate::algo_lib::collections::dsu::DSU;
use crate::algo_lib::graph::edges::bi_edge::BiEdge;
use crate::algo_lib::graph::edges::edge::Edge;
use crate::algo_lib::graph::edges::edge_trait::BidirectionalEdgeTrait;
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
use std::ops::Index;
use std::ops::IndexMut;
#[derive(Clone)]
pub struct Graph<E: EdgeTrait> {
pub(super) edges: Vec<Vec<E>>,
edge_count: usize,
}
impl<E: EdgeTrait> Graph<E> {
pub fn new(vertex_count: usize) -> Self {
Self {
edges: vec![Vec::new(); vertex_count],
edge_count: 0,
}
}
pub fn add_edge(&mut self, (from, mut edge): (usize, E)) -> usize {
let to = edge.to();
assert!(to < self.edges.len());
let direct_id = self.edges[from].len();
edge.set_id(self.edge_count);
self.edges[from].push(edge);
if E::REVERSABLE {
let rev_id = self.edges[to].len();
self.edges[from][direct_id].set_reverse_id(rev_id);
let mut rev_edge = self.edges[from][direct_id].reverse_edge(from);
rev_edge.set_id(self.edge_count);
rev_edge.set_reverse_id(direct_id);
self.edges[to].push(rev_edge);
}
self.edge_count += 1;
direct_id
}
pub fn add_vertices(&mut self, cnt: usize) {
self.edges.resize(self.edges.len() + cnt, Vec::new());
}
pub fn clear(&mut self) {
self.edge_count = 0;
for ve in self.edges.iter_mut() {
ve.clear();
}
}
pub fn vertex_count(&self) -> usize {
self.edges.len()
}
pub fn edge_count(&self) -> usize {
self.edge_count
}
pub fn degrees(&self) -> Vec<usize> {
self.edges.iter().map(|v| v.len()).collect()
}
}
impl<E: BidirectionalEdgeTrait> Graph<E> {
pub fn is_tree(&self) -> bool {
if self.edge_count + 1 != self.vertex_count() {
false
} else {
self.is_connected()
}
}
pub fn is_forest(&self) -> bool {
let mut dsu = DSU::new(self.vertex_count());
for i in 0..self.vertex_count() {
for e in self[i].iter() {
if i <= e.to() && !dsu.join(i, e.to()) {
return false;
}
}
}
true
}
pub fn is_connected(&self) -> bool {
let mut dsu = DSU::new(self.vertex_count());
for i in 0..self.vertex_count() {
for e in self[i].iter() {
dsu.join(i, e.to());
}
}
dsu.set_count() == 1
}
}
impl<E: EdgeTrait> Index<usize> for Graph<E> {
type Output = [E];
fn index(&self, index: usize) -> &Self::Output {
&self.edges[index]
}
}
impl<E: EdgeTrait> IndexMut<usize> for Graph<E> {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
&mut self.edges[index]
}
}
impl Graph<Edge<()>> {
pub fn from_edges(n: usize, edges: &[(usize, usize)]) -> Self {
let mut graph = Self::new(n);
for &(from, to) in edges {
graph.add_edge(Edge::new(from, to));
}
graph
}
}
impl<P: Clone> Graph<Edge<P>> {
pub fn from_edges_with_payload(n: usize, edges: &[(usize, usize, P)]) -> Self {
let mut graph = Self::new(n);
for (from, to, p) in edges.iter() {
graph.add_edge(Edge::with_payload(*from, *to, p.clone()));
}
graph
}
}
impl Graph<BiEdge<()>> {
pub fn from_biedges(n: usize, edges: &[(usize, usize)]) -> Self {
let mut graph = Self::new(n);
for &(from, to) in edges {
graph.add_edge(BiEdge::new(from, to));
}
graph
}
}
impl<P: Clone> Graph<BiEdge<P>> {
pub fn from_biedges_with_payload(n: usize, edges: &[(usize, usize, P)]) -> Self {
let mut graph = Self::new(n);
for (from, to, p) in edges.iter() {
graph.add_edge(BiEdge::with_payload(*from, *to, p.clone()));
}
graph
}
}
}
pub mod max_flow {
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use crate::algo_lib::graph::edges::flow_edge_trait::FlowEdgeTrait;
use crate::algo_lib::graph::flow_graph::FlowGraph;
use crate::algo_lib::graph::graph::Graph;
use crate::algo_lib::misc::recursive_function::Callable2;
use crate::algo_lib::misc::recursive_function::RecursiveFunction2;
use crate::algo_lib::numbers::num_traits::algebra::AdditionMonoidWithSub;
use crate::algo_lib::numbers::num_traits::ord::MinMax;
use crate::when;
use std::collections::VecDeque;
pub trait MaxFlow<C: AdditionMonoidWithSub + Ord + Copy + MinMax> {
fn max_flow(&mut self, source: usize, destination: usize) -> C;
}
impl<C: AdditionMonoidWithSub + Ord + Copy + MinMax, E: FlowEdgeTrait<C>> MaxFlow<C> for Graph<E> {
fn max_flow(&mut self, source: usize, destination: usize) -> C {
let n = self.vertex_count();
let mut dist = vec![0u32; n];
let mut next_edge = vec![0u32; n];
let inf = C::max_val();
let mut total_flow = C::zero();
let mut q = VecDeque::new();
loop {
// 1.43
dist.legacy_fill(std::u32::MAX);
dist[source] = 0;
q.push_back(source);
while !q.is_empty() {
let cur = q.pop_front().unwrap();
for e in self[cur].iter() {
if e.capacity() != C::zero() {
let next = e.to();
// 1.43
if dist[next] == std::u32::MAX {
dist[next] = dist[cur] + 1;
q.push_back(next);
}
}
}
}
// 1.43
if dist[destination] == std::u32::MAX {
break;
}
next_edge.legacy_fill(0);
let mut dinic_impl = RecursiveFunction2::new(|f, source, mut flow| -> C {
when! {
source == destination => flow,
flow == C::zero() || dist[source] == dist[destination] => C::zero(),
else => {
let mut total_pushed = C::zero();
while (next_edge[source] as usize) < self[source].len() {
let edge = &self[source][next_edge[source] as usize];
if edge.capacity() != C::zero() && dist[edge.to()] == dist[source] + 1 {
let pushed = f.call(edge.to(), flow.min(edge.capacity()));
if pushed != C::zero() {
let push_data = edge.push_flow(pushed);
self.push_flow(push_data);
flow -= pushed;
total_pushed += pushed;
if flow == C::zero() {
return total_pushed;
}
}
}
next_edge[source] += 1;
}
total_pushed
},
}
});
total_flow += dinic_impl.call(source, inf);
}
total_flow
}
}
}
}
pub mod io {
pub mod input {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::io::Read;
pub struct Input<'s> {
input: &'s mut dyn Read,
buf: Vec<u8>,
at: usize,
buf_read: usize,
}
macro_rules! read_impl {
($t: ty, $read_name: ident, $read_vec_name: ident) => {
pub fn $read_name(&mut self) -> $t {
self.read()
}
pub fn $read_vec_name(&mut self, len: usize) -> Vec<$t> {
self.read_vec(len)
}
};
($t: ty, $read_name: ident, $read_vec_name: ident, $read_pair_vec_name: ident) => {
read_impl!($t, $read_name, $read_vec_name);
pub fn $read_pair_vec_name(&mut self, len: usize) -> Vec<($t, $t)> {
self.read_vec(len)
}
};
}
impl<'s> Input<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(input: &'s mut dyn Read) -> Self {
Self {
input,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
buf_read: 0,
}
}
pub fn new_with_size(input: &'s mut dyn Read, buf_size: usize) -> Self {
Self {
input,
buf: default_vec(buf_size),
at: 0,
buf_read: 0,
}
}
pub fn get(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
self.at += 1;
if res == b'\r' {
if self.refill_buffer() && self.buf[self.at] == b'\n' {
self.at += 1;
}
return Some(b'\n');
}
Some(res)
} else {
None
}
}
pub fn peek(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
Some(if res == b'\r' { b'\n' } else { res })
} else {
None
}
}
pub fn skip_whitespace(&mut self) {
while let Some(b) = self.peek() {
if !b.is_ascii_whitespace() {
return;
}
self.get();
}
}
pub fn next_token(&mut self) -> Option<Vec<u8>> {
self.skip_whitespace();
let mut res = Vec::new();
while let Some(c) = self.get() {
if c.is_ascii_whitespace() {
break;
}
res.push(c);
}
if res.is_empty() {
None
} else {
Some(res)
}
}
//noinspection RsSelfConvention
pub fn is_exhausted(&mut self) -> bool {
self.peek().is_none()
}
//noinspection RsSelfConvention
pub fn is_empty(&mut self) -> bool {
self.skip_whitespace();
self.is_exhausted()
}
pub fn read<T: Readable>(&mut self) -> T {
T::read(self)
}
pub fn read_vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
let mut res = Vec::with_capacity(size);
for _ in 0..size {
res.push(self.read());
}
res
}
pub fn read_char(&mut self) -> char {
self.skip_whitespace();
self.get().unwrap().into()
}
read_impl!(u32, read_unsigned, read_unsigned_vec);
read_impl!(u64, read_u64, read_u64_vec);
read_impl!(usize, read_size, read_size_vec, read_size_pair_vec);
read_impl!(i32, read_int, read_int_vec, read_int_pair_vec);
read_impl!(i64, read_long, read_long_vec, read_long_pair_vec);
read_impl!(i128, read_i128, read_i128_vec);
fn refill_buffer(&mut self) -> bool {
if self.at == self.buf_read {
self.at = 0;
self.buf_read = self.input.read(&mut self.buf).unwrap();
self.buf_read != 0
} else {
true
}
}
}
pub trait Readable {
fn read(input: &mut Input) -> Self;
}
impl Readable for char {
fn read(input: &mut Input) -> Self {
input.read_char()
}
}
impl<T: Readable> Readable for Vec<T> {
fn read(input: &mut Input) -> Self {
let size = input.read();
input.read_vec(size)
}
}
macro_rules! read_integer {
($($t:ident)+) => {$(
impl Readable for $t {
fn read(input: &mut Input) -> Self {
input.skip_whitespace();
let mut c = input.get().unwrap();
let sgn = match c {
b'-' => {
c = input.get().unwrap();
true
}
b'+' => {
c = input.get().unwrap();
false
}
_ => false,
};
let mut res = 0;
loop {
assert!(c.is_ascii_digit());
res *= 10;
let d = (c - b'0') as $t;
if sgn {
res -= d;
} else {
res += d;
}
match input.get() {
None => break,
Some(ch) => {
if ch.is_ascii_whitespace() {
break;
} else {
c = ch;
}
}
}
}
res
}
}
)+};
}
read_integer!(i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize);
macro_rules! tuple_readable {
($($name:ident)+) => {
impl<$($name: Readable), +> Readable for ($($name,)+) {
fn read(input: &mut Input) -> Self {
($($name::read(input),)+)
}
}
}
}
tuple_readable! {T}
tuple_readable! {T U}
tuple_readable! {T U V}
tuple_readable! {T U V X}
tuple_readable! {T U V X Y}
tuple_readable! {T U V X Y Z}
tuple_readable! {T U V X Y Z A}
tuple_readable! {T U V X Y Z A B}
tuple_readable! {T U V X Y Z A B C}
tuple_readable! {T U V X Y Z A B C D}
tuple_readable! {T U V X Y Z A B C D E}
tuple_readable! {T U V X Y Z A B C D E F}
impl Read for Input<'_> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
if self.at == self.buf_read {
self.input.read(buf)
} else {
let mut i = 0;
while i < buf.len() && self.at < self.buf_read {
buf[i] = self.buf[self.at];
i += 1;
self.at += 1;
}
Ok(i)
}
}
}
}
pub mod output {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::cmp::Reverse;
use std::io::stderr;
use std::io::Stderr;
use std::io::Write;
#[derive(Copy, Clone)]
pub enum BoolOutput {
YesNo,
YesNoCaps,
PossibleImpossible,
Custom(&'static str, &'static str),
}
impl BoolOutput {
pub fn output(&self, output: &mut Output, val: bool) {
(if val { self.yes() } else { self.no() }).write(output);
}
fn yes(&self) -> &str {
match self {
BoolOutput::YesNo => "Yes",
BoolOutput::YesNoCaps => "YES",
BoolOutput::PossibleImpossible => "Possible",
BoolOutput::Custom(yes, _) => yes,
}
}
fn no(&self) -> &str {
match self {
BoolOutput::YesNo => "No",
BoolOutput::YesNoCaps => "NO",
BoolOutput::PossibleImpossible => "Impossible",
BoolOutput::Custom(_, no) => no,
}
}
}
pub struct Output<'s> {
output: &'s mut dyn Write,
buf: Vec<u8>,
at: usize,
auto_flush: bool,
bool_output: BoolOutput,
}
impl<'s> Output<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: false,
bool_output: BoolOutput::YesNoCaps,
}
}
pub fn new_with_auto_flush(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: true,
bool_output: BoolOutput::YesNoCaps,
}
}
pub fn flush(&mut self) {
if self.at != 0 {
self.output.write_all(&self.buf[..self.at]).unwrap();
self.output.flush().unwrap();
self.at = 0;
}
}
pub fn print<T: Writable>(&mut self, s: T) {
s.write(self);
self.maybe_flush();
}
pub fn print_line<T: Writable>(&mut self, s: T) {
self.print(s);
self.put(b'\n');
self.maybe_flush();
}
pub fn put(&mut self, b: u8) {
self.buf[self.at] = b;
self.at += 1;
if self.at == self.buf.len() {
self.flush();
}
}
pub fn maybe_flush(&mut self) {
if self.auto_flush {
self.flush();
}
}
pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
self.print_per_line_iter(arg.iter());
}
pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}
pub fn print_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
self.print_iter(iter);
self.put(b'\n');
}
pub fn print_per_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
for e in iter {
e.write(self);
self.put(b'\n');
}
}
pub fn set_bool_output(&mut self, bool_output: BoolOutput) {
self.bool_output = bool_output;
}
}
impl Write for Output<'_> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let mut start = 0usize;
let mut rem = buf.len();
while rem > 0 {
let len = (self.buf.len() - self.at).min(rem);
self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
self.at += len;
if self.at == self.buf.len() {
self.flush();
}
start += len;
rem -= len;
}
self.maybe_flush();
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
self.flush();
Ok(())
}
}
pub trait Writable {
fn write(&self, output: &mut Output);
}
impl Writable for &str {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for String {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for char {
fn write(&self, output: &mut Output) {
output.put(*self as u8);
}
}
impl<T: Writable> Writable for [T] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable, const N: usize> Writable for [T; N] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable + ?Sized> Writable for &T {
fn write(&self, output: &mut Output) {
T::write(self, output)
}
}
impl<T: Writable> Writable for Vec<T> {
fn write(&self, output: &mut Output) {
self.as_slice().write(output);
}
}
impl Writable for () {
fn write(&self, _output: &mut Output) {}
}
macro_rules! write_to_string {
($($t:ident)+) => {$(
impl Writable for $t {
fn write(&self, output: &mut Output) {
self.to_string().write(output);
}
}
)+};
}
write_to_string!(u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);
macro_rules! tuple_writable {
($name0:ident $($name:ident: $id:tt )*) => {
impl<$name0: Writable, $($name: Writable,)*> Writable for ($name0, $($name,)*) {
fn write(&self, out: &mut Output) {
self.0.write(out);
$(
out.put(b' ');
self.$id.write(out);
)*
}
}
}
}
tuple_writable! {T}
tuple_writable! {T U:1}
tuple_writable! {T U:1 V:2}
tuple_writable! {T U:1 V:2 X:3}
tuple_writable! {T U:1 V:2 X:3 Y:4}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7 C:8}
impl<T: Writable> Writable for Option<T> {
fn write(&self, output: &mut Output) {
match self {
None => (-1).write(output),
Some(t) => t.write(output),
}
}
}
impl Writable for bool {
fn write(&self, output: &mut Output) {
let bool_output = output.bool_output;
bool_output.output(output, *self)
}
}
impl<T: Writable> Writable for Reverse<T> {
fn write(&self, output: &mut Output) {
self.0.write(output);
}
}
static mut ERR: Option<Stderr> = None;
pub fn err() -> Output<'static> {
unsafe {
if ERR.is_none() {
ERR = Some(stderr());
}
Output::new_with_auto_flush(ERR.as_mut().unwrap())
}
}
}
}
pub mod misc {
pub mod recursive_function {
use std::marker::PhantomData;
macro_rules! recursive_function {
($name: ident, $trait: ident, ($($type: ident $arg: ident,)*)) => {
pub trait $trait<$($type, )*Output> {
fn call(&mut self, $($arg: $type,)*) -> Output;
}
pub struct $name<F, $($type, )*Output>
where
F: FnMut(&mut dyn $trait<$($type, )*Output>, $($type, )*) -> Output,
{
f: std::cell::UnsafeCell<F>,
$($arg: PhantomData<$type>,
)*
phantom_output: PhantomData<Output>,
}
impl<F, $($type, )*Output> $name<F, $($type, )*Output>
where
F: FnMut(&mut dyn $trait<$($type, )*Output>, $($type, )*) -> Output,
{
pub fn new(f: F) -> Self {
Self {
f: std::cell::UnsafeCell::new(f),
$($arg: Default::default(),
)*
phantom_output: Default::default(),
}
}
}
impl<F, $($type, )*Output> $trait<$($type, )*Output> for $name<F, $($type, )*Output>
where
F: FnMut(&mut dyn $trait<$($type, )*Output>, $($type, )*) -> Output,
{
fn call(&mut self, $($arg: $type,)*) -> Output {
unsafe { (*self.f.get())(self, $($arg, )*) }
}
}
}
}
recursive_function!(RecursiveFunction0, Callable0, ());
recursive_function!(RecursiveFunction, Callable, (Arg arg,));
recursive_function!(RecursiveFunction2, Callable2, (Arg1 arg1, Arg2 arg2,));
recursive_function!(RecursiveFunction3, Callable3, (Arg1 arg1, Arg2 arg2, Arg3 arg3,));
recursive_function!(RecursiveFunction4, Callable4, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4,));
recursive_function!(RecursiveFunction5, Callable5, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5,));
recursive_function!(RecursiveFunction6, Callable6, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6,));
recursive_function!(RecursiveFunction7, Callable7, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6, Arg7 arg7,));
recursive_function!(RecursiveFunction8, Callable8, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6, Arg7 arg7, Arg8 arg8,));
recursive_function!(RecursiveFunction9, Callable9, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6, Arg7 arg7, Arg8 arg8, Arg9 arg9,));
}
pub mod test_type {
pub enum TestType {
Single,
MultiNumber,
MultiEof,
}
pub enum TaskType {
Classic,
Interactive,
}
}
pub mod when {
#[macro_export]
macro_rules! when {
{$($cond: expr => $then: expr,)*} => {
match () {
$(_ if $cond => $then,)*
_ => unreachable!(),
}
};
{$($cond: expr => $then: expr,)* else $(=>)? $else: expr,} => {
match () {
$(_ if $cond => $then,)*
_ => $else,
}
};
}
}
}
pub mod numbers {
pub mod num_traits {
pub mod algebra {
use crate::algo_lib::numbers::num_traits::invertible::Invertible;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Neg;
use std::ops::Rem;
use std::ops::RemAssign;
use std::ops::Sub;
use std::ops::SubAssign;
pub trait Zero {
fn zero() -> Self;
}
pub trait One {
fn one() -> Self;
}
pub trait AdditionMonoid: Add<Output = Self> + AddAssign + Zero + Eq + Sized {}
impl<T: Add<Output = Self> + AddAssign + Zero + Eq> AdditionMonoid for T {}
pub trait AdditionMonoidWithSub: AdditionMonoid + Sub<Output = Self> + SubAssign {}
impl<T: AdditionMonoid + Sub<Output = Self> + SubAssign> AdditionMonoidWithSub for T {}
pub trait AdditionGroup: AdditionMonoidWithSub + Neg<Output = Self> {}
impl<T: AdditionMonoidWithSub + Neg<Output = Self>> AdditionGroup for T {}
pub trait MultiplicationMonoid: Mul<Output = Self> + MulAssign + One + Eq + Sized {}
impl<T: Mul<Output = Self> + MulAssign + One + Eq> MultiplicationMonoid for T {}
pub trait IntegerMultiplicationMonoid:
MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign
{
}
impl<T: MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign>
IntegerMultiplicationMonoid for T
{
}
pub trait MultiplicationGroup:
MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>
{
}
impl<T: MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>>
MultiplicationGroup for T
{
}
pub trait SemiRing: AdditionMonoid + MultiplicationMonoid {}
impl<T: AdditionMonoid + MultiplicationMonoid> SemiRing for T {}
pub trait SemiRingWithSub: AdditionMonoidWithSub + SemiRing {}
impl<T: AdditionMonoidWithSub + SemiRing> SemiRingWithSub for T {}
pub trait Ring: SemiRing + AdditionGroup {}
impl<T: SemiRing + AdditionGroup> Ring for T {}
pub trait IntegerSemiRing: SemiRing + IntegerMultiplicationMonoid {}
impl<T: SemiRing + IntegerMultiplicationMonoid> IntegerSemiRing for T {}
pub trait IntegerSemiRingWithSub: SemiRingWithSub + IntegerSemiRing {}
impl<T: SemiRingWithSub + IntegerSemiRing> IntegerSemiRingWithSub for T {}
pub trait IntegerRing: IntegerSemiRing + Ring {}
impl<T: IntegerSemiRing + Ring> IntegerRing for T {}
pub trait Field: Ring + MultiplicationGroup {}
impl<T: Ring + MultiplicationGroup> Field for T {}
macro_rules! zero_one_integer_impl {
($($t: ident)+) => {$(
impl Zero for $t {
fn zero() -> Self {
0
}
}
impl One for $t {
fn one() -> Self {
1
}
}
)+};
}
zero_one_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod bit_ops {
use crate::algo_lib::numbers::num_traits::algebra::One;
use crate::algo_lib::numbers::num_traits::algebra::Zero;
use std::ops::BitAnd;
use std::ops::BitAndAssign;
use std::ops::BitOr;
use std::ops::BitOrAssign;
use std::ops::BitXor;
use std::ops::BitXorAssign;
use std::ops::Not;
use std::ops::RangeInclusive;
use std::ops::Shl;
use std::ops::ShlAssign;
use std::ops::Shr;
use std::ops::ShrAssign;
pub trait BitOps:
Copy
+ BitAnd<Output = Self>
+ BitAndAssign
+ BitOr<Output = Self>
+ BitOrAssign
+ BitXor<Output = Self>
+ BitXorAssign
+ Not<Output = Self>
+ Shl<usize, Output = Self>
+ ShlAssign<usize>
+ Shr<usize, Output = Self>
+ ShrAssign<usize>
+ Zero
+ One
+ PartialEq
{
fn bit(at: usize) -> Self {
Self::one() << at
}
fn is_set(&self, at: usize) -> bool {
(*self >> at & Self::one()) == Self::one()
}
fn set_bit(&mut self, at: usize) {
*self |= Self::bit(at)
}
fn unset_bit(&mut self, at: usize) {
*self &= !Self::bit(at)
}
#[must_use]
fn with_bit(mut self, at: usize) -> Self {
self.set_bit(at);
self
}
#[must_use]
fn without_bit(mut self, at: usize) -> Self {
self.unset_bit(at);
self
}
fn flip_bit(&mut self, at: usize) {
*self ^= Self::bit(at)
}
fn all_bits(n: usize) -> Self {
let mut res = Self::zero();
for i in 0..n {
res.set_bit(i);
}
res
}
fn iter_all(n: usize) -> RangeInclusive<Self> {
Self::zero()..=Self::all_bits(n)
}
}
impl<
T: Copy
+ BitAnd<Output = Self>
+ BitAndAssign
+ BitOr<Output = Self>
+ BitOrAssign
+ BitXor<Output = Self>
+ BitXorAssign
+ Not<Output = Self>
+ Shl<usize, Output = Self>
+ ShlAssign<usize>
+ Shr<usize, Output = Self>
+ ShrAssign<usize>
+ One
+ Zero
+ PartialEq,
> BitOps for T
{
}
pub trait Bits: BitOps {
fn bits() -> u32;
}
macro_rules! bits_integer_impl {
($($t: ident $bits: expr),+) => {$(
impl Bits for $t {
fn bits() -> u32 {
$bits
}
}
)+};
}
bits_integer_impl!(i128 128, i64 64, i32 32, i16 16, i8 8, isize 64, u128 128, u64 64, u32 32, u16 16, u8 8, usize 64);
}
pub mod invertible {
pub trait Invertible {
type Output;
fn inv(&self) -> Option<Self::Output>;
}
}
pub mod ord {
pub trait MinMax: PartialOrd {
fn min_val() -> Self;
fn max_val() -> Self;
}
macro_rules! min_max_integer_impl {
($($t: ident)+) => {$(
impl MinMax for $t {
fn min_val() -> Self {
// 1.43
std::$t::MIN
}
fn max_val() -> Self {
// 1.43
std::$t::MAX
}
}
)+};
}
min_max_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
}
}
}
fn main() {
let mut sin = std::io::stdin();
let input = algo_lib::io::input::Input::new(&mut sin);
let mut stdout = std::io::stdout();
let output = algo_lib::io::output::Output::new(&mut stdout);
solution::run(input, output);
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 2252kb
input:
3 8 6 4 1 3 2 1 2 6 4 1 4 7 6 1 6 3 6 6 2 3 3 1 4 3 4 6 5 2 6 4 3 2 1 10 12 10 10 10 11 1 4 1 5 1 3 2 1 1 2 1 2 2 2 3
output:
4 2 3 5 6 2 2 0 2 3
result:
ok ok 3 cases (3 test cases)
Test #2:
score: -100
Wrong Answer
time: 109ms
memory: 6576kb
input:
1224 11 17 14 7 3 4 2 8 13 3 15 3 4 5 11 10 2 3 3 8 6 7 11 2 3 10 4 1 3 12 1 2 5 11 9 11 6 11 10 8 15 1 5 9 14 4 11 1 6 10 7 7 6 11 4 8 4 1 11 18 3 2 14 8 2 14 13 13 9 12 14 12 5 6 8 1 10 5 8 6 8 9 6 6 7 5 12 11 6 11 13 5 1 10 7 6 14 5 6 15 2 4 11 1 1 6 4 14 14 13 9 9 3 10 12 7 5 8 13 9 14 1 9 8 4 9...
output:
7 3 4 5 6 7 8 9 10 11 12 13 15 16 17 15 2 3 0 3 4 5 6 0 2 3 4 5 6 7 8 9 11 1 3 8 1 2 3 0 1 2 3 4 5 6 7 8 9 10 11 12 1 5 6 7 9 10 11 12 8 17 18 19 1 1 2 3 4 5 6 7 8 7 6 8 10 13 14 15 1 10 11 12 13 14 15 16 17 18 19 20 0 1 1 2 3 0 5 6 7 7 8 12 13 14 15 2 10 11 12 13 14 4 3 4 5 6 7 8 1 18 1 4 5 6 7 8 9...
result:
wrong answer Jury has better answer. Participant's answer is 6 while jury's answer is 5 (test case 142)