QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#597208 | #9424. Stop the Castle 2 | ucup-team112# | RE | 0ms | 3632kb | C++20 | 23.9kb | 2024-09-28 17:17:11 | 2024-09-28 17:17:12 |
Judging History
answer
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
// #define INTERACTIVE
#include <bits/stdc++.h>
using namespace std;
namespace templates {
// type
using ll = long long;
using ull = unsigned long long;
using Pii = pair<int, int>;
using Pil = pair<int, ll>;
using Pli = pair<ll, int>;
using Pll = pair<ll, ll>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
// clang-format off
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));
// clang-format on
// for loop
#define fori1(a) for (ll _ = 0; _ < (a); _++)
#define fori2(i, a) for (ll i = 0; i < (a); i++)
#define fori3(i, a, b) for (ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)
// declare and input
// clang-format off
#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);
// clang-format on
// const value
const ll MOD1 = 1000000007;
const ll MOD9 = 998244353;
const double PI = acos(-1);
// other macro
#if !defined(RIN__LOCAL) && !defined(INTERACTIVE)
#define endl "\n"
#endif
#define spa ' '
#define len(A) ll(A.size())
#define all(A) begin(A), end(A)
// function
vector<char> stoc(string &S) {
int n = S.size();
vector<char> ret(n);
for (int i = 0; i < n; i++) ret[i] = S[i];
return ret;
}
string ctos(vector<char> &S) {
int n = S.size();
string ret = "";
for (int i = 0; i < n; i++) ret += S[i];
return ret;
}
template <class T>
auto min(const T &a) {
return *min_element(all(a));
}
template <class T>
auto max(const T &a) {
return *max_element(all(a));
}
template <class T, class S>
auto clamp(T &a, const S &l, const S &r) {
return (a > r ? r : a < l ? l : a);
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chclamp(T &a, const S &l, const S &r) {
auto b = clamp(a, l, r);
return (a != b ? a = b, 1 : 0);
}
template <typename T>
T sum(vector<T> &A) {
T tot = 0;
for (auto a : A) tot += a;
return tot;
}
template <typename T>
vector<T> compression(vector<T> X) {
sort(all(X));
X.erase(unique(all(X)), X.end());
return X;
}
// input and output
namespace io {
// __int128_t
std::ostream &operator<<(std::ostream &dest, __int128_t value) {
std::ostream::sentry s(dest);
if (s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char *d = std::end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while (tmp != 0);
if (value < 0) {
--d;
*d = '-';
}
int len = std::end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
// vector<T>
template <typename T>
istream &operator>>(istream &is, vector<T> &A) {
for (auto &a : A) is >> a;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<T> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << ' ';
}
return os;
}
// vector<vector<T>>
template <typename T>
istream &operator>>(istream &is, vector<vector<T>> &A) {
for (auto &a : A) is >> a;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<vector<T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << endl;
}
return os;
}
// pair<S, T>
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &A) {
is >> A.first >> A.second;
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, pair<S, T> &A) {
os << A.first << ' ' << A.second;
return os;
}
// vector<pair<S, T>>
template <typename S, typename T>
istream &operator>>(istream &is, vector<pair<S, T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
is >> A[i];
}
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, vector<pair<S, T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << endl;
}
return os;
}
// tuple
template <typename T, size_t N>
struct TuplePrint {
static ostream &print(ostream &os, const T &t) {
TuplePrint<T, N - 1>::print(os, t);
os << ' ' << get<N - 1>(t);
return os;
}
};
template <typename T>
struct TuplePrint<T, 1> {
static ostream &print(ostream &os, const T &t) {
os << get<0>(t);
return os;
}
};
template <typename... Args>
ostream &operator<<(ostream &os, const tuple<Args...> &t) {
TuplePrint<decltype(t), sizeof...(Args)>::print(os, t);
return os;
}
// io functions
void FLUSH() {
cout << flush;
}
void print() {
cout << endl;
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&...tail) {
cout << head;
if (sizeof...(Tail)) cout << spa;
print(std::forward<Tail>(tail)...);
}
template <typename T, typename S>
void prisep(vector<T> &A, S sep) {
int n = A.size();
for (int i = 0; i < n; i++) {
cout << A[i];
if (i != n - 1) cout << sep;
}
cout << endl;
}
template <typename T, typename S>
void priend(T A, S end) {
cout << A << end;
}
template <typename T>
void prispa(T A) {
priend(A, spa);
}
template <typename T, typename S>
bool printif(bool f, T A, S B) {
if (f)
print(A);
else
print(B);
return f;
}
template <class... T>
void inp(T &...a) {
(cin >> ... >> a);
}
} // namespace io
using namespace io;
// read graph
vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) {
vector<vector<int>> edges(n, vector<int>());
for (int i = 0; i < m; i++) {
INT(u, v);
u -= indexed;
v -= indexed;
edges[u].push_back(v);
if (!direct) edges[v].push_back(u);
}
return edges;
}
vector<vector<int>> read_tree(int n, int indexed = 1) {
return read_edges(n, n - 1, false, indexed);
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) {
vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>());
for (int i = 0; i < m; i++) {
INT(u, v);
T w;
inp(w);
u -= indexed;
v -= indexed;
edges[u].push_back({v, w});
if (!direct) edges[v].push_back({u, w});
}
return edges;
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) {
return read_wedges<T>(n, n - 1, false, indexed);
}
// yes / no
namespace yesno {
// yes
inline bool yes(bool f = true) {
cout << (f ? "yes" : "no") << endl;
return f;
}
inline bool Yes(bool f = true) {
cout << (f ? "Yes" : "No") << endl;
return f;
}
inline bool YES(bool f = true) {
cout << (f ? "YES" : "NO") << endl;
return f;
}
// no
inline bool no(bool f = true) {
cout << (!f ? "yes" : "no") << endl;
return f;
}
inline bool No(bool f = true) {
cout << (!f ? "Yes" : "No") << endl;
return f;
}
inline bool NO(bool f = true) {
cout << (!f ? "YES" : "NO") << endl;
return f;
}
// possible
inline bool possible(bool f = true) {
cout << (f ? "possible" : "impossible") << endl;
return f;
}
inline bool Possible(bool f = true) {
cout << (f ? "Possible" : "Impossible") << endl;
return f;
}
inline bool POSSIBLE(bool f = true) {
cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
return f;
}
// impossible
inline bool impossible(bool f = true) {
cout << (!f ? "possible" : "impossible") << endl;
return f;
}
inline bool Impossible(bool f = true) {
cout << (!f ? "Possible" : "Impossible") << endl;
return f;
}
inline bool IMPOSSIBLE(bool f = true) {
cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
return f;
}
// Alice Bob
inline bool Alice(bool f = true) {
cout << (f ? "Alice" : "Bob") << endl;
return f;
}
inline bool Bob(bool f = true) {
cout << (f ? "Bob" : "Alice") << endl;
return f;
}
// Takahashi Aoki
inline bool Takahashi(bool f = true) {
cout << (f ? "Takahashi" : "Aoki") << endl;
return f;
}
inline bool Aoki(bool f = true) {
cout << (f ? "Aoki" : "Takahashi") << endl;
return f;
}
} // namespace yesno
using namespace yesno;
} // namespace templates
using namespace templates;
#ifndef ATCODER_MAXFLOW_HPP
#define ATCODER_MAXFLOW_HPP 1
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
#ifndef ATCODER_INTERNAL_QUEUE_HPP
#define ATCODER_INTERNAL_QUEUE_HPP 1
#include <vector>
namespace atcoder {
namespace internal {
template <class T>
struct simple_queue {
std::vector<T> payload;
int pos = 0;
void reserve(int n) {
payload.reserve(n);
}
int size() const {
return int(payload.size()) - pos;
}
bool empty() const {
return pos == int(payload.size());
}
void push(const T &t) {
payload.push_back(t);
}
T &front() {
return payload[pos];
}
void clear() {
payload.clear();
pos = 0;
}
void pop() {
pos++;
}
};
} // namespace internal
} // namespace atcoder
#endif // ATCODER_INTERNAL_QUEUE_HPP
namespace atcoder {
template <class Cap>
struct mf_graph {
public:
mf_graph() : _n(0) {}
explicit mf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap});
g[to].push_back(_edge{from, from_id, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result;
for (int i = 0; i < m; i++) {
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto &_e = g[pos[i].first][pos[i].second];
auto &_re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
std::vector<int> level(_n), iter(_n);
internal::simple_queue<int> que;
auto bfs = [&]() {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int &i = iter[v]; i < int(g[v].size()); i++) {
_edge &e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d = self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) return res;
}
level[v] = _n;
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
std::fill(iter.begin(), iter.end(), 0);
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
return flow;
}
std::vector<bool> min_cut(int s) {
std::vector<bool> visited(_n);
internal::simple_queue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
#endif // ATCODER_MAXFLOW_HPP
void solve() {
INT(n, m, k);
VEC(Pll, rook, n);
VEC(Pll, obst, m);
vec(ll, X, 0);
vec(ll, Y, 0);
for (auto [x, y] : rook) {
X.push_back(x);
Y.push_back(y);
}
for (auto [x, y] : obst) {
X.push_back(x);
Y.push_back(y);
}
X = compression(X);
Y = compression(Y);
for (auto &[x, y] : rook) {
x = lower_bound(all(X), x) - X.begin();
y = lower_bound(all(Y), y) - Y.begin();
}
for (auto &[x, y] : obst) {
x = lower_bound(all(X), x) - X.begin();
y = lower_bound(all(Y), y) - Y.begin();
}
int lx = len(X);
int ly = len(Y);
ll ans = 0;
using T = tuple<ll, ll, ll>;
vvec(T, X_, lx, 0);
vvec(T, Y_, ly, 0);
fori(i, n) {
auto [x, y] = rook[i];
X_[x].push_back({y, 0, i});
Y_[y].push_back({x, 0, i});
}
fori(i, m) {
auto [x, y] = obst[i];
X_[x].push_back({y, 1, i});
Y_[y].push_back({x, 1, i});
}
int c = 0;
vec(int, L, m, -1);
vec(int, R, m, -1);
fori(i, lx) {
sort(all(X_[i]));
int l = -1;
int r = -1;
fori(j, len(X_[i])) {
auto [y, t, _] = X_[i][j];
if (t == 0) {
if (l == -1) {
l = j;
} else {
r = j;
ans++;
}
}
}
if (l == -1) continue;
fori(j, l + 1, r + 1) {
auto [y, t, idx] = X_[i][j];
if (t == 0) {
c++;
} else {
L[idx] = c;
}
}
}
int xc = c;
fori(i, ly) {
sort(all(Y_[i]));
int l = -1;
int r = -1;
fori(j, len(Y_[i])) {
auto [x, t, _] = Y_[i][j];
if (t == 0) {
if (l == -1) {
l = j;
} else {
r = j;
ans++;
}
}
}
if (l == -1) continue;
fori(j, l + 1, r + 1) {
auto [x, t, idx] = Y_[i][j];
if (t == 0) {
c++;
} else {
R[idx] = c;
}
}
}
atcoder::mf_graph<ll> G(c + 2);
int s = c;
int t = c + 1;
fori(i, m) {
if (L[i] == -1 or R[i] == -1) continue;
G.add_edge(L[i], R[i], 1);
}
fori(i, xc) {
G.add_edge(s, i, 1);
}
fori(i, xc, c) {
G.add_edge(i, t, 1);
}
auto fl = G.flow(s, t);
vec(ll, PP, 0);
for (auto l : L) {
if (l != -1) PP.push_back(l);
}
for (auto r : R) {
if (r != -1) PP.push_back(r);
}
ll ma = len(compression(PP));
auto M = m;
m -= k;
ll two = min<ll>(fl, m);
m -= two;
ll minus = min(ma, 2 * two + m);
print(ans - minus);
set<Pll> two_edges;
vec(bool, used_X, lx, false);
vec(bool, used_Y, ly, false);
for (auto &e : G.edges()) {
if (e.flow == 1 and e.from != s and e.to != t) {
two_edges.insert({e.from, e.to});
}
}
m = M;
vec(bool, rem, m, false);
ll cc = m - k;
fori(i, m) {
if (cc > 0 and two_edges.count({L[i], R[i]})) {
rem[i] = true;
used_X[L[i]] = true;
used_Y[R[i]] = true;
cc--;
}
}
fori(i, m) {
if (rem[i] or cc == 0) continue;
if (L[i] != -1 and not used_X[L[i]]) {
rem[i] = true;
used_X[L[i]] = true;
cc--;
}
if (R[i] != -1 and not used_Y[R[i]]) {
rem[i] = true;
used_Y[R[i]] = true;
cc--;
}
}
fori(i, m) {
if (cc > 0 and !rem[i]) {
rem[i] = true;
cc--;
}
}
vec(ll, ans_idx, 0);
fori(i, m) {
if (!rem[i]) ans_idx.push_back(i + 1);
}
print(ans_idx);
}
int main() {
#ifndef INTERACTIVE
std::cin.tie(0)->sync_with_stdio(0);
#endif
// std::cout << std::fixed << std::setprecision(12);
int t;
t = 1;
std::cin >> t;
while (t--) solve();
return 0;
}
// // #pragma GCC target("avx2")
// // #pragma GCC optimize("O3")
// // #pragma GCC optimize("unroll-loops")
// // #define INTERACTIVE
//
// #include "kyopro-cpp/template.hpp"
//
// #include "atcoder/maxflow.hpp"
//
// void solve() {
// INT(n, m, k);
// VEC(Pll, rook, n);
// VEC(Pll, obst, m);
// vec(ll, X, 0);
// vec(ll, Y, 0);
// for (auto [x, y] : rook) {
// X.push_back(x);
// Y.push_back(y);
// }
// for (auto [x, y] : obst) {
// X.push_back(x);
// Y.push_back(y);
// }
// X = compression(X);
// Y = compression(Y);
// for (auto &[x, y] : rook) {
// x = lower_bound(all(X), x) - X.begin();
// y = lower_bound(all(Y), y) - Y.begin();
// }
// for (auto &[x, y] : obst) {
// x = lower_bound(all(X), x) - X.begin();
// y = lower_bound(all(Y), y) - Y.begin();
// }
//
// int lx = len(X);
// int ly = len(Y);
// ll ans = 0;
// using T = tuple<ll, ll, ll>;
// vvec(T, X_, lx, 0);
// vvec(T, Y_, ly, 0);
// fori(i, n) {
// auto [x, y] = rook[i];
// X_[x].push_back({y, 0, i});
// Y_[y].push_back({x, 0, i});
// }
// fori(i, m) {
// auto [x, y] = obst[i];
// X_[x].push_back({y, 1, i});
// Y_[y].push_back({x, 1, i});
// }
//
// int c = 0;
// vec(int, L, m, -1);
// vec(int, R, m, -1);
// fori(i, lx) {
// sort(all(X_[i]));
// int l = -1;
// int r = -1;
// fori(j, len(X_[i])) {
// auto [y, t, _] = X_[i][j];
// if (t == 0) {
// if (l == -1) {
// l = j;
// } else {
// r = j;
// ans++;
// }
// }
// }
// if (l == -1) continue;
// fori(j, l + 1, r + 1) {
// auto [y, t, idx] = X_[i][j];
// if (t == 0) {
// c++;
// } else {
// L[idx] = c;
// }
// }
// }
//
// int xc = c;
//
// fori(i, ly) {
// sort(all(Y_[i]));
// int l = -1;
// int r = -1;
// fori(j, len(Y_[i])) {
// auto [x, t, _] = Y_[i][j];
// if (t == 0) {
// if (l == -1) {
// l = j;
// } else {
// r = j;
// ans++;
// }
// }
// }
// if (l == -1) continue;
// fori(j, l + 1, r + 1) {
// auto [x, t, idx] = Y_[i][j];
// if (t == 0) {
// c++;
// } else {
// R[idx] = c;
// }
// }
// }
// atcoder::mf_graph<ll> G(c + 2);
// int s = c;
// int t = c + 1;
// fori(i, m) {
// if (L[i] == -1 or R[i] == -1) continue;
// G.add_edge(L[i], R[i], 1);
// }
// fori(i, xc) {
// G.add_edge(s, i, 1);
// }
// fori(i, xc, c) {
// G.add_edge(i, t, 1);
// }
//
// auto fl = G.flow(s, t);
//
// vec(ll, PP, 0);
// for (auto l : L) {
// if (l != -1) PP.push_back(l);
// }
// for (auto r : R) {
// if (r != -1) PP.push_back(r);
// }
// ll ma = len(compression(PP));
// auto M = m;
//
// m -= k;
// ll two = min<ll>(fl, m);
// m -= two;
//
// ll minus = min(ma, 2 * two + m);
//
// print(ans - minus);
// set<Pll> two_edges;
// vec(bool, used_X, lx, false);
// vec(bool, used_Y, ly, false);
// for (auto &e : G.edges()) {
// if (e.flow == 1 and e.from != s and e.to != t) {
// two_edges.insert({e.from, e.to});
// }
// }
//
// m = M;
// vec(bool, rem, m, false);
// ll cc = m - k;
// fori(i, m) {
// if (cc > 0 and two_edges.count({L[i], R[i]})) {
// rem[i] = true;
// used_X[L[i]] = true;
// used_Y[R[i]] = true;
// cc--;
// }
// }
// fori(i, m) {
// if (rem[i] or cc == 0) continue;
// if (L[i] != -1 and not used_X[L[i]]) {
// rem[i] = true;
// used_X[L[i]] = true;
// cc--;
// }
// if (R[i] != -1 and not used_Y[R[i]]) {
// rem[i] = true;
// used_Y[R[i]] = true;
// cc--;
// }
// }
// fori(i, m) {
// if (cc > 0 and !rem[i]) {
// rem[i] = true;
// cc--;
// }
// }
//
// vec(ll, ans_idx, 0);
// fori(i, m) {
// if (!rem[i]) ans_idx.push_back(i + 1);
// }
// print(ans_idx);
// }
//
// int main() {
// #ifndef INTERACTIVE
// std::cin.tie(0)->sync_with_stdio(0);
// #endif
// // std::cout << std::fixed << std::setprecision(12);
// int t;
// t = 1;
// std::cin >> t;
// while (t--) solve();
// return 0;
// }
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3632kb
input:
3 8 6 4 1 3 2 1 2 6 4 1 4 7 6 1 6 3 6 6 2 3 3 1 4 3 4 6 5 2 6 4 3 2 1 10 12 10 10 10 11 1 4 1 5 1 3 2 1 1 2 1 2 2 2 3
output:
4 2 3 5 6 2 2 0 2 3
result:
ok ok 3 cases (3 test cases)
Test #2:
score: -100
Runtime Error
input:
1224 11 17 14 7 3 4 2 8 13 3 15 3 4 5 11 10 2 3 3 8 6 7 11 2 3 10 4 1 3 12 1 2 5 11 9 11 6 11 10 8 15 1 5 9 14 4 11 1 6 10 7 7 6 11 4 8 4 1 11 18 3 2 14 8 2 14 13 13 9 12 14 12 5 6 8 1 10 5 8 6 8 9 6 6 7 5 12 11 6 11 13 5 1 10 7 6 14 5 6 15 2 4 11 1 1 6 4 14 14 13 9 9 3 10 12 7 5 8 13 9 14 1 9 8 4 9...
output:
7 3 4 5 6 7 8 9 10 11 12 13 15 16 17 15 2 3 0 3 4 5 6 0 2 3 4 5 6 7 8 9 11 1 3 8 1 2 3 0 1 2 3 4 5 6 7 8 9 10 11 12 1 5 6 7 9 10 11 12 8 17 18 19 1 1 2 3 4 5 6 7 8 7 6 8 10 13 14 15 1 10 11 12 13 14 15 16 17 18 19 20 0 1 1 2 3 0 5 6 7 7 8 12 13 14 15 2 10 11 12 13 14 4 3 4 5 6 7 8 1 18 1 4 5 6 7 8 9...