QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#595529 | #9434. Italian Cuisine | ucup-team4474# | WA | 1ms | 5508kb | C++17 | 8.3kb | 2024-09-28 13:54:53 | 2024-09-28 13:54:53 |
Judging History
answer
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define pii pair<int,int>
#define pll pair<long long,long long>
#define FF fflush(stdout)
#define inf 0x3f3f3f3f
#define endl "\n"
#define fi first
#define se second
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
//char buf[1<<20],*p1,*p2;
//#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<20,stdin),p1==p2)?EOF:*p1++)
inline int read()
{
int s=0,f=1;
char x=getchar();
while(!isdigit(x))f=(x=='-'?-1:1),x=getchar();
while(isdigit(x))s=s*10+x-'0',x=getchar();
return s*f;
}
#define reaD read
using i64 = long long;
template<class T>
struct Point {
T x;
T y;
Point(const T &x_ = 0, const T &y_ = 0) : x(x_), y(y_) {}
template<class U>
operator Point<U>() {
return Point<U>(U(x), U(y));
}
Point &operator+=(const Point &p) & {
x += p.x;
y += p.y;
return *this;
}
Point &operator-=(const Point &p) & {
x -= p.x;
y -= p.y;
return *this;
}
Point &operator*=(const T &v) & {
x *= v;
y *= v;
return *this;
}
Point &operator/=(const T &v) & {
x /= v;
y /= v;
return *this;
}
Point operator-() const {
return Point(-x, -y);
}
friend Point operator+(Point a, const Point &b) {
return a += b;
}
friend Point operator-(Point a, const Point &b) {
return a -= b;
}
friend Point operator*(Point a, const T &b) {
return a *= b;
}
friend Point operator/(Point a, const T &b) {
return a /= b;
}
friend Point operator*(const T &a, Point b) {
return b *= a;
}
friend bool operator==(const Point &a, const Point &b) {
return a.x == b.x && a.y == b.y;
}
friend std::istream &operator>>(std::istream &is, Point &p) {
return is >> p.x >> p.y;
}
friend std::ostream &operator<<(std::ostream &os, const Point &p) {
return os << "(" << p.x << ", " << p.y << ")";
}
};
template<class T>
struct Line {
Point<T> a;
Point<T> b;
Line(const Point<T> &a_ = Point<T>(), const Point<T> &b_ = Point<T>()) : a(a_), b(b_) {}
};
template<class T>
T dot(const Point<T> &a, const Point<T> &b) {
return a.x * b.x + a.y * b.y;
}
template<class T>
T cross(const Point<T> &a, const Point<T> &b) {
return a.x * b.y - a.y * b.x;
}
template<class T>
T square(const Point<T> &p) {
return dot(p, p);
}
template<class T>
double length(const Point<T> &p) {
return std::sqrt(square(p));
}
template<class T>
double length(const Line<T> &l) {
return length(l.a - l.b);
}
template<class T>
Point<T> normalize(const Point<T> &p) {
return p / length(p);
}
template<class T>
bool parallel(const Line<T> &l1, const Line<T> &l2) {
return cross(l1.b - l1.a, l2.b - l2.a) == 0;
}
template<class T>
double distance(const Point<T> &a, const Point<T> &b) {
return length(a - b);
}
template<class T>
double distancePL(const Point<T> &p, const Line<T> &l) {
return std::abs(cross(l.a - l.b, l.a - p)) / length(l);
}
template<class T>
double distancePS(const Point<T> &p, const Line<T> &l) {
if (dot(p - l.a, l.b - l.a) < 0) {
return distance(p, l.a);
}
if (dot(p - l.b, l.a - l.b) < 0) {
return distance(p, l.b);
}
return distancePL(p, l);
}
template<class T>
Point<T> rotate(const Point<T> &a) {
return Point(-a.y, a.x);
}
template<class T>
int sgn(const Point<T> &a) {
return a.y > 0 || (a.y == 0 && a.x > 0) ? 1 : -1;
}
template<class T>
bool pointOnLineLeft(const Point<T> &p, const Line<T> &l) {
return cross(l.b - l.a, p - l.a) > 0;
}
template<class T>
Point<T> lineIntersection(const Line<T> &l1, const Line<T> &l2) {
return l1.a + (l1.b - l1.a) * (cross(l2.b - l2.a, l1.a - l2.a) / cross(l2.b - l2.a, l1.a - l1.b));
}
template<class T>
bool pointOnSegment(const Point<T> &p, const Line<T> &l) {
return cross(p - l.a, l.b - l.a) == 0 && std::min(l.a.x, l.b.x) <= p.x && p.x <= std::max(l.a.x, l.b.x)
&& std::min(l.a.y, l.b.y) <= p.y && p.y <= std::max(l.a.y, l.b.y);
}
template<class T>
bool pointInPolygon(const Point<T> &a, const std::vector<Point<T>> &p) {
int n = p.size();
for (int i = 0; i < n; i++) {
if (pointOnSegment(a, Line(p[i], p[(i + 1) % n]))) {
return true;
}
}
int t = 0;
for (int i = 0; i < n; i++) {
auto u = p[i];
auto v = p[(i + 1) % n];
if (u.x < a.x && v.x >= a.x && pointOnLineLeft(a, Line(v, u))) {
t ^= 1;
}
if (u.x >= a.x && v.x < a.x && pointOnLineLeft(a, Line(u, v))) {
t ^= 1;
}
}
return t == 1;
}
// 0 : not intersect
// 1 : strictly intersect
// 2 : overlap
// 3 : intersect at endpoint
template<class T>
std::tuple<int, Point<T>, Point<T>> segmentIntersection(const Line<T> &l1, const Line<T> &l2) {
if (std::max(l1.a.x, l1.b.x) < std::min(l2.a.x, l2.b.x)) {
return {0, Point<T>(), Point<T>()};
}
if (std::min(l1.a.x, l1.b.x) > std::max(l2.a.x, l2.b.x)) {
return {0, Point<T>(), Point<T>()};
}
if (std::max(l1.a.y, l1.b.y) < std::min(l2.a.y, l2.b.y)) {
return {0, Point<T>(), Point<T>()};
}
if (std::min(l1.a.y, l1.b.y) > std::max(l2.a.y, l2.b.y)) {
return {0, Point<T>(), Point<T>()};
}
if (cross(l1.b - l1.a, l2.b - l2.a) == 0) {
if (cross(l1.b - l1.a, l2.a - l1.a) != 0) {
return {0, Point<T>(), Point<T>()};
} else {
auto maxx1 = std::max(l1.a.x, l1.b.x);
auto minx1 = std::min(l1.a.x, l1.b.x);
auto maxy1 = std::max(l1.a.y, l1.b.y);
auto miny1 = std::min(l1.a.y, l1.b.y);
auto maxx2 = std::max(l2.a.x, l2.b.x);
auto minx2 = std::min(l2.a.x, l2.b.x);
auto maxy2 = std::max(l2.a.y, l2.b.y);
auto miny2 = std::min(l2.a.y, l2.b.y);
Point<T> p1(std::max(minx1, minx2), std::max(miny1, miny2));
Point<T> p2(std::min(maxx1, maxx2), std::min(maxy1, maxy2));
if (!pointOnSegment(p1, l1)) {
std::swap(p1.y, p2.y);
}
if (p1 == p2) {
return {3, p1, p2};
} else {
return {2, p1, p2};
}
}
}
auto cp1 = cross(l2.a - l1.a, l2.b - l1.a);
auto cp2 = cross(l2.a - l1.b, l2.b - l1.b);
auto cp3 = cross(l1.a - l2.a, l1.b - l2.a);
auto cp4 = cross(l1.a - l2.b, l1.b - l2.b);
if ((cp1 > 0 && cp2 > 0) || (cp1 < 0 && cp2 < 0) || (cp3 > 0 && cp4 > 0) || (cp3 < 0 && cp4 < 0)) {
return {0, Point<T>(), Point<T>()};
}
Point p = lineIntersection(l1, l2);
if (cp1 != 0 && cp2 != 0 && cp3 != 0 && cp4 != 0) {
return {1, p, p};
} else {
return {3, p, p};
}
}
template<class T>
double distanceSS(const Line<T> &l1, const Line<T> &l2) {
if (std::get<0>(segmentIntersection(l1, l2)) != 0) {
return 0.0;
}
return std::min({distancePS(l1.a, l2), distancePS(l1.b, l2), distancePS(l2.a, l1), distancePS(l2.b, l1)});
}
using P = Point<i64>;
P a[100005];
i64 cal(int x,int y,int z)
{
return abs(cross(a[y]-a[x],a[z]-a[x]));
}
int main()
{
int T=reaD();
while(T--)
{
int n=reaD();
int rx=read(),ry=reaD(),rd=reaD();
P cir=P(rx,ry);
for(int i=1;i<=n;i++)
{
int x=reaD(),y=reaD();
a[i]=P(x,y);
}
ll ans=0;
ll ansl=0,ansr=0;
int l=2;
while(l<=n&&distancePL(cir,Line(a[1],a[l]))>=rd)ansl+=cal(1,l,l-1),l++;
assert(l<n);
int r=l;
while(r<=n&&distancePL(cir,Line(a[1],a[r]))<rd)r++;
for(int i=r;i<n;i++)
ansr+=cal(1,i,i+1);
ans=max(ans,max(ansl,ansr));
for(int i=2;i<=n;i++)
{
ansr+=cal(i,i-1,r);
ansl-=cal(i,i-1,l==1?n:l-1);
while(pointOnLineLeft(cir,Line(a[i],a[l]))&&distancePL(cir,Line(a[i],a[l]))>=rd)ansl+=cal(i,l,l==1?n:l-1),l=l%n+1;
while(pointOnLineLeft(cir,Line(a[i],a[r]))||distancePL(cir,Line(a[i],a[r]))<rd)ansr-=cal(i,r,r%n+1),r=r%n+1;
ans=max(ans,max(ansl,ansr));//cout<<i<<" "<<l<<" "<<r-1<<" "<<ansl<<" "<<ansr<<endl;
}
printf("%lld\n",ans);
}
}
詳細信息
Test #1:
score: 100
Accepted
time: 1ms
memory: 5456kb
input:
3 5 1 1 1 0 0 1 0 5 0 3 3 0 5 6 2 4 1 2 0 4 0 6 3 4 6 2 6 0 3 4 3 3 1 3 0 6 3 3 6 0 3
output:
5 24 0
result:
ok 3 number(s): "5 24 0"
Test #2:
score: -100
Wrong Answer
time: 1ms
memory: 5508kb
input:
1 6 0 0 499999993 197878055 -535013568 696616963 -535013568 696616963 40162440 696616963 499999993 -499999993 499999993 -499999993 -535013568
output:
286862654137719264
result:
wrong answer 1st numbers differ - expected: '0', found: '286862654137719264'