QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#578261#6323. Range NEQAKALemon#TL 129ms67580kbC++239.0kb2024-09-20 17:49:442024-09-20 17:49:44

Judging History

你现在查看的是最新测评结果

  • [2024-09-20 17:49:44]
  • 评测
  • 测评结果:TL
  • 用时:129ms
  • 内存:67580kb
  • [2024-09-20 17:49:44]
  • 提交

answer

#include<bits/stdc++.h>
using namespace std;
using i64 = long long;
using db = double;
constexpr int N = 4e6 + 50, LOGN = 30;
constexpr i64 P = 998244353;
constexpr i64 G = 3;
using i64 = long long;
// assume -P <= x < 2P
i64 norm(i64 x) {
    if (x < 0) {
        x += P;
    }
    if (x >= P) {
        x -= P;
    }
    return x;
}
template<class T>
T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
} 
struct Z {
    i64 x;
    Z(i64 x = 0) : x(norm(x % P)) {}
    i64 val() const {
        return x;
    }
    Z operator-() const {
        return Z(norm(P - x));
    }
    Z inv() const {
        assert(x != 0);
        return power(*this, P - 2);
    }
    Z &operator*=(const Z &rhs) {
        x = i64(x) * rhs.x % P;
        return *this;
    }
    Z &operator+=(const Z &rhs) {
        x = norm(x + rhs.x);
        return *this;
    }
    Z &operator-=(const Z &rhs) {
        x = norm(x - rhs.x);
        return *this;
    }
    Z &operator/=(const Z &rhs) {
        return *this *= rhs.inv();
    }
    friend Z operator*(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res *= rhs;
        return res;
    }
    friend Z operator+(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res += rhs;
        return res;
    }
    friend Z operator-(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res -= rhs;
        return res;
    }
    friend Z operator/(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res /= rhs;
        return res;
    }
    friend istream &operator>>(istream &is, Z &a) {
        i64 v;
        is >> v;
        a = Z(v);
        return is;
    }
    friend ostream &operator<<(ostream &os, const Z &a) {
        return os << a.val();
    }
};

vector<int> rev;
vector<Z> roots{0, 1};
void dft(vector<Z> &a) {
    int n = a.size();
    
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
        }
    }
    
    for (int i = 0; i < n; i++) {
        if (rev[i] < i) {
            swap(a[i], a[rev[i]]);
        }
    }
    if (int(roots.size()) < n) {
        int k = __builtin_ctz(roots.size());
        roots.resize(n);
        while ((1 << k) < n) {
            Z e = power(Z(G), (P - 1) >> (k + 1));
            for (int i = 1 << (k - 1); i < (1 << k); i++) {
                roots[2 * i] = roots[i];
                roots[2 * i + 1] = roots[i] * e;
            }
            k++;
        }
    }
    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; j++) {
                Z u = a[i + j];
                Z v = a[i + j + k] * roots[k + j];
                a[i + j] = u + v;
                a[i + j + k] = u - v;
            }
        }
    }
}
void idft(vector<Z> &a) {
    int n = a.size();
    reverse(a.begin() + 1, a.end());
    dft(a);
    Z inv = (1 - P) / n;
    for (int i = 0; i < n; i++) {
        a[i] *= inv;
    }
}
struct Poly {
    vector<Z> a;
    Poly() {}
    Poly(const vector<Z> &a) : a(a) {}
    Poly(const initializer_list<Z> &a) : a(a) {}
    int size() const {
        return a.size();
    }
    void resize(int n) {
        a.resize(n);
    }
    Z operator[](int idx) const {
        if (idx < size()) {
            return a[idx];
        } else {
            return 0;
        }
    }
    Z &operator[](int idx) {
        return a[idx];
    }
    Poly mulxk(int k) const {
        auto b = a;
        b.insert(b.begin(), k, 0);
        return Poly(b);
    }
    Poly modxk(int k) const {
        k = min(k, size());
        return Poly(vector<Z>(a.begin(), a.begin() + k));
    }
    Poly divxk(int k) const {
        if (size() <= k) {
            return Poly();
        }
        return Poly(vector<Z>(a.begin() + k, a.end()));
    }
    friend Poly operator+(const Poly &a, const Poly &b) {
        vector<Z> res(max(a.size(), b.size()));
        for (int i = 0; i < int(res.size()); i++) {
            res[i] = a[i] + b[i];
        }
        return Poly(res);
    }
    friend Poly operator-(const Poly &a, const Poly &b) {
        vector<Z> res(max(a.size(), b.size()));
        for (int i = 0; i < int(res.size()); i++) {
            res[i] = a[i] - b[i];
        }
        return Poly(res);
    }
    friend Poly operator*(Poly a, Poly b) {
        if (a.size() == 0 || b.size() == 0) {
            return Poly();
        }
        int sz = 1, tot = a.size() + b.size() - 1;
        while (sz < tot) {
            sz *= 2;
        }
        a.a.resize(sz);
        b.a.resize(sz);
        dft(a.a);
        dft(b.a);
        for (int i = 0; i < sz; ++i) {
            a.a[i] = a[i] * b[i];
        }
        idft(a.a);
        a.resize(tot);
        return a;
    }
    friend Poly operator*(Poly a, Z b) {
        for (int i = 0; i < int(a.size()); i++) {
            a[i] *= b;
        }
        return a;
    }
    Poly deriv() const {
        if (a.empty()) {
            return Poly();
        }
        vector<Z> res(size() - 1);
        for (int i = 0; i < size() - 1; ++i) {
            res[i] = (i + 1) * a[i + 1];
        }
        return Poly(res);
    }
    Poly integr() const {
        vector<Z> res(size() + 1);
        for (int i = 0; i < size(); ++i) {
            res[i + 1] = a[i] / (i + 1);
        }
        return Poly(res);
    }
    Poly inv(int m) const {
        Poly x{a[0].inv()};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{2} - modxk(k) * x)).modxk(k);
        }
        return x.modxk(m);
    }
    Poly log(int m) const {
        return (deriv() * inv(m)).integr().modxk(m);
    }
    Poly exp(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k);
        }
        return x.modxk(m);
    }
    Poly pow(int k, int m) const {
        int i = 0;
        while (i < size() && a[i].val() == 0) {
            i++;
        }
        if (i == size() || 1LL * i * k >= m) {
            return Poly(vector<Z>(m));
        }
        Z v = a[i];
        auto f = divxk(i) * v.inv();
        return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k);
    }
    Poly sqrt(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((P + 1) / 2);
        }
        return x.modxk(m);
    }
    Poly mulT(Poly b) const {
        if (b.size() == 0) {
            return Poly();
        }
        int n = b.size();
        reverse(b.a.begin(), b.a.end());
        return ((*this) * b).divxk(n - 1);
    }
    vector<Z> eval(vector<Z> x) const {
        if (size() == 0) {
            return vector<Z>(x.size(), 0);
        }
        const int n = max(int(x.size()), size());
        vector<Poly> q(4 * n);
        vector<Z> ans(x.size());
        x.resize(n);
        function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                q[p] = Poly{1, -x[l]};
            } else {
                int m = (l + r) / 2;
                build(2 * p, l, m);
                build(2 * p + 1, m, r);
                q[p] = q[2 * p] * q[2 * p + 1];
            }
        };
        build(1, 0, n);
        function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) {
            if (r - l == 1) {
                if (l < int(ans.size())) {
                    ans[l] = num[0];
                }
            } else {
                int m = (l + r) / 2;
                work(2 * p, l, m, num.mulT(q[2 * p + 1]).modxk(m - l));
                work(2 * p + 1, m, r, num.mulT(q[2 * p]).modxk(r - m));
            }
        };
        work(1, 0, n, mulT(q[1].inv(n)));
        return ans;
    }
};
Z fac[N], invfac[N];
Z C(int n, int m) {
    if (n < m) return 0;
    if (m < 0) return 0;
    return fac[n] * invfac[m] * invfac[n - m];
}
void init() {
    fac[0] = 1;
    for (int i = 1; i < N; i++) fac[i] = fac[i - 1] * i;
    invfac[N - 1] = fac[N - 1].inv();
    for (int i = N - 1; i > 0; i--) invfac[i - 1] = invfac[i] * i;
}

void solve(){
    int n, m; cin >> n >> m;
    init();
    vector<Z> f(m + 1);
    for (int i = 0; i <= m; i++) {
        f[i] = C(m, i) * C(m, i) * fac[i];
    }
    auto g = Poly(f).pow(n, n * m + 1);
    Z ans = 0;
    for (int i = 0; i <= n * m; i++) {
        Z sign = (i % 2 ? -1 : 1);
        ans += sign * fac[n * m - i] * g[i];
    } 
    cout << ans << "\n";
}

signed main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr), cout.tie(nullptr);
    cout << setprecision(15) << fixed;
    int t = 1;
    //cin >> t;
    while (t--) solve();
    return 0;
}


Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 34ms
memory: 66128kb

input:

2 2

output:

4

result:

ok 1 number(s): "4"

Test #2:

score: 0
Accepted
time: 32ms
memory: 66292kb

input:

5 1

output:

44

result:

ok 1 number(s): "44"

Test #3:

score: 0
Accepted
time: 129ms
memory: 67580kb

input:

167 91

output:

284830080

result:

ok 1 number(s): "284830080"

Test #4:

score: 0
Accepted
time: 38ms
memory: 66320kb

input:

2 1

output:

1

result:

ok 1 number(s): "1"

Test #5:

score: 0
Accepted
time: 32ms
memory: 66100kb

input:

2 3

output:

36

result:

ok 1 number(s): "36"

Test #6:

score: 0
Accepted
time: 32ms
memory: 66084kb

input:

2 4

output:

576

result:

ok 1 number(s): "576"

Test #7:

score: 0
Accepted
time: 34ms
memory: 66256kb

input:

3 1

output:

2

result:

ok 1 number(s): "2"

Test #8:

score: 0
Accepted
time: 30ms
memory: 66120kb

input:

3 2

output:

80

result:

ok 1 number(s): "80"

Test #9:

score: 0
Accepted
time: 37ms
memory: 66104kb

input:

3 3

output:

12096

result:

ok 1 number(s): "12096"

Test #10:

score: 0
Accepted
time: 32ms
memory: 66344kb

input:

3 4

output:

4783104

result:

ok 1 number(s): "4783104"

Test #11:

score: 0
Accepted
time: 33ms
memory: 66264kb

input:

4 1

output:

9

result:

ok 1 number(s): "9"

Test #12:

score: 0
Accepted
time: 37ms
memory: 66292kb

input:

4 2

output:

4752

result:

ok 1 number(s): "4752"

Test #13:

score: 0
Accepted
time: 32ms
memory: 66296kb

input:

4 3

output:

17927568

result:

ok 1 number(s): "17927568"

Test #14:

score: 0
Accepted
time: 37ms
memory: 66300kb

input:

4 4

output:

776703752

result:

ok 1 number(s): "776703752"

Test #15:

score: 0
Accepted
time: 30ms
memory: 66332kb

input:

5 2

output:

440192

result:

ok 1 number(s): "440192"

Test #16:

score: 0
Accepted
time: 34ms
memory: 66128kb

input:

5 3

output:

189125068

result:

ok 1 number(s): "189125068"

Test #17:

score: 0
Accepted
time: 33ms
memory: 66300kb

input:

5 4

output:

975434093

result:

ok 1 number(s): "975434093"

Test #18:

score: -100
Time Limit Exceeded

input:

1000 1000

output:


result: