QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#576895 | #8178. Bracket Sequestion | maspy | AC ✓ | 942ms | 20736kb | C++20 | 52.9kb | 2024-09-19 23:15:21 | 2024-09-19 23:15:22 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/mod/dynamic_modint.hpp"
#line 2 "library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 2 "library/mod/primitive_root.hpp"
#line 2 "library/nt/factor.hpp"
#line 2 "library/random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "library/mod/mongomery_modint.hpp"
// odd mod.
// x の代わりに rx を持つ
template <int id, typename U1, typename U2>
struct Mongomery_modint {
using mint = Mongomery_modint;
inline static U1 m, r, n2;
static constexpr int W = numeric_limits<U1>::digits;
static void set_mod(U1 mod) {
assert(mod & 1 && mod <= U1(1) << (W - 2));
m = mod, n2 = -U2(m) % m, r = m;
FOR(5) r *= 2 - m * r;
r = -r;
assert(r * m == U1(-1));
}
static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; }
U1 x;
Mongomery_modint() : x(0) {}
Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){};
U1 val() const {
U1 y = reduce(x);
return y >= m ? y - m : y;
}
mint &operator+=(mint y) {
x = ((x += y.x) >= m ? x - m : x);
return *this;
}
mint &operator-=(mint y) {
x -= (x >= y.x ? y.x : y.x - m);
return *this;
}
mint &operator*=(mint y) {
x = reduce(U2(x) * y.x);
return *this;
}
mint operator+(mint y) const { return mint(*this) += y; }
mint operator-(mint y) const { return mint(*this) -= y; }
mint operator*(mint y) const { return mint(*this) *= y; }
bool operator==(mint y) const {
return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
}
bool operator!=(mint y) const { return not operator==(y); }
mint pow(ll n) const {
assert(n >= 0);
mint y = 1, z = *this;
for (; n; n >>= 1, z *= z)
if (n & 1) y *= z;
return y;
}
};
template <int id>
using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>;
template <int id>
using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>;
#line 3 "library/nt/primetest.hpp"
bool primetest(const u64 x) {
assert(x < u64(1) << 62);
if (x == 2 or x == 3 or x == 5 or x == 7) return true;
if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false;
if (x < 121) return x > 1;
const u64 d = (x - 1) >> lowbit(x - 1);
using mint = Mongomery_modint_64<202311020>;
mint::set_mod(x);
const mint one(u64(1)), minus_one(x - 1);
auto ok = [&](u64 a) -> bool {
auto y = mint(a).pow(d);
u64 t = d;
while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1;
if (y != minus_one && t % 2 == 0) return false;
return true;
};
if (x < (u64(1) << 32)) {
for (u64 a: {2, 7, 61})
if (!ok(a)) return false;
} else {
for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (!ok(a)) return false;
}
}
return true;
}
#line 5 "library/nt/factor.hpp"
template <typename mint>
ll rho(ll n, ll c) {
assert(n > 1);
const mint cc(c);
auto f = [&](mint x) { return x * x + cc; };
mint x = 1, y = 2, z = 1, q = 1;
ll g = 1;
const ll m = 1LL << (__lg(n) / 5);
for (ll r = 1; g == 1; r <<= 1) {
x = y;
FOR(r) y = f(y);
for (ll k = 0; k < r && g == 1; k += m) {
z = y;
FOR(min(m, r - k)) y = f(y), q *= x - y;
g = gcd(q.val(), n);
}
}
if (g == n) do {
z = f(z);
g = gcd((x - z).val(), n);
} while (g == 1);
return g;
}
ll find_prime_factor(ll n) {
assert(n > 1);
if (primetest(n)) return n;
FOR(100) {
ll m = 0;
if (n < (1 << 30)) {
using mint = Mongomery_modint_32<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
} else {
using mint = Mongomery_modint_64<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
}
if (primetest(m)) return m;
n = m;
}
assert(0);
return -1;
}
// ソートしてくれる
vc<pair<ll, int>> factor(ll n) {
assert(n >= 1);
vc<pair<ll, int>> pf;
FOR(p, 2, 100) {
if (p * p > n) break;
if (n % p == 0) {
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
}
while (n > 1) {
ll p = find_prime_factor(n);
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
sort(all(pf));
return pf;
}
vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) {
vc<pair<ll, int>> res;
while (n > 1) {
int p = lpf[n];
int e = 0;
while (n % p == 0) {
n /= p;
++e;
}
res.eb(p, e);
}
return res;
}
#line 2 "library/mod/mod_pow.hpp"
#line 2 "library/mod/barrett.hpp"
// https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp
struct Barrett {
u32 m;
u64 im;
explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {}
u32 umod() const { return m; }
u32 modulo(u64 z) {
if (m == 1) return 0;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z - y + (z < y ? m : 0));
}
u64 floor(u64 z) {
if (m == 1) return z;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z < y ? x - 1 : x);
}
pair<u64, u32> divmod(u64 z) {
if (m == 1) return {z, 0};
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
if (z < y) return {x - 1, z - y + m};
return {x, z - y};
}
u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); }
};
struct Barrett_64 {
u128 mod, mh, ml;
explicit Barrett_64(u64 mod = 1) : mod(mod) {
u128 m = u128(-1) / mod;
if (m * mod + mod == u128(0)) ++m;
mh = m >> 64;
ml = m & u64(-1);
}
u64 umod() const { return mod; }
u64 modulo(u128 x) {
u128 z = (x & u64(-1)) * ml;
z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64);
z = (x >> 64) * mh + (z >> 64);
x -= z * mod;
return x < mod ? x : x - mod;
}
u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); }
};
#line 5 "library/mod/mod_pow.hpp"
u32 mod_pow(int a, ll n, int mod) {
assert(n >= 0);
a = ((a %= mod) < 0 ? a + mod : a);
if ((mod & 1) && (mod < (1 << 30))) {
using mint = Mongomery_modint_32<202311021>;
mint::set_mod(mod);
return mint(a).pow(n).val();
}
Barrett bt(mod);
int r = 1;
while (n) {
if (n & 1) r = bt.mul(r, a);
a = bt.mul(a, a), n >>= 1;
}
return r;
}
u64 mod_pow_64(ll a, ll n, u64 mod) {
assert(n >= 0);
a = ((a %= mod) < 0 ? a + mod : a);
if ((mod & 1) && (mod < (u64(1) << 62))) {
using mint = Mongomery_modint_64<202311021>;
mint::set_mod(mod);
return mint(a).pow(n).val();
}
Barrett_64 bt(mod);
ll r = 1;
while (n) {
if (n & 1) r = bt.mul(r, a);
a = bt.mul(a, a), n >>= 1;
}
return r;
}
#line 6 "library/mod/primitive_root.hpp"
// int
int primitive_root(int p) {
auto pf = factor(p - 1);
auto is_ok = [&](int g) -> bool {
for (auto&& [q, e]: pf)
if (mod_pow(g, (p - 1) / q, p) == 1) return false;
return true;
};
while (1) {
int x = RNG(1, p);
if (is_ok(x)) return x;
}
return -1;
}
ll primitive_root_64(ll p) {
auto pf = factor(p - 1);
auto is_ok = [&](ll g) -> bool {
for (auto&& [q, e]: pf)
if (mod_pow_64(g, (p - 1) / q, p) == 1) return false;
return true;
};
while (1) {
ll x = RNG(1, p);
if (is_ok(x)) return x;
}
return -1;
}
#line 6 "library/mod/dynamic_modint.hpp"
template <int id>
struct Dynamic_Modint {
static constexpr bool is_modint = true;
using mint = Dynamic_Modint;
u32 val;
static Barrett bt;
static u32 umod() { return bt.umod(); }
static int get_mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = Barrett(m);
}
static Dynamic_Modint raw(u32 v) {
Dynamic_Modint x;
x.val = v;
return x;
}
Dynamic_Modint() : val(0) {}
Dynamic_Modint(u32 x) : val(bt.modulo(x)) {}
Dynamic_Modint(u64 x) : val(bt.modulo(x)) {}
Dynamic_Modint(int x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {}
Dynamic_Modint(ll x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {}
mint& operator+=(const mint& rhs) {
val = (val += rhs.val) < umod() ? val : val - umod();
return *this;
}
mint& operator-=(const mint& rhs) {
val = (val += umod() - rhs.val) < umod() ? val : val - umod();
return *this;
}
mint& operator*=(const mint& rhs) {
val = bt.mul(val, rhs.val);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inverse(); }
mint operator-() const { return mint() - *this; }
mint pow(ll n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x, n >>= 1;
}
return r;
}
mint inverse() const {
int x = val, mod = get_mod();
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (u < 0) u += mod;
return u;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs.val == rhs.val;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs.val != rhs.val;
}
static pair<int, int>& get_ntt() {
static pair<int, int> p = {-1, -1};
return p;
}
static void set_ntt_info() {
int mod = get_mod();
int k = lowbit(mod - 1);
int r = primitive_root(mod);
r = mod_pow(r, (mod - 1) >> k, mod);
get_ntt() = {k, r};
}
static pair<int, int> ntt_info() { return get_ntt(); }
static bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int id>
void rd(Dynamic_Modint<id>& x) {
fastio::rd(x.val);
x.val %= Dynamic_Modint<id>::umod();
}
template <int id>
void wt(Dynamic_Modint<id> x) {
fastio::wt(x.val);
}
#endif
using dmint = Dynamic_Modint<-1>;
template <int id>
Barrett Dynamic_Modint<id>::bt;
#line 3 "library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1045430273) return {20, 363};
if (mod == 1051721729) return {20, 330};
if (mod == 1053818881) return {20, 2789};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 3 "library/linalg/matrix_mul.hpp"
template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<vc<T>> matrix_mul(const vc<vc<T>>& A, const vc<vc<T>>& B, int N1 = -1,
int N2 = -1, int N3 = -1) {
if (N1 == -1) { N1 = len(A), N2 = len(B), N3 = len(B[0]); }
vv(u32, b, N3, N2);
FOR(i, N2) FOR(j, N3) b[j][i] = B[i][j].val;
vv(T, C, N1, N3);
if ((T::get_mod() < (1 << 30)) && N2 <= 16) {
FOR(i, N1) FOR(j, N3) {
u64 sm = 0;
FOR(m, N2) sm += u64(A[i][m].val) * b[j][m];
C[i][j] = sm;
}
} else {
FOR(i, N1) FOR(j, N3) {
u128 sm = 0;
FOR(m, N2) sm += u64(A[i][m].val) * b[j][m];
C[i][j] = T::raw(sm % (T::get_mod()));
}
}
return C;
}
template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<vc<T>> matrix_mul(const vc<vc<T>>& A, const vc<vc<T>>& B, int N1 = -1,
int N2 = -1, int N3 = -1) {
if (N1 == -1) { N1 = len(A), N2 = len(B), N3 = len(B[0]); }
vv(T, b, N2, N3);
FOR(i, N2) FOR(j, N3) b[j][i] = B[i][j];
vv(T, C, N1, N3);
FOR(n, N1) FOR(m, N2) FOR(k, N3) C[n][k] += A[n][m] * b[k][m];
return C;
}
// square-matrix defined as array
template <class T, int N>
array<array<T, N>, N> matrix_mul(const array<array<T, N>, N>& A,
const array<array<T, N>, N>& B) {
array<array<T, N>, N> C{};
if ((T::get_mod() < (1 << 30)) && N <= 16) {
FOR(i, N) FOR(k, N) {
u64 sm = 0;
FOR(j, N) sm += u64(A[i][j].val) * (B[j][k].val);
C[i][k] = sm;
}
} else {
FOR(i, N) FOR(k, N) {
u128 sm = 0;
FOR(j, N) sm += u64(A[i][j].val) * (B[j][k].val);
C[i][k] = sm;
}
}
return C;
}
#line 2 "library/alg/monoid/mul.hpp"
template <class T>
struct Monoid_Mul {
using value_type = T;
using X = T;
static constexpr X op(const X &x, const X &y) noexcept { return x * y; }
static constexpr X inverse(const X &x) noexcept { return X(1) / x; }
static constexpr X unit() { return X(1); }
static constexpr bool commute = true;
};
#line 1 "library/ds/sliding_window_aggregation.hpp"
template <class Monoid>
struct Sliding_Window_Aggregation {
using X = typename Monoid::value_type;
using value_type = X;
int sz = 0;
vc<X> dat;
vc<X> cum_l;
X cum_r;
Sliding_Window_Aggregation()
: cum_l({Monoid::unit()}), cum_r(Monoid::unit()) {}
int size() { return sz; }
void push(X x) {
++sz;
cum_r = Monoid::op(cum_r, x);
dat.eb(x);
}
void pop() {
--sz;
cum_l.pop_back();
if (len(cum_l) == 0) {
cum_l = {Monoid::unit()};
cum_r = Monoid::unit();
while (len(dat) > 1) {
cum_l.eb(Monoid::op(dat.back(), cum_l.back()));
dat.pop_back();
}
dat.pop_back();
}
}
X lprod() { return cum_l.back(); }
X rprod() { return cum_r; }
X prod() { return Monoid::op(cum_l.back(), cum_r); }
};
// 定数倍は目に見えて遅くなるので、queue でよいときは使わない
template <class Monoid>
struct SWAG_deque {
using X = typename Monoid::value_type;
using value_type = X;
int sz;
vc<X> dat_l, dat_r;
vc<X> cum_l, cum_r;
SWAG_deque() : sz(0), cum_l({Monoid::unit()}), cum_r({Monoid::unit()}) {}
int size() { return sz; }
void push_back(X x) {
++sz;
dat_r.eb(x);
cum_r.eb(Monoid::op(cum_r.back(), x));
}
void push_front(X x) {
++sz;
dat_l.eb(x);
cum_l.eb(Monoid::op(x, cum_l.back()));
}
void push(X x) { push_back(x); }
void clear() {
sz = 0;
dat_l.clear(), dat_r.clear();
cum_l = {Monoid::unit()}, cum_r = {Monoid::unit()};
}
void pop_front() {
if (sz == 1) return clear();
if (dat_l.empty()) rebuild();
--sz;
dat_l.pop_back();
cum_l.pop_back();
}
void pop_back() {
if (sz == 1) return clear();
if (dat_r.empty()) rebuild();
--sz;
dat_r.pop_back();
cum_r.pop_back();
}
void pop() { pop_front(); }
X lprod() { return cum_l.back(); }
X rprod() { return cum_r.back(); }
X prod() { return Monoid::op(cum_l.back(), cum_r.back()); }
X prod_all() { return prod(); }
private:
void rebuild() {
vc<X> X;
FOR_R(i, len(dat_l)) X.eb(dat_l[i]);
X.insert(X.end(), all(dat_r));
clear();
int m = len(X) / 2;
FOR_R(i, m) push_front(X[i]);
FOR(i, m, len(X)) push_back(X[i]);
assert(sz == len(X));
}
};
#line 2 "library/mod/mod_inv.hpp"
// long でも大丈夫
// (val * x - 1) が mod の倍数になるようにする
// 特に mod=0 なら x=0 が満たす
ll mod_inv(ll val, ll mod) {
if (mod == 0) return 0;
mod = abs(mod);
val %= mod;
if (val < 0) val += mod;
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (u < 0) u += mod;
return u;
}
#line 1 "library/mod/crt3.hpp"
constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) {
a %= mod;
u64 res = 1;
FOR(32) {
if (n & 1) res = res * a % mod;
a = a * a % mod, n /= 2;
}
return res;
}
template <typename T, u32 p0, u32 p1, u32 p2>
T CRT3(u64 a0, u64 a1, u64 a2) {
static_assert(p0 < p1 && p1 < p2);
static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x01_2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
u64 c = (a1 - a0 + p1) * x0_1 % p1;
u64 a = a0 + c * p0;
c = (a2 - a % p2 + p2) * x01_2 % p2;
return T(a) + T(c) * T(p0) * T(p1);
}
#line 2 "library/poly/convolution_naive.hpp"
template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
int n = int(a.size()), m = int(b.size());
if (n > m) return convolution_naive<T>(b, a);
if (n == 0) return {};
vector<T> ans(n + m - 1);
FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];
return ans;
}
template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
int n = int(a.size()), m = int(b.size());
if (n > m) return convolution_naive<T>(b, a);
if (n == 0) return {};
vc<T> ans(n + m - 1);
if (n <= 16 && (T::get_mod() < (1 << 30))) {
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
u64 sm = 0;
for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
ans[k] = sm;
}
} else {
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
u128 sm = 0;
for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
ans[k] = T::raw(sm % T::get_mod());
}
}
return ans;
}
#line 2 "library/poly/convolution_karatsuba.hpp"
// 任意の環でできる
template <typename T>
vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) {
const int thresh = 30;
if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g);
int n = max(len(f), len(g));
int m = ceil(n, 2);
vc<T> f1, f2, g1, g2;
if (len(f) < m) f1 = f;
if (len(f) >= m) f1 = {f.begin(), f.begin() + m};
if (len(f) >= m) f2 = {f.begin() + m, f.end()};
if (len(g) < m) g1 = g;
if (len(g) >= m) g1 = {g.begin(), g.begin() + m};
if (len(g) >= m) g2 = {g.begin() + m, g.end()};
vc<T> a = convolution_karatsuba(f1, g1);
vc<T> b = convolution_karatsuba(f2, g2);
FOR(i, len(f2)) f1[i] += f2[i];
FOR(i, len(g2)) g1[i] += g2[i];
vc<T> c = convolution_karatsuba(f1, g1);
vc<T> F(len(f) + len(g) - 1);
assert(2 * m + len(b) <= len(F));
FOR(i, len(a)) F[i] += a[i], c[i] -= a[i];
FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i];
if (c.back() == T(0)) c.pop_back();
FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i];
return F;
}
#line 2 "library/poly/ntt.hpp"
template <class mint>
void ntt(vector<mint>& a, bool inverse) {
assert(mint::can_ntt());
const int rank2 = mint::ntt_info().fi;
const int mod = mint::get_mod();
static array<mint, 30> root, iroot;
static array<mint, 30> rate2, irate2;
static array<mint, 30> rate3, irate3;
assert(rank2 != -1 && len(a) <= (1 << max(0, rank2)));
static bool prepared = 0;
if (!prepared) {
prepared = 1;
root[rank2] = mint::ntt_info().se;
iroot[rank2] = mint(1) / root[rank2];
FOR_R(i, rank2) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
int n = int(a.size());
int h = topbit(n);
assert(n == 1 << h);
if (!inverse) {
int len = 0;
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
FOR(s, 1 << len) {
int offset = s << (h - len);
FOR(i, p) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
rot *= rate2[topbit(~s & -~s)];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
u64 mod2 = u64(mod) * mod;
u64 a0 = a[i + offset].val;
u64 a1 = u64(a[i + offset + p].val) * rot.val;
u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
u64 na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
rot *= rate3[topbit(~s & -~s)];
}
len += 2;
}
}
} else {
mint coef = mint(1) / mint(len(a));
FOR(i, len(a)) a[i] *= coef;
int len = h;
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
FOR(s, 1 << (len - 1)) {
int offset = s << (h - len + 1);
FOR(i, p) {
u64 l = a[i + offset].val;
u64 r = a[i + offset + p].val;
a[i + offset] = l + r;
a[i + offset + p] = (mod + l - r) * irot.val;
}
irot *= irate2[topbit(~s & -~s)];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = iroot[2];
FOR(s, (1 << (len - 2))) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
u64 a0 = a[i + offset + 0 * p].val;
u64 a1 = a[i + offset + 1 * p].val;
u64 a2 = a[i + offset + 2 * p].val;
u64 a3 = a[i + offset + 3 * p].val;
u64 x = (mod + a2 - a3) * iimag.val % mod;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
}
irot *= irate3[topbit(~s & -~s)];
}
len -= 2;
}
}
}
}
#line 1 "library/poly/fft.hpp"
namespace CFFT {
using real = double;
struct C {
real x, y;
C() : x(0), y(0) {}
C(real x, real y) : x(x), y(y) {}
inline C operator+(const C& c) const { return C(x + c.x, y + c.y); }
inline C operator-(const C& c) const { return C(x - c.x, y - c.y); }
inline C operator*(const C& c) const {
return C(x * c.x - y * c.y, x * c.y + y * c.x);
}
inline C conj() const { return C(x, -y); }
};
const real PI = acosl(-1);
int base = 1;
vector<C> rts = {{0, 0}, {1, 0}};
vector<int> rev = {0, 1};
void ensure_base(int nbase) {
if (nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for (int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while (base < nbase) {
real angle = PI * 2.0 / (1 << (base + 1));
for (int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector<C>& a, int n) {
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for (int i = 0; i < n; i++) {
if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); }
}
for (int k = 1; k < n; k <<= 1) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j++) {
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
} // namespace CFFT
#line 9 "library/poly/convolution.hpp"
template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
if (a.empty() || b.empty()) return {};
int n = int(a.size()), m = int(b.size());
int sz = 1;
while (sz < n + m - 1) sz *= 2;
// sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。
if ((n + m - 3) <= sz / 2) {
auto a_last = a.back(), b_last = b.back();
a.pop_back(), b.pop_back();
auto c = convolution(a, b);
c.resize(n + m - 1);
c[n + m - 2] = a_last * b_last;
FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;
FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;
return c;
}
a.resize(sz), b.resize(sz);
bool same = a == b;
ntt(a, 0);
if (same) {
b = a;
} else {
ntt(b, 0);
}
FOR(i, sz) a[i] *= b[i];
ntt(a, 1);
a.resize(n + m - 1);
return a;
}
template <typename mint>
vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
static constexpr int p0 = 167772161;
static constexpr int p1 = 469762049;
static constexpr int p2 = 754974721;
using mint0 = modint<p0>;
using mint1 = modint<p1>;
using mint2 = modint<p2>;
vc<mint0> a0(n), b0(m);
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
auto c0 = convolution_ntt<mint0>(a0, b0);
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
vc<mint> c(len(c0));
FOR(i, n + m - 1) {
c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val);
}
return c;
}
template <typename R>
vc<double> convolution_fft(const vc<R>& a, const vc<R>& b) {
using C = CFFT::C;
int need = (int)a.size() + (int)b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need) nbase++;
CFFT::ensure_base(nbase);
int sz = 1 << nbase;
vector<C> fa(sz);
for (int i = 0; i < sz; i++) {
double x = (i < (int)a.size() ? a[i] : 0);
double y = (i < (int)b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
CFFT::fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for (int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for (int i = 0; i < (sz >> 1); i++) {
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * CFFT::rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
CFFT::fft(fa, sz >> 1);
vector<double> ret(need);
for (int i = 0; i < need; i++) {
ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
vector<ll> convolution(const vector<ll>& a, const vector<ll>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (min(n, m) <= 2500) return convolution_naive(a, b);
ll abs_sum_a = 0, abs_sum_b = 0;
ll LIM = 1e15;
FOR(i, n) abs_sum_a = min(LIM, abs_sum_a + abs(a[i]));
FOR(i, m) abs_sum_b = min(LIM, abs_sum_b + abs(b[i]));
if (i128(abs_sum_a) * abs_sum_b < 1e15) {
vc<double> c = convolution_fft<ll>(a, b);
vc<ll> res(len(c));
FOR(i, len(c)) res[i] = ll(floor(c[i] + .5));
return res;
}
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static const unsigned long long i1 = mod_inv(MOD2 * MOD3, MOD1);
static const unsigned long long i2 = mod_inv(MOD1 * MOD3, MOD2);
static const unsigned long long i3 = mod_inv(MOD1 * MOD2, MOD3);
using mint1 = modint<MOD1>;
using mint2 = modint<MOD2>;
using mint3 = modint<MOD3>;
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
vc<mint3> a3(n), b3(m);
FOR(i, n) a1[i] = a[i], a2[i] = a[i], a3[i] = a[i];
FOR(i, m) b1[i] = b[i], b2[i] = b[i], b3[i] = b[i];
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
auto c3 = convolution_ntt<mint3>(a3, b3);
vc<ll> c(n + m - 1);
FOR(i, n + m - 1) {
u64 x = 0;
x += (c1[i].val * i1) % MOD1 * M2M3;
x += (c2[i].val * i2) % MOD2 * M1M3;
x += (c3[i].val * i3) % MOD3 * M1M2;
ll diff = c1[i].val - ((long long)(x) % (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5]
= {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
template <typename mint>
vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (mint::can_ntt()) {
if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b);
return convolution_ntt(a, b);
}
if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b);
return convolution_garner(a, b);
}
#line 5 "library/poly/lagrange_interpolate_iota.hpp"
// Input: f(0), ..., f(n-1) and c. Return: f(c)
template <typename T, typename enable_if<has_mod<T>::value>::type * = nullptr>
T lagrange_interpolate_iota(vc<T> &f, T c) {
int n = len(f);
if (int(c.val) < n) return f[c.val];
auto a = f;
FOR(i, n) {
a[i] = a[i] * fact_inv<T>(i) * fact_inv<T>(n - 1 - i);
if ((n - 1 - i) & 1) a[i] = -a[i];
}
vc<T> lp(n + 1), rp(n + 1);
lp[0] = rp[n] = 1;
FOR(i, n) lp[i + 1] = lp[i] * (c - i);
FOR_R(i, n) rp[i] = rp[i + 1] * (c - i);
T ANS = 0;
FOR(i, n) ANS += a[i] * lp[i] * rp[i + 1];
return ANS;
}
// mod じゃない場合。かなり低次の多項式を想定している。O(n^2)
// Input: f(0), ..., f(n-1) and c. Return: f(c)
template <typename T, typename enable_if<!has_mod<T>::value>::type * = nullptr>
T lagrange_interpolate_iota(vc<T> &f, T c) {
const int LIM = 10;
int n = len(f);
assert(n < LIM);
// (-1)^{i-j} binom(i,j)
static vvc<int> C;
if (C.empty()) {
C.assign(LIM, vc<int>(LIM));
C[0][0] = 1;
FOR(n, 1, LIM) FOR(k, n + 1) {
C[n][k] += C[n - 1][k];
if (k) C[n][k] += C[n - 1][k - 1];
}
FOR(n, LIM) FOR(k, n + 1) if ((n + k) % 2) C[n][k] = -C[n][k];
}
// f(x) = sum a_i binom(x,i)
vc<T> a(n);
FOR(i, n) FOR(j, i + 1) { a[i] += f[j] * C[i][j]; }
T res = 0;
T b = 1;
FOR(i, n) {
res += a[i] * b;
b = b * (c - i) / (1 + i);
}
return res;
}
// Input: f(0), ..., f(n-1) and c, m
// Return: f(c), f(c+1), ..., f(c+m-1)
// Complexity: M(n, n + m)
template <typename mint>
vc<mint> lagrange_interpolate_iota(vc<mint> &f, mint c, int m) {
if (m <= 60) {
vc<mint> ANS(m);
FOR(i, m) ANS[i] = lagrange_interpolate_iota(f, c + mint(i));
return ANS;
}
ll n = len(f);
auto a = f;
FOR(i, n) {
a[i] = a[i] * fact_inv<mint>(i) * fact_inv<mint>(n - 1 - i);
if ((n - 1 - i) & 1) a[i] = -a[i];
}
// x = c, c+1, ... に対して a0/x + a1/(x-1) + ... を求めておく
vc<mint> b(n + m - 1);
FOR(i, n + m - 1) b[i] = mint(1) / (c + mint(i - n + 1));
a = convolution(a, b);
Sliding_Window_Aggregation<Monoid_Mul<mint>> swag;
vc<mint> ANS(m);
ll L = 0, R = 0;
FOR(i, m) {
while (L < i) { swag.pop(), ++L; }
while (R - L < n) { swag.push(c + mint((R++) - n + 1)); }
auto coef = swag.prod();
if (coef == 0) {
ANS[i] = f[(c + i).val];
} else {
ANS[i] = a[i + n - 1] * coef;
}
}
return ANS;
}
#line 4 "library/poly/prefix_product_of_poly.hpp"
// A[k-1]...A[0] を計算する
// アルゴリズム参考:https://github.com/noshi91/n91lib_rs/blob/master/src/algorithm/polynomial_matrix_prod.rs
// 実装参考:https://nyaannyaan.github.io/library/matrix/polynomial-matrix-prefix-prod.hpp
template <typename T>
vc<vc<T>> prefix_product_of_poly_matrix(vc<vc<vc<T>>>& A, ll k) {
int n = len(A);
using MAT = vc<vc<T>>;
auto shift = [&](vc<MAT>& G, T x) -> vc<MAT> {
int d = len(G);
vvv(T, H, d, n, n);
FOR(i, n) FOR(j, n) {
vc<T> g(d);
FOR(l, d) g[l] = G[l][i][j];
auto h = lagrange_interpolate_iota(g, x, d);
FOR(l, d) H[l][i][j] = h[l];
}
return H;
};
auto evaluate = [&](vc<T>& f, T x) -> T {
T res = 0;
T p = 1;
FOR(i, len(f)) {
res += f[i] * p;
p *= x;
}
return res;
};
ll deg = 1;
FOR(i, n) FOR(j, n) chmax(deg, len(A[i][j]) - 1);
vc<MAT> G(deg + 1);
ll v = 1;
while (deg * v * v < k) v *= 2;
T iv = T(1) / T(v);
FOR(i, len(G)) {
T x = T(v) * T(i);
vv(T, mat, n, n);
FOR(j, n) FOR(k, n) mat[j][k] = evaluate(A[j][k], x);
G[i] = mat;
}
for (ll w = 1; w != v; w *= 2) {
T W = w;
auto G1 = shift(G, W * iv);
auto G2 = shift(G, (W * T(deg) * T(v) + T(v)) * iv);
auto G3 = shift(G, (W * T(deg) * T(v) + T(v) + W) * iv);
FOR(i, w * deg + 1) {
G[i] = matrix_mul(G1[i], G[i]);
G2[i] = matrix_mul(G3[i], G2[i]);
}
copy(G2.begin(), G2.end() - 1, back_inserter(G));
}
vv(T, res, n, n);
FOR(i, n) res[i][i] = 1;
ll i = 0;
while (i + v <= k) res = matrix_mul(G[i / v], res), i += v;
while (i < k) {
vv(T, mat, n, n);
FOR(j, n) FOR(k, n) mat[j][k] = evaluate(A[j][k], i);
res = matrix_mul(mat, res);
++i;
}
return res;
}
// f[k-1]...f[0] を計算する
template <typename T>
T prefix_product_of_poly(vc<T>& f, ll k) {
vc<vc<vc<T>>> A(1);
A[0].resize(1);
A[0][0] = f;
auto res = prefix_product_of_poly_matrix(A, k);
return res[0][0];
}
#line 2 "library/seq/kth_term_of_p_recursive.hpp"
// a0, ..., a_{r-1} および f_0, ..., f_r を与える
// a_r f_0(0) + a_{r-1}f_1(0) + ... = 0
// a_{r+1} f_0(1) + a_{r}f_1(1) + ... = 0
template <typename T>
T kth_term_of_p_recursive(vc<T> a, vc<vc<T>>& fs, ll k) {
int r = len(a);
assert(len(fs) == r + 1);
if (k < r) return a[k];
vc<vc<vc<T>>> A;
A.resize(r);
FOR(i, r) A[i].resize(r);
FOR(i, r) {
// A[0][i] = -fs[i + 1];
for (auto&& x: fs[i + 1]) A[0][i].eb(-x);
}
FOR3(i, 1, r) A[i][i - 1] = fs[0];
vc<T> den = fs[0];
auto res = prefix_product_of_poly_matrix(A, k - r + 1);
reverse(all(a));
T ANS = 0;
FOR(j, r) ANS += res[0][j] * a[j];
ANS /= prefix_product_of_poly(den, k - r + 1);
return ANS;
}
#line 6 "main.cpp"
void solve() {
LL(N, mod);
using mint = dmint;
mint::set_mod(mod);
vc<mint> A = {1, 4, 28};
vvc<mint> fs(4);
fs[0] = {mint(-4) / mint(864), mint(-1) / mint(864)};
fs[1] = {mint(80) / mint(864), mint(29) / mint(864)};
fs[2] = {mint(-37) / mint(72), mint(-23) / mint(72)};
fs[3] = {mint(1) / mint(2), mint(1)};
mint ans = kth_term_of_p_recursive<mint>(A, fs, N);
print(ans);
}
signed main() {
solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 4020kb
input:
1 998244353
output:
4
result:
ok "4"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3812kb
input:
2 900000011
output:
28
result:
ok "28"
Test #3:
score: 0
Accepted
time: 21ms
memory: 4636kb
input:
999937 999999937
output:
170733195
result:
ok "170733195"
Test #4:
score: 0
Accepted
time: 446ms
memory: 11940kb
input:
167167924 924924167
output:
596516682
result:
ok "596516682"
Test #5:
score: 0
Accepted
time: 909ms
memory: 20504kb
input:
831034609 960842557
output:
713077575
result:
ok "713077575"
Test #6:
score: 0
Accepted
time: 936ms
memory: 20564kb
input:
863561819 960340721
output:
36551280
result:
ok "36551280"
Test #7:
score: 0
Accepted
time: 914ms
memory: 20500kb
input:
822678662 904636463
output:
110525574
result:
ok "110525574"
Test #8:
score: 0
Accepted
time: 921ms
memory: 20548kb
input:
834446518 949829633
output:
481797759
result:
ok "481797759"
Test #9:
score: 0
Accepted
time: 927ms
memory: 20564kb
input:
866653150 924518537
output:
418736071
result:
ok "418736071"
Test #10:
score: 0
Accepted
time: 938ms
memory: 20564kb
input:
900000000 945380759
output:
777900344
result:
ok "777900344"
Test #11:
score: 0
Accepted
time: 939ms
memory: 20480kb
input:
899999999 965001769
output:
758027795
result:
ok "758027795"
Test #12:
score: 0
Accepted
time: 929ms
memory: 20696kb
input:
899999998 964310621
output:
213037885
result:
ok "213037885"
Test #13:
score: 0
Accepted
time: 933ms
memory: 20504kb
input:
899999997 911051677
output:
140568971
result:
ok "140568971"
Test #14:
score: 0
Accepted
time: 891ms
memory: 20460kb
input:
899999996 910915007
output:
779356343
result:
ok "779356343"
Test #15:
score: 0
Accepted
time: 933ms
memory: 20604kb
input:
899999995 904472021
output:
240020425
result:
ok "240020425"
Test #16:
score: 0
Accepted
time: 942ms
memory: 20708kb
input:
899999994 983911997
output:
789822976
result:
ok "789822976"
Test #17:
score: 0
Accepted
time: 928ms
memory: 20548kb
input:
899999993 906669713
output:
389298197
result:
ok "389298197"
Test #18:
score: 0
Accepted
time: 925ms
memory: 20624kb
input:
899999992 991936241
output:
208720220
result:
ok "208720220"
Test #19:
score: 0
Accepted
time: 925ms
memory: 20664kb
input:
899999991 916035773
output:
634945387
result:
ok "634945387"
Test #20:
score: 0
Accepted
time: 935ms
memory: 20636kb
input:
564883390 910858603
output:
686396817
result:
ok "686396817"
Test #21:
score: 0
Accepted
time: 910ms
memory: 20492kb
input:
768069548 918722461
output:
617379002
result:
ok "617379002"
Test #22:
score: 0
Accepted
time: 910ms
memory: 20736kb
input:
899723318 982259209
output:
591025104
result:
ok "591025104"
Test #23:
score: 0
Accepted
time: 918ms
memory: 20544kb
input:
605073563 907482073
output:
561081415
result:
ok "561081415"
Test #24:
score: 0
Accepted
time: 903ms
memory: 20660kb
input:
366317911 974921639
output:
826203883
result:
ok "826203883"
Test #25:
score: 0
Accepted
time: 100ms
memory: 6140kb
input:
4705443 912188153
output:
59076968
result:
ok "59076968"
Test #26:
score: 0
Accepted
time: 91ms
memory: 5884kb
input:
4677951 964852117
output:
354810995
result:
ok "354810995"
Test #27:
score: 0
Accepted
time: 96ms
memory: 5868kb
input:
4987908 992726881
output:
358021425
result:
ok "358021425"
Test #28:
score: 0
Accepted
time: 99ms
memory: 5928kb
input:
4564516 904497749
output:
677047391
result:
ok "677047391"
Test #29:
score: 0
Accepted
time: 100ms
memory: 6208kb
input:
4805950 958611557
output:
530391365
result:
ok "530391365"
Test #30:
score: 0
Accepted
time: 96ms
memory: 5924kb
input:
5000000 972995789
output:
285829649
result:
ok "285829649"
Test #31:
score: 0
Accepted
time: 96ms
memory: 6212kb
input:
4999999 904999313
output:
547438555
result:
ok "547438555"
Test #32:
score: 0
Accepted
time: 96ms
memory: 6140kb
input:
4999998 927293837
output:
48186944
result:
ok "48186944"
Test #33:
score: 0
Accepted
time: 97ms
memory: 6000kb
input:
4999997 913168601
output:
481067448
result:
ok "481067448"
Test #34:
score: 0
Accepted
time: 99ms
memory: 5924kb
input:
4999996 994117843
output:
597780176
result:
ok "597780176"
Test #35:
score: 0
Accepted
time: 92ms
memory: 6144kb
input:
4999995 968266037
output:
675120838
result:
ok "675120838"
Test #36:
score: 0
Accepted
time: 100ms
memory: 6008kb
input:
4999994 904210121
output:
648061474
result:
ok "648061474"
Test #37:
score: 0
Accepted
time: 100ms
memory: 6000kb
input:
4999993 907728929
output:
849380814
result:
ok "849380814"
Test #38:
score: 0
Accepted
time: 100ms
memory: 5896kb
input:
4999992 947455987
output:
206320322
result:
ok "206320322"
Test #39:
score: 0
Accepted
time: 96ms
memory: 6136kb
input:
4999991 974041903
output:
463365147
result:
ok "463365147"
Test #40:
score: 0
Accepted
time: 0ms
memory: 3740kb
input:
1 943308833
output:
4
result:
ok "4"
Test #41:
score: 0
Accepted
time: 0ms
memory: 3884kb
input:
2 945671491
output:
28
result:
ok "28"
Test #42:
score: 0
Accepted
time: 0ms
memory: 4020kb
input:
3 936569281
output:
224
result:
ok "224"
Test #43:
score: 0
Accepted
time: 0ms
memory: 4084kb
input:
4 924568301
output:
1888
result:
ok "1888"
Test #44:
score: 0
Accepted
time: 0ms
memory: 3856kb
input:
5 953983273
output:
16320
result:
ok "16320"
Test #45:
score: 0
Accepted
time: 0ms
memory: 3964kb
input:
6 990997369
output:
143040
result:
ok "143040"
Test #46:
score: 0
Accepted
time: 0ms
memory: 3880kb
input:
7 987104879
output:
1264128
result:
ok "1264128"
Test #47:
score: 0
Accepted
time: 0ms
memory: 4160kb
input:
8 931262323
output:
11230720
result:
ok "11230720"
Test #48:
score: 0
Accepted
time: 0ms
memory: 3964kb
input:
9 968657761
output:
100124672
result:
ok "100124672"
Test #49:
score: 0
Accepted
time: 0ms
memory: 3936kb
input:
10 917158091
output:
894785536
result:
ok "894785536"
Test #50:
score: 0
Accepted
time: 100ms
memory: 5892kb
input:
4617442 970173539
output:
787952622
result:
ok "787952622"
Test #51:
score: 0
Accepted
time: 45ms
memory: 4792kb
input:
2231131 922458703
output:
294167323
result:
ok "294167323"
Test #52:
score: 0
Accepted
time: 44ms
memory: 5076kb
input:
3158509 942524287
output:
379615863
result:
ok "379615863"
Test #53:
score: 0
Accepted
time: 96ms
memory: 6148kb
input:
4392605 900206119
output:
8640947
result:
ok "8640947"
Test #54:
score: 0
Accepted
time: 41ms
memory: 4860kb
input:
2354228 983140729
output:
655547043
result:
ok "655547043"
Extra Test:
score: 0
Extra Test Passed