QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#574939 | #8942. Sugar Sweet 3 | hos_lyric | AC ✓ | 1120ms | 6292kb | C++14 | 7.3kb | 2024-09-19 09:04:44 | 2024-09-19 09:04:44 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 1000000007;
using Mint = ModInt<MO>;
constexpr int LIM_INV = 100'010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];
void prepare() {
inv[1] = 1;
for (int i = 2; i < LIM_INV; ++i) {
inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
}
fac[0] = invFac[0] = 1;
for (int i = 1; i < LIM_INV; ++i) {
fac[i] = fac[i - 1] * i;
invFac[i] = invFac[i - 1] * inv[i];
}
}
Mint binom(Int n, Int k) {
if (n < 0) {
if (k >= 0) {
return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
} else if (n - k >= 0) {
return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
} else {
return 0;
}
} else {
if (0 <= k && k <= n) {
assert(n < LIM_INV);
return fac[n] * invFac[k] * invFac[n - k];
} else {
return 0;
}
}
}
// [x^n] C^k
Mint catalan(int k, int n) {
return (k == 0) ? ((n == 0) ? 1 : 0) : (k * fac[2 * n + k - 1] * invFac[n] * invFac[n + k]);
}
// divided differences
vector<Mint> interpolateNewton(const vector<Mint> &xs, const vector<Mint> &ys) {
const int n = xs.size();
assert(n == (int)ys.size());
vector<pair<Mint, Mint>> bs(n);
for (int i = 0; i < n; ++i) bs[i] = make_pair(ys[i], 1);
for (int i = 1; i < n; ++i) for (int j = n; --j >= i; ) {
// (as[j] -= as[j - 1]) /= (xs[j] - xs[j - i]);
(bs[j].first *= bs[j - 1].second) -= bs[j - 1].first * bs[j].second;
(bs[j].second *= bs[j - 1].second) *= (xs[j] - xs[j - i]);
}
vector<Mint> as(n);
for (int i = 0; i < n; ++i) as[i] = bs[i].first / bs[i].second;
return as;
}
// \sum[i] as[i] \prod[0<=j<i] (x - xs[j])
Mint evalNewton(const vector<Mint> &xs, const vector<Mint> &as, Mint x) {
const int n = xs.size();
assert(n == (int)as.size());
Mint y = 0;
for (int i = n; --i >= 0; ) (y *= (x - xs[i])) += as[i];
return y;
}
int A, B, C, X;
Mint polys[510][510];
int main() {
prepare();
for (; ~scanf("%d%d%d%d", &A, &B, &C, &X); ) {
Mint ans = 0;
int N = A + B + C;
if (N % 2 == 0) {
N /= 2;
for (int p = 0; p <= N; ++p) {
for (int t = 0; t <= N; ++t) {
polys[p][t] = 0;
for (int i = p; i >= 0; --i) {
polys[p][t] *= t;
// if(N<=10&&t==0)cerr<<p<<" "<<i<<": "<<catalan(i,p-i)<<endl;
polys[p][t] += invFac[i] * catalan(i, p - i);
}
}
}
vector<Mint> xs(N + 1), ys(N + 1, 0);
for (int x = 0; x <= N; ++x) xs[x] = x;
for (int p = 0; p <= N; ++p) for (int q = 0; p + q <= N; ++q) {
const int r = N - p - q;
Mint way = 0;
for (int i = 0; i <= p; ++i) {
const int j = i + (A+B-C)/2 - p;
const int k = i + B - p - q;
assert(A == p + j + (r - k));
assert(B == q + k + (p - i));
assert(C == r + i + (q - j));
if (0 <= j && j <= q && 0 <= k && k <= r) {
way += binom(p, i) * binom(q, j) * binom(r, k);
}
}
if (way) {
// cerr<<p<<" "<<q<<" "<<r<<": "<<way<<endl;
for (int t = 0; t <= N; ++t) {
ys[t] += way * polys[p][t] * polys[q][t] * polys[r][t];
}
}
}
const auto as = interpolateNewton(xs, ys);
const int n = N + 1;
vector<Mint> cs(n, 0);
for (int i = n; --i >= 0; ) {
for (int j = n - 1 - i; --j >= 0; ) {
cs[j + 1] += cs[j];
cs[j] *= -xs[i];
}
cs[0] += as[i];
}
for (int i = 0; i <= N; ++i) cs[i] *= fac[i];
// cerr<<"cs = "<<cs<<endl;
for (int i = 0; i <= N; ++i) ans += Mint(i).pow(X) * cs[i];
}
printf("%u\n", ans.x);
}
return 0;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 4992kb
input:
1 2 3 1
output:
110
result:
ok 1 number(s): "110"
Test #2:
score: 0
Accepted
time: 2ms
memory: 5300kb
input:
4 5 7 12
output:
881078346
result:
ok 1 number(s): "881078346"
Test #3:
score: 0
Accepted
time: 1ms
memory: 4988kb
input:
1 1 7 8
output:
0
result:
ok 1 number(s): "0"
Test #4:
score: 0
Accepted
time: 1ms
memory: 4980kb
input:
13 26 88 45
output:
0
result:
ok 1 number(s): "0"
Test #5:
score: 0
Accepted
time: 511ms
memory: 5796kb
input:
100 300 400 1515897
output:
279831696
result:
ok 1 number(s): "279831696"
Test #6:
score: 0
Accepted
time: 405ms
memory: 5680kb
input:
120 310 298 1155114
output:
903227392
result:
ok 1 number(s): "903227392"
Test #7:
score: 0
Accepted
time: 1ms
memory: 5024kb
input:
1 1 2 1
output:
18
result:
ok 1 number(s): "18"
Test #8:
score: 0
Accepted
time: 1ms
memory: 5068kb
input:
5 5 10 1919810
output:
696652039
result:
ok 1 number(s): "696652039"
Test #9:
score: 0
Accepted
time: 1ms
memory: 5280kb
input:
1 1 1 1
output:
0
result:
ok 1 number(s): "0"
Test #10:
score: 0
Accepted
time: 477ms
memory: 5768kb
input:
1 1 798 15154848
output:
0
result:
ok 1 number(s): "0"
Test #11:
score: 0
Accepted
time: 473ms
memory: 6004kb
input:
1 399 400 1616897
output:
987648925
result:
ok 1 number(s): "987648925"
Test #12:
score: 0
Accepted
time: 478ms
memory: 5792kb
input:
400 398 2 45458123
output:
830387421
result:
ok 1 number(s): "830387421"
Test #13:
score: 0
Accepted
time: 8ms
memory: 5136kb
input:
89 75 18 66278
output:
940243796
result:
ok 1 number(s): "940243796"
Test #14:
score: 0
Accepted
time: 1120ms
memory: 6044kb
input:
333 333 334 1
output:
60970749
result:
ok 1 number(s): "60970749"
Test #15:
score: 0
Accepted
time: 1120ms
memory: 6048kb
input:
334 333 333 1000000000
output:
159064905
result:
ok 1 number(s): "159064905"
Test #16:
score: 0
Accepted
time: 932ms
memory: 6276kb
input:
1 499 500 1515987
output:
880517266
result:
ok 1 number(s): "880517266"
Test #17:
score: 0
Accepted
time: 932ms
memory: 6052kb
input:
500 498 2 1514789
output:
93909141
result:
ok 1 number(s): "93909141"
Test #18:
score: 0
Accepted
time: 1026ms
memory: 5980kb
input:
250 250 500 19198877
output:
172243832
result:
ok 1 number(s): "172243832"
Test #19:
score: 0
Accepted
time: 1099ms
memory: 6292kb
input:
300 300 400 75787941
output:
778545661
result:
ok 1 number(s): "778545661"
Test #20:
score: 0
Accepted
time: 2ms
memory: 5308kb
input:
7 16 11 1568
output:
725510153
result:
ok 1 number(s): "725510153"
Extra Test:
score: 0
Extra Test Passed