QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#569575#9330. Series Sumucup-team004#TL 1192ms3884kbC++2015.7kb2024-09-17 00:55:382024-09-17 00:55:38

Judging History

你现在查看的是最新测评结果

  • [2024-09-17 00:55:38]
  • 评测
  • 测评结果:TL
  • 用时:1192ms
  • 内存:3884kb
  • [2024-09-17 00:55:38]
  • 提交

answer

#include <bits/stdc++.h>

using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned;
template<class T>
constexpr T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}

template<int P>
struct MInt {
    int x;
    constexpr MInt() : x{} {}
    constexpr MInt(i64 x) : x{norm(x % getMod())} {}
    
    static int Mod;
    constexpr static int getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(int Mod_) {
        Mod = Mod_;
    }
    constexpr int norm(int x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr int val() const {
        return x;
    }
    explicit constexpr operator int() const {
        return x;
    }
    constexpr MInt operator-() const {
        MInt res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MInt inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MInt &operator*=(MInt rhs) & {
        x = 1LL * x * rhs.x % getMod();
        return *this;
    }
    constexpr MInt &operator+=(MInt rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MInt &operator-=(MInt rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MInt &operator/=(MInt rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MInt operator*(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MInt operator+(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MInt operator-(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MInt operator/(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
        i64 v;
        is >> v;
        a = MInt(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MInt lhs, MInt rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MInt lhs, MInt rhs) {
        return lhs.val() != rhs.val();
    }
};

template<>
int MInt<0>::Mod = 1;

template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();

constexpr int P = 998244353;
using Z = MInt<P>;

std::vector<int> rev;
template<int P>
std::vector<MInt<P>> roots{0, 1};

template<int P>
constexpr MInt<P> findPrimitiveRoot() {
    MInt<P> i = 2;
    int k = __builtin_ctz(P - 1);
    while (true) {
        if (power(i, (P - 1) / 2) != 1) {
            break;
        }
        i += 1;
    }
    return power(i, (P - 1) >> k);
}

template<int P>
constexpr MInt<P> primitiveRoot = findPrimitiveRoot<P>();

template<>
constexpr MInt<998244353> primitiveRoot<998244353> {31};

template<int P>
constexpr void dft(std::vector<MInt<P>> &a) {
    int n = a.size();
    
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
        }
    }
    
    for (int i = 0; i < n; i++) {
        if (rev[i] < i) {
            std::swap(a[i], a[rev[i]]);
        }
    }
    if (roots<P>.size() < n) {
        int k = __builtin_ctz(roots<P>.size());
        roots<P>.resize(n);
        while ((1 << k) < n) {
            auto e = power(primitiveRoot<P>, 1 << (__builtin_ctz(P - 1) - k - 1));
            for (int i = 1 << (k - 1); i < (1 << k); i++) {
                roots<P>[2 * i] = roots<P>[i];
                roots<P>[2 * i + 1] = roots<P>[i] * e;
            }
            k++;
        }
    }
    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; j++) {
                MInt<P> u = a[i + j];
                MInt<P> v = a[i + j + k] * roots<P>[k + j];
                a[i + j] = u + v;
                a[i + j + k] = u - v;
            }
        }
    }
}

template<int P>
constexpr void idft(std::vector<MInt<P>> &a) {
    int n = a.size();
    std::reverse(a.begin() + 1, a.end());
    dft(a);
    MInt<P> inv = (1 - P) / n;
    for (int i = 0; i < n; i++) {
        a[i] *= inv;
    }
}

template<int P = 998244353>
struct Poly : public std::vector<MInt<P>> {
    using Value = MInt<P>;
    
    Poly() : std::vector<Value>() {}
    explicit constexpr Poly(int n) : std::vector<Value>(n) {}
    
    explicit constexpr Poly(const std::vector<Value> &a) : std::vector<Value>(a) {}
    constexpr Poly(const std::initializer_list<Value> &a) : std::vector<Value>(a) {}
    
    template<class InputIt, class = std::_RequireInputIter<InputIt>>
    explicit constexpr Poly(InputIt first, InputIt last) : std::vector<Value>(first, last) {}
    
    template<class F>
    explicit constexpr Poly(int n, F f) : std::vector<Value>(n) {
        for (int i = 0; i < n; i++) {
            (*this)[i] = f(i);
        }
    }
    
    constexpr Poly shift(int k) const {
        if (k >= 0) {
            auto b = *this;
            b.insert(b.begin(), k, 0);
            return b;
        } else if (this->size() <= -k) {
            return Poly();
        } else {
            return Poly(this->begin() + (-k), this->end());
        }
    }
    constexpr Poly trunc(int k) const {
        Poly f = *this;
        f.resize(k);
        return f;
    }
    constexpr friend Poly operator+(const Poly &a, const Poly &b) {
        Poly res(std::max(a.size(), b.size()));
        for (int i = 0; i < a.size(); i++) {
            res[i] += a[i];
        }
        for (int i = 0; i < b.size(); i++) {
            res[i] += b[i];
        }
        return res;
    }
    constexpr friend Poly operator-(const Poly &a, const Poly &b) {
        Poly res(std::max(a.size(), b.size()));
        for (int i = 0; i < a.size(); i++) {
            res[i] += a[i];
        }
        for (int i = 0; i < b.size(); i++) {
            res[i] -= b[i];
        }
        return res;
    }
    constexpr friend Poly operator-(const Poly &a) {
        std::vector<Value> res(a.size());
        for (int i = 0; i < int(res.size()); i++) {
            res[i] = -a[i];
        }
        return Poly(res);
    }
    constexpr friend Poly operator*(Poly a, Poly b) {
        if (a.size() == 0 || b.size() == 0) {
            return Poly();
        }
        if (a.size() < b.size()) {
            std::swap(a, b);
        }
        int n = 1, tot = a.size() + b.size() - 1;
        while (n < tot) {
            n *= 2;
        }
        if (((P - 1) & (n - 1)) != 0 || b.size() < 128) {
            Poly c(a.size() + b.size() - 1);
            for (int i = 0; i < a.size(); i++) {
                for (int j = 0; j < b.size(); j++) {
                    c[i + j] += a[i] * b[j];
                }
            }
            return c;
        }
        a.resize(n);
        b.resize(n);
        dft(a);
        dft(b);
        for (int i = 0; i < n; ++i) {
            a[i] *= b[i];
        }
        idft(a);
        a.resize(tot);
        return a;
    }
    constexpr friend Poly operator*(Value a, Poly b) {
        for (int i = 0; i < int(b.size()); i++) {
            b[i] *= a;
        }
        return b;
    }
    constexpr friend Poly operator*(Poly a, Value b) {
        for (int i = 0; i < int(a.size()); i++) {
            a[i] *= b;
        }
        return a;
    }
    constexpr friend Poly operator/(Poly a, Value b) {
        for (int i = 0; i < int(a.size()); i++) {
            a[i] /= b;
        }
        return a;
    }
    constexpr Poly &operator+=(Poly b) {
        return (*this) = (*this) + b;
    }
    constexpr Poly &operator-=(Poly b) {
        return (*this) = (*this) - b;
    }
    constexpr Poly &operator*=(Poly b) {
        return (*this) = (*this) * b;
    }
    constexpr Poly &operator*=(Value b) {
        return (*this) = (*this) * b;
    }
    constexpr Poly &operator/=(Value b) {
        return (*this) = (*this) / b;
    }
    constexpr Poly deriv() const {
        if (this->empty()) {
            return Poly();
        }
        Poly res(this->size() - 1);
        for (int i = 0; i < this->size() - 1; ++i) {
            res[i] = (i + 1) * (*this)[i + 1];
        }
        return res;
    }
    constexpr Poly integr() const {
        Poly res(this->size() + 1);
        for (int i = 0; i < this->size(); ++i) {
            res[i + 1] = (*this)[i] / (i + 1);
        }
        return res;
    }
    constexpr Poly inv(int m) const {
        Poly x{(*this)[0].inv()};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{2} - trunc(k) * x)).trunc(k);
        }
        return x.trunc(m);
    }
    constexpr Poly log(int m) const {
        return (deriv() * inv(m)).integr().trunc(m);
    }
    constexpr Poly exp(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{1} - x.log(k) + trunc(k))).trunc(k);
        }
        return x.trunc(m);
    }
    constexpr Poly pow(int k, int m) const {
        int i = 0;
        while (i < this->size() && (*this)[i] == 0) {
            i++;
        }
        if (i == this->size() || 1LL * i * k >= m) {
            return Poly(m);
        }
        Value v = (*this)[i];
        auto f = shift(-i) * v.inv();
        return (f.log(m - i * k) * k).exp(m - i * k).shift(i * k) * power(v, k);
    }
    constexpr Poly sqrt(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x + (trunc(k) * x.inv(k)).trunc(k)) * CInv<2, P>;
        }
        return x.trunc(m);
    }
    constexpr Poly mulT(Poly b) const {
        if (b.size() == 0) {
            return Poly();
        }
        int n = b.size();
        std::reverse(b.begin(), b.end());
        return ((*this) * b).shift(-(n - 1));
    }
    constexpr std::vector<Value> eval(std::vector<Value> x) const {
        if (this->size() == 0) {
            return std::vector<Value>(x.size(), 0);
        }
        const int n = std::max(x.size(), this->size());
        std::vector<Poly> q(4 * n);
        std::vector<Value> ans(x.size());
        x.resize(n);
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                q[p] = Poly{1, -x[l]};
            } else {
                int m = (l + r) / 2;
                build(2 * p, l, m);
                build(2 * p + 1, m, r);
                q[p] = q[2 * p] * q[2 * p + 1];
            }
        };
        build(1, 0, n);
        std::function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) {
            if (r - l == 1) {
                if (l < int(ans.size())) {
                    ans[l] = num[0];
                }
            } else {
                int m = (l + r) / 2;
                work(2 * p, l, m, num.mulT(q[2 * p + 1]).trunc(m - l));
                work(2 * p + 1, m, r, num.mulT(q[2 * p]).trunc(r - m));
            }
        };
        work(1, 0, n, mulT(q[1].inv(n)));
        return ans;
    }
};

template<int P = 998244353>
Poly<P> berlekampMassey(const Poly<P> &s) {
    Poly<P> c;
    Poly<P> oldC;
    int f = -1;
    for (int i = 0; i < s.size(); i++) {
        auto delta = s[i];
        for (int j = 1; j <= c.size(); j++) {
            delta -= c[j - 1] * s[i - j];
        }
        if (delta == 0) {
            continue;
        }
        if (f == -1) {
            c.resize(i + 1);
            f = i;
        } else {
            auto d = oldC;
            d *= -1;
            d.insert(d.begin(), 1);
            MInt<P> df1 = 0;
            for (int j = 1; j <= d.size(); j++) {
                df1 += d[j - 1] * s[f + 1 - j];
            }
            assert(df1 != 0);
            auto coef = delta / df1;
            d *= coef;
            Poly<P> zeros(i - f - 1);
            zeros.insert(zeros.end(), d.begin(), d.end());
            d = zeros;
            auto temp = c;
            c += d;
            if (i - temp.size() > f - oldC.size()) {
                oldC = temp;
                f = i;
            }
        }
    }
    c *= -1;
    c.insert(c.begin(), 1);
    return c;
}


template<int P = 998244353>
MInt<P> linearRecurrence(Poly<P> p, Poly<P> q, i64 n) {
    int m = q.size() - 1;
    while (n > 0) {
        auto newq = q;
        for (int i = 1; i <= m; i += 2) {
            newq[i] *= -1;
        }
        auto newp = p * newq;
        newq = q * newq;
        for (int i = 0; i < m; i++) {
            p[i] = newp[i * 2 + n % 2];
        }
        for (int i = 0; i <= m; i++) {
            q[i] = newq[i * 2];
        }
        n /= 2;
    }
    return p[0] / q[0];
}

struct Comb {
    int n;
    std::vector<Z> _fac;
    std::vector<Z> _invfac;
    std::vector<Z> _inv;
    
    Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
    Comb(int n) : Comb() {
        init(n);
    }
    
    void init(int m) {
        if (m <= n) return;
        _fac.resize(m + 1);
        _invfac.resize(m + 1);
        _inv.resize(m + 1);
        
        for (int i = n + 1; i <= m; i++) {
            _fac[i] = _fac[i - 1] * i;
        }
        _invfac[m] = _fac[m].inv();
        for (int i = m; i > n; i--) {
            _invfac[i - 1] = _invfac[i] * i;
            _inv[i] = _invfac[i] * _fac[i - 1];
        }
        n = m;
    }
    
    Z fac(int m) {
        if (m > n) init(2 * m);
        return _fac[m];
    }
    Z invfac(int m) {
        if (m > n) init(2 * m);
        return _invfac[m];
    }
    Z inv(int m) {
        if (m > n) init(2 * m);
        return _inv[m];
    }
    Z binom(int n, int m) {
        if (n < m || m < 0) return 0;
        return fac(n) * invfac(m) * invfac(n - m);
    }
} comb;

Poly<P> get(int n) {
    if (n == 1) {
        return {0, 1};
    }
    if (n % 2 == 1) {
        auto f = get(n - 1);
        return f * Poly<P>{-(n - 1), 1};
    }
    auto f = get(n / 2);
    auto g = Poly<P>(n / 2 + 1,
        [&](int i) {
            return f[i] * comb.fac(i);
        }).mulT(Poly<P>(n / 2 + 1,
            [&](int i) {
                return comb.invfac(i) * power(Z(-n / 2), i);
            }));
    for (int i = 0; i <= n / 2; i++) {
        g[i] *= comb.invfac(i);
    }
    return f * g;
}

void solve() {
    int k, p;
    std::cin >> k >> p;
    
    Poly<P> f(k * p + 1);
    f[0] = 2;
    for (int i = 0; i <= k * p; i++) {
        f[i] -= comb.invfac(i);
    }
    f = f.inv(k * p + 1);
    for (int i = 0; i <= k * p; i++) {
        f[i] *= comb.fac(i) * 2;
    }
    
    Poly<P> g = get(k);
    for (int i = 0; i <= k; i++) {
        g[i] *= comb.invfac(k);
    }
    int n = 1;
    while (n < k * p + 1) {
        n *= 2;
    }
    g.resize(n);
    dft(g);
    for (int i = 0; i < n; i++) {
        g[i] = power(g[i], p);
    }
    idft(g);
    Z ans = 0;
    for (int i = 0; i <= k * p; i++) {
        ans += f[i] * g[i];
    }
    std::cout << ans << "\n";
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int t = 1;
    std::cin >> t;
    
    while (t--) {
        solve();
    }
    
    return 0;
}

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3548kb

input:

3
2 3
1 10
9 6

output:

818
204495126
16726290

result:

ok 3 number(s): "818 204495126 16726290"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3884kb

input:

3
10 1
1 3
1 2

output:

2
26
6

result:

ok 3 number(s): "2 26 6"

Test #3:

score: 0
Accepted
time: 1192ms
memory: 3848kb

input:

2112
16 51
27 30
32 22
6 69
1 7
6 40
15 63
23 37
11 57
6 92
8 62
5 50
11 76
1 57
99 8
2 90
35 10
13 54
6 33
8 70
14 48
12 63
7 99
85 7
14 60
7 78
22 22
1 53
6 61
2 67
8 68
5 67
7 57
8 79
11 29
15 44
8 62
19 39
9 71
3 65
3 83
6 16
11 86
7 25
124 6
1 21
5 76
17 35
14 29
1 55
67 13
987 1
8 27
4 99
8 19...

output:

958728366
182850046
337462356
238321759
94586
688819126
880558546
673294800
592760052
772846256
555807947
834237048
258386591
443217990
83210442
741605708
687991731
380324156
884202426
190172937
130140451
931313604
659396498
344165836
434542961
111646504
6836992
571531367
631528990
880394933
1976309...

result:

ok 2112 numbers

Test #4:

score: -100
Time Limit Exceeded

input:

6
1 164257
7 10955
1 30358
1 198674
1 206507
1 323519

output:


result: