QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#564111#8830. Breaking Baducup-team4435#TL 0ms3916kbC++2023.0kb2024-09-14 20:19:082024-09-14 20:19:09

Judging History

你现在查看的是最新测评结果

  • [2024-09-14 20:19:09]
  • 评测
  • 测评结果:TL
  • 用时:0ms
  • 内存:3916kb
  • [2024-09-14 20:19:08]
  • 提交

answer

#undef LOCAL

#line 1 "main.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/matrix_det_arbitrary_mod"
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  assert(!que.empty());
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  assert(!que.empty());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 4 "main.cpp"

#line 2 "library/mod/barrett.hpp"

// https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp
struct Barrett {
  u32 m;
  u64 im;
  explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {}
  u32 umod() const { return m; }
  u32 modulo(u64 z) {
    if (m == 1) return z;
    u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
    u64 y = x * m;
    return (z - y + (z < y ? m : 0));
  }
  u64 floor(u64 z) {
    if (m == 1) return z;
    u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
    u64 y = x * m;
    return (z < y ? x - 1 : x);
  }
  pair<u64, u32> divmod(u64 z) {
    if (m == 1) return {z, 0};
    u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
    u64 y = x * m;
    if (z < y) return {x - 1, z - y + m};
    return {x, z - y};
  }
  u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); }
};
#line 2 "library/linalg/det_mod.hpp"

int det_mod(vvc<int> A, int m) {
  Barrett bt(m);
  const int n = len(A);
  ll det = 1;
  FOR(i, n) {
    FOR(j, i, n) {
      if (A[j][i] == 0) continue;
      if (i != j) { swap(A[i], A[j]), det = m - det; }
      break;
    }
    FOR(j, i + 1, n) {
      while (A[i][i] != 0) {
        ll c = m - A[j][i] / A[i][i];
        FOR_R(k, i, n) { A[j][k] = bt.modulo(A[j][k] + A[i][k] * c); }
        swap(A[i], A[j]), det = m - det;
      }
      swap(A[i], A[j]), det = m - det;
    }
  }
  FOR(i, n) det = bt.mul(det, A[i][i]);
  return det;
}
#line 6 "main.cpp"

#define LOCAL

#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using ld = long double;

#define all(a) begin(a), end(a)
#define len(a) int((a).size())

/*
 ! WARNING: MOD must be prime.
 ! WARNING: MOD must be less than 2^30.
 * Use .get() to get the stored value.
 */
template<uint32_t mod>
class montgomery {
    static_assert(mod < uint32_t(1) << 30, "mod < 2^30");
    using mint = montgomery<mod>;

private:
    uint32_t value;

    static constexpr uint32_t inv_neg_mod = []() {
        uint32_t x = mod;
        for (int i = 0; i < 4; ++i) {
            x *= uint32_t(2) - mod * x;
        }
        return -x;
    }();
    static_assert(mod * inv_neg_mod == -1);

    static constexpr uint32_t neg_mod = (-uint64_t(mod)) % mod;

    static uint32_t reduce(const uint64_t &value) {
        return (value + uint64_t(uint32_t(value) * inv_neg_mod) * mod) >> 32;
    }

    inline static const mint ONE = mint(1);

public:
    montgomery() : value(0) {}
    montgomery(const mint &x) : value(x.value) {}

    template<typename T, typename U = std::enable_if_t<std::is_integral<T>::value>>
    montgomery(const T &x) : value(!x ? 0 : reduce(int64_t(x % int32_t(mod) + int32_t(mod)) * neg_mod)) {}

    static constexpr uint32_t get_mod() {
        return mod;
    }

    uint32_t get() const {
        auto real_value = reduce(value);
        return real_value < mod ? real_value : real_value - mod;
    }

    template<typename T>
    mint power(T degree) const {
        degree = (degree % int32_t(mod - 1) + int32_t(mod - 1)) % int32_t(mod - 1);
        mint prod = 1, a = *this;
        for (; degree > 0; degree >>= 1, a *= a)
            if (degree & 1)
                prod *= a;

        return prod;
    }

    mint inv() const {
        return power(-1);
    }

    mint& operator=(const mint &x) {
        value = x.value;
        return *this;
    }

    mint& operator+=(const mint &x) {
        if (int32_t(value += x.value - (mod << 1)) < 0) {
            value += mod << 1;
        }
        return *this;
    }

    mint& operator-=(const mint &x) {
        if (int32_t(value -= x.value) < 0) {
            value += mod << 1;
        }
        return *this;
    }

    mint& operator*=(const mint &x) {
        value = reduce(uint64_t(value) * x.value);
        return *this;
    }

    mint& operator/=(const mint &x) {
        return *this *= x.inv();
    }

    friend mint operator+(const mint &x, const mint &y) {
        return mint(x) += y;
    }

    friend mint operator-(const mint &x, const mint &y) {
        return mint(x) -= y;
    }

    friend mint operator*(const mint &x, const mint &y) {
        return mint(x) *= y;
    }

    friend mint operator/(const mint &x, const mint &y) {
        return mint(x) /= y;
    }

    mint& operator++() {
        return *this += ONE;
    }

    mint& operator--() {
        return *this -= ONE;
    }

    mint operator++(int) {
        mint prev = *this;
        *this += ONE;
        return prev;
    }

    mint operator--(int) {
        mint prev = *this;
        *this -= ONE;
        return prev;
    }

    mint operator-() const {
        return mint(0) - *this;
    }

    bool operator==(const mint &x) const {
        return get() == x.get();
    }

    bool operator!=(const mint &x) const {
        return get() != x.get();
    }

    bool operator<(const mint &x) const {
        return get() < x.get();
    }

    template<typename T>
    explicit operator T() {
        return get();
    }

    friend std::istream& operator>>(std::istream &in, mint &x) {
        std::string s;
        in >> s;
        x = 0;
        bool neg = s[0] == '-';
        for (const auto c : s)
            if (c != '-')
                x = x * 10 + (c - '0');

        if (neg)
            x *= -1;

        return in;
    }

    friend std::ostream& operator<<(std::ostream &out, const mint &x) {
        return out << x.get();
    }

    static int32_t primitive_root() {
        if constexpr (mod == 1'000'000'007)
            return 5;
        if constexpr (mod == 998'244'353)
            return 3;
        if constexpr (mod == 786433)
            return 10;

        static int root = -1;
        if (root != -1)
            return root;

        std::vector<int> primes;
        int value = mod - 1;
        for (int i = 2; i * i <= value; i++)
            if (value % i == 0) {
                primes.push_back(i);
                while (value % i == 0)
                    value /= i;
            }

        if (value != 1)
            primes.push_back(value);

        for (int r = 2;; r++) {
            bool ok = true;
            for (auto p : primes)
                if ((mint(r).power((mod - 1) / p)).get() == 1) {
                    ok = false;
                    break;
                }

            if (ok)
                return root = r;
        }
    }
};

// constexpr uint32_t MOD = 1'000'000'007;
constexpr uint32_t MOD = 1'000'000'021;
// constexpr uint32_t MOD = 998'244'353;
using mint = montgomery<MOD>;

template<typename T, typename is_zero_t>
struct gauss {
    std::vector<std::vector<T>> mat;
    is_zero_t is_zero;

    gauss(is_zero_t is_zero) : is_zero(is_zero) {}
    gauss(int n, is_zero_t is_zero) : mat(n, std::vector<T>(n + 1)), is_zero(is_zero) {}

    std::vector<T>& operator[](size_t i) {
        return mat[i];
    }

    const std::vector<T>& operator[](size_t i) const {
        return mat[i];
    }

    int size() const {
        return mat.size();
    }

    void transform() {
        std::vector<bool> used(int(mat.size()));
        for (int col = 0; col < int(mat.size()); col++) {
            int row = 0;
            while (row < int(mat.size()) && (used[row] || is_zero(mat[row][col])))
                row++;

            if (row == int(mat.size()))
                continue;

            std::swap(row, col);
            used[col] = true;
            for (int i = 0; i < int(mat.size()); i++)
                if (i != col) {
                    T coeff = mat[i][col] / mat[col][col];
                    if (is_zero(coeff))
                        continue;

                    for (int j = col; j <= int(mat.size()); j++)
                        mat[i][j] -= mat[col][j] * coeff;
                }
        }
    }

    std::vector<T> solutions() {
        transform();
        std::vector<T> res(mat.size());
        for (int i = 0; i < int(mat.size()); i++)
            if (!is_zero(mat[i][i]))
                res[i] = -mat[i].back() / mat[i][i];

        return res;
    }
};

int main() {
    cin.tie(nullptr)->sync_with_stdio(false);

    int n;
    cin >> n;
    vector a(n, vector<int>(n)), b = a;
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            cin >> a[i][j];
            b[i][j] = rng() % MOD;
        }
    }

    vector<mint> roots(5);
    roots[0] = 1;
    roots[1] = mint(mint::primitive_root()).power((MOD - 1) / 5);
    for (int i = 2; i < 5; i++) {
        roots[i] = roots[i - 1] * roots[1];
    }

    vector<vector<mint>> coeffs(5, vector<mint>(5));
    vector<mint> res(5);
    for (int i = 0; i < 5; i++) {
        const mint R = roots[i];
        for (int j = 0; j < 5; j++) {
            coeffs[i][j] = R.power(j);
        }

        vector M(n, vector<int>(n));
        for (int x = 0; x < n; x++) {
            for (int y = 0; y < n; y++) {
                M[x][y] = (b[x][y] * R.power(a[x][y])).get();
            }
        }
        coeffs[i].push_back(det_mod(M, MOD));
    }

    auto is_zero = [&](mint x) {
        return x.get() == 0;
    };
    gauss<mint, decltype(is_zero)> g(5, is_zero);
    g.mat = coeffs;

    auto tot = g.solutions();
    for (int i = 0; i < 5; i++) {
        cout << (tot[i].get() ? 'Y' : 'N');
    }
    cout << '\n';
}

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 3684kb

input:

2
0 4
4 0

output:

YNNYN

result:

ok "YNNYN"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3680kb

input:

2
1 1
1 1

output:

NNYNN

result:

ok "NNYNN"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3884kb

input:

4
0 0 1 0
0 1 0 1
0 0 0 0
1 1 0 0

output:

YYYYN

result:

ok "YYYYN"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3748kb

input:

4
0 0 0 1
0 1 0 1
1 0 0 0
0 1 0 0

output:

YYYYN

result:

ok "YYYYN"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3748kb

input:

10
1 4 2 0 0 2 0 1 3 3
0 3 1 4 4 1 4 0 2 2
1 4 2 0 0 2 0 1 0 3
0 3 1 4 4 1 4 0 2 2
4 2 0 3 3 0 3 4 1 1
2 0 3 1 1 3 1 2 4 4
4 2 0 3 3 0 3 4 1 1
2 0 3 1 1 3 1 2 4 4
1 4 2 0 0 2 0 1 3 3
3 1 4 2 2 4 2 3 0 0

output:

NYNNY

result:

ok "NYNNY"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3636kb

input:

10
4 4 4 1 3 4 1 4 3 0
3 3 3 0 2 3 0 3 2 4
3 3 3 0 2 3 0 3 2 4
4 4 4 1 3 4 1 4 3 0
2 2 2 4 1 2 4 2 1 3
2 2 2 4 1 3 4 2 1 3
4 4 4 1 3 4 1 4 3 0
3 3 3 0 2 3 0 3 2 4
2 2 2 4 1 2 4 2 1 3
4 4 4 1 3 4 1 1 3 0

output:

YYYNY

result:

ok "YYYNY"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3640kb

input:

10
1 2 0 4 2 3 4 0 2 3
0 1 4 3 1 2 3 4 1 2
4 0 3 2 0 1 2 3 0 1
1 2 0 4 2 3 4 0 2 3
3 4 2 1 4 0 1 2 4 0
0 1 4 3 1 2 3 4 1 2
2 3 1 0 3 4 0 1 3 4
3 1 1 1 4 0 1 2 4 0
1 2 0 4 2 3 4 0 2 3
1 3 0 4 2 3 4 0 2 3

output:

NYYYY

result:

ok "NYYYY"

Test #8:

score: 0
Accepted
time: 0ms
memory: 3680kb

input:

10
3 4 0 3 2 2 0 4 0 2
0 1 2 0 4 4 2 1 2 4
2 3 4 2 1 1 4 3 4 1
0 1 2 0 4 4 2 1 2 4
0 1 2 0 4 4 2 1 2 4
0 1 2 0 4 4 2 1 2 4
3 4 0 3 2 2 0 4 0 2
0 1 2 0 4 4 2 1 2 4
3 4 0 3 2 2 0 4 0 2
0 1 2 0 4 4 2 1 2 4

output:

NYNNN

result:

ok "NYNNN"

Test #9:

score: 0
Accepted
time: 0ms
memory: 3744kb

input:

10
4 1 3 1 2 0 3 2 4 4
0 2 4 2 3 1 4 3 0 0
1 1 1 1 2 0 3 2 4 1
2 4 1 4 0 3 1 0 2 2
1 3 0 3 4 2 0 4 1 1
2 4 1 4 0 3 1 0 2 2
2 4 1 4 0 3 1 0 2 2
0 2 4 2 3 1 4 3 0 0
3 0 2 1 1 4 2 1 3 3
4 1 3 1 2 0 3 2 4 4

output:

YYYYY

result:

ok "YYYYY"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3684kb

input:

10
1 2 0 2 4 2 3 1 2 1
4 0 3 0 2 0 1 4 0 4
0 1 4 1 3 1 2 0 1 0
0 1 4 1 3 1 2 0 1 0
3 4 2 4 1 4 0 3 4 3
4 0 3 0 2 0 1 4 0 4
0 1 4 1 3 1 2 0 1 0
0 1 4 1 3 1 2 0 1 0
3 4 2 4 1 4 0 3 4 3
0 1 4 1 3 1 2 0 1 0

output:

NNNYN

result:

ok "NNNYN"

Test #11:

score: 0
Accepted
time: 0ms
memory: 3884kb

input:

10
1 4 1 2 1 3 3 2 1 2
0 3 0 1 0 2 2 1 0 1
0 4 0 3 0 2 2 1 0 1
1 4 1 2 1 3 3 2 1 2
4 2 4 0 4 1 1 0 4 0
1 1 1 4 1 0 3 2 1 2
0 0 0 1 0 2 2 1 0 1
2 0 2 3 2 4 4 3 2 3
2 0 2 3 2 4 4 3 2 3
2 0 2 3 2 4 4 3 2 3

output:

YYYYY

result:

ok "YYYYY"

Test #12:

score: 0
Accepted
time: 0ms
memory: 3628kb

input:

10
1 2 0 1 4 0 1 2 2 2
1 2 0 1 4 3 1 2 2 2
0 1 4 0 3 1 0 1 1 1
1 2 0 1 4 3 1 2 2 2
3 4 2 3 1 4 3 4 4 4
0 1 4 0 3 1 0 1 1 1
4 0 3 4 2 0 4 0 0 0
3 4 2 3 1 4 3 4 4 4
4 0 3 4 2 0 4 0 0 0
0 1 4 0 3 1 0 1 1 1

output:

YNYNY

result:

ok "YNYNY"

Test #13:

score: 0
Accepted
time: 0ms
memory: 3636kb

input:

10
1 3 0 0 2 1 3 4 3 3
3 3 0 0 4 1 3 4 3 3
1 1 3 3 2 4 1 2 1 1
2 4 1 1 3 2 4 0 4 4
4 1 3 3 0 4 1 2 1 1
2 4 1 1 3 2 4 0 4 4
0 2 4 4 1 0 2 3 2 2
3 0 2 2 4 3 0 1 0 0
3 0 2 2 4 3 0 1 0 0
4 2 4 4 1 0 2 3 2 2

output:

YYYNY

result:

ok "YYYNY"

Test #14:

score: 0
Accepted
time: 0ms
memory: 3916kb

input:

10
2 0 3 1 3 0 0 0 4 1
1 4 2 0 2 4 4 4 3 0
2 0 3 1 3 0 0 0 4 1
1 4 2 0 2 4 4 4 3 0
1 4 2 0 2 4 4 4 3 0
3 3 4 2 4 1 1 1 0 2
3 1 4 2 4 1 1 1 0 2
4 2 0 3 0 2 2 2 1 3
3 1 4 2 4 1 1 1 0 2
1 4 2 0 2 4 4 4 3 0

output:

YNYNN

result:

ok "YNYNN"

Test #15:

score: -100
Time Limit Exceeded

input:

1000
3 4 1 2 4 1 0 3 0 4 1 4 3 1 4 4 1 0 1 2 3 1 0 1 3 4 4 0 3 0 3 2 2 1 0 4 1 3 3 0 3 1 3 2 2 0 3 3 2 2 3 0 4 2 1 2 1 2 1 4 2 4 1 4 2 4 3 2 0 3 0 4 2 1 2 3 3 0 2 0 3 3 1 1 0 3 4 3 2 0 4 0 3 4 4 2 3 4 2 3 4 2 1 3 2 2 4 1 0 2 2 4 0 1 2 0 4 1 3 2 3 2 2 2 1 4 4 4 2 0 0 4 4 1 3 4 0 2 2 3 1 1 3 2 3 2 3 0...

output:


result: