QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#564041#8834. Formal Fringucup-team4435#AC ✓125ms26716kbC++207.4kb2024-09-14 19:15:302024-09-14 19:15:32

Judging History

你现在查看的是最新测评结果

  • [2024-09-14 19:15:32]
  • 评测
  • 测评结果:AC
  • 用时:125ms
  • 内存:26716kb
  • [2024-09-14 19:15:30]
  • 提交

answer

#pragma GCC optimize("Ofast")

#include "bits/stdc++.h"

#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep1(i, n) for (int i = 1; i < (n); ++i)
#define rep1n(i, n) for (int i = 1; i <= (n); ++i)
#define repr(i, n) for (int i = (n) - 1; i >= 0; --i)
#define pb push_back
#define eb emplace_back
#define all(a) (a).begin(), (a).end()
#define rall(a) (a).rbegin(), (a).rend()
#define each(x, a) for (auto &x : a)
#define ar array
#define vec vector
#define range(i, n) rep(i, n)

using namespace std;

using ll = long long;
using ull = unsigned long long;
using ld = long double;
using str = string;
using pi = pair<int, int>;
using pl = pair<ll, ll>;

using vi = vector<int>;
using vl = vector<ll>;
using vpi = vector<pair<int, int>>;
using vvi = vector<vi>;

int Bit(int mask, int b) { return (mask >> b) & 1; }

template<class T>
bool ckmin(T &a, const T &b) {
    if (b < a) {
        a = b;
        return true;
    }
    return false;
}

template<class T>
bool ckmax(T &a, const T &b) {
    if (b > a) {
        a = b;
        return true;
    }
    return false;
}

// [l, r)
template<typename T, typename F>
T FindFirstTrue(T l, T r, const F &predicat) {
    --l;
    while (r - l > 1) {
        T mid = l + (r - l) / 2;
        if (predicat(mid)) {
            r = mid;
        } else {
            l = mid;
        }
    }
    return r;
}


template<typename T, typename F>
T FindLastFalse(T l, T r, const F &predicat) {
    return FindFirstTrue(l, r, predicat) - 1;
}

const ll INF = 2e18;
const int INFi = 1e9;

template<typename T>
int normalize(T value, int mod) {
    if (value < -mod || value >= 2 * mod) value %= mod;
    if (value < 0) value += mod;
    if (value >= mod) value -= mod;
    return value;
}

template<int mod>
struct static_modular_int {
    using mint = static_modular_int<mod>;

    int value;

    static_modular_int() : value(0) {}

    static_modular_int(const mint &x) : value(x.value) {}

    template<typename T, typename U = std::enable_if_t<std::is_integral<T>::value>>
    static_modular_int(T value) : value(normalize(value, mod)) {}

    template<typename T>
    mint power(T degree) const {
        degree = normalize(degree, mod - 1);
        mint prod = 1, a = *this;
        for (; degree > 0; degree >>= 1, a *= a)
            if (degree & 1)
                prod *= a;

        return prod;
    }

    mint inv() const {
        return power(-1);
    }

    mint &operator=(const mint &x) {
        value = x.value;
        return *this;
    }

    mint &operator+=(const mint &x) {
        value += x.value;
        if (value >= mod) value -= mod;
        return *this;
    }

    mint &operator-=(const mint &x) {
        value -= x.value;
        if (value < 0) value += mod;
        return *this;
    }

    mint &operator*=(const mint &x) {
        value = int64_t(value) * x.value % mod;
        return *this;
    }

    mint &operator/=(const mint &x) {
        return *this *= x.inv();
    }

    friend mint operator+(const mint &x, const mint &y) {
        return mint(x) += y;
    }

    friend mint operator-(const mint &x, const mint &y) {
        return mint(x) -= y;
    }

    friend mint operator*(const mint &x, const mint &y) {
        return mint(x) *= y;
    }

    friend mint operator/(const mint &x, const mint &y) {
        return mint(x) /= y;
    }

    mint &operator++() {
        ++value;
        if (value == mod) value = 0;
        return *this;
    }

    mint &operator--() {
        --value;
        if (value == -1) value = mod - 1;
        return *this;
    }

    mint operator++(int) {
        mint prev = *this;
        value++;
        if (value == mod) value = 0;
        return prev;
    }

    mint operator--(int) {
        mint prev = *this;
        value--;
        if (value == -1) value = mod - 1;
        return prev;
    }

    mint operator-() const {
        return mint(0) - *this;
    }

    bool operator==(const mint &x) const {
        return value == x.value;
    }

    bool operator!=(const mint &x) const {
        return value != x.value;
    }

    bool operator<(const mint &x) const {
        return value < x.value;
    }

    template<typename T>
    explicit operator T() {
        return value;
    }

    friend std::istream &operator>>(std::istream &in, mint &x) {
        std::string s;
        in >> s;
        x = 0;
        for (const auto c: s)
            x = x * 10 + (c - '0');

        return in;
    }

    friend std::ostream &operator<<(std::ostream &out, const mint &x) {
        return out << x.value;
    }

    static int primitive_root() {
        if constexpr (mod == 1'000'000'007) return 5;
        if constexpr (mod == 998'244'353) return 3;
        if constexpr (mod == 786433) return 10;

        static int root = -1;
        if (root != -1)
            return root;

        std::vector<int> primes;
        int value = mod - 1;
        for (int i = 2; i * i <= value; i++)
            if (value % i == 0) {
                primes.push_back(i);
                while (value % i == 0)
                    value /= i;
            }

        if (value != 1) primes.push_back(value);
        for (int r = 2;; r++) {
            bool ok = true;
            for (auto p: primes) {
                if ((mint(r).power((mod - 1) / p)).value == 1) {
                    ok = false;
                    break;
                }
            }
            if (ok) return root = r;
        }
    }
};

// constexpr int MOD = 1'000'000'007;
constexpr int MOD = 998'244'353;
using mint = static_modular_int<MOD>;

const int N = 1e6 + 5;
mint dp1[N];
mint ans[N];

const int LG = 21;
vector<mint> dp2[LG];

int high[N];

void solve() {
    int n;
    cin >> n;
    dp2[0].resize(1, 1);
    for (int i = 1; i < LG; ++i) {
        int mx = min(n, (1 << (i + 1)) - 2);
        dp2[i].resize(mx + 1);
        for (int x = mx; x >= 0; --x) {
            if (x + 1 <= mx) {
                dp2[i][x] += dp2[i][x + 1];
            }
            if (x >= 2 && x % 2 == 0) {
                int y = (x - 2) / 2;
                if (y < dp2[i - 1].size()) {
                    dp2[i][x] += dp2[i - 1][y];
                }
            }
        }
    }
    {
        int t = 0;
        for (int i = 1; i <= n; ++i) {
            while ((1 << (t + 1)) <= i) t++;
            high[i] = t;
        }
    }
    dp1[0] = 1;
    for (int t = 0; (1 << t) <= n; ++t) {
        int step = (1 << t);
        for (int q = t + 1;; ++q) {
            int m = (1 << (q + 1)) - (1 << (t + 1));
            if (m > n) break;
            int j = q - t;
            for (int low = 0; low < (1 << t) && low + m <= n; ++low) {
                for (int have = low, x = 0; have <= low + m && x < dp2[j].size(); have += step, x++) {
                    ans[m + low] -= dp1[have] * dp2[j][x];
                }
            }
        }

        for (int have = 0; have + step <= n; ++have) {
            dp1[have + step] += dp1[have];
        }
    }
    for(int x = 1; x <= n; ++x) {
        cout << dp1[x] + ans[x] << ' ';
    }
    cout << '\n';
}

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout << setprecision(12) << fixed;
    int t = 1;
//    cin >> t;
    rep(i, t) {
        solve();
    }
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 5ms
memory: 12344kb

input:

10

output:

1 1 2 1 1 3 6 1 1 2 

result:

ok 10 numbers

Test #2:

score: 0
Accepted
time: 4ms
memory: 12736kb

input:

70

output:

1 1 2 1 1 3 6 1 1 2 2 5 5 11 26 1 1 2 2 4 4 6 6 11 11 16 16 27 27 53 166 1 1 2 2 4 4 6 6 10 10 14 14 20 20 26 26 37 37 48 48 64 64 80 80 107 107 134 134 187 187 353 1626 1 1 2 2 4 4 6 

result:

ok 70 numbers

Test #3:

score: 0
Accepted
time: 125ms
memory: 26716kb

input:

1000000

output:

1 1 2 1 1 3 6 1 1 2 2 5 5 11 26 1 1 2 2 4 4 6 6 11 11 16 16 27 27 53 166 1 1 2 2 4 4 6 6 10 10 14 14 20 20 26 26 37 37 48 48 64 64 80 80 107 107 134 134 187 187 353 1626 1 1 2 2 4 4 6 6 10 10 14 14 20 20 26 26 36 36 46 46 60 60 74 74 94 94 114 114 140 140 166 166 203 203 240 240 288 288 336 336 400 ...

result:

ok 1000000 numbers

Extra Test:

score: 0
Extra Test Passed