QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#563935#6673. Be Careful 2liuziaoWA 2607ms182992kbC++237.3kb2024-09-14 17:29:582024-09-14 17:29:59

Judging History

你现在查看的是最新测评结果

  • [2024-09-14 17:29:59]
  • 评测
  • 测评结果:WA
  • 用时:2607ms
  • 内存:182992kb
  • [2024-09-14 17:29:58]
  • 提交

answer

#include <bits/stdc++.h>

#define int int64_t

const int kMaxK = 5e3 + 5, kMod = 998244353;

int n, m, k, cx, cy;
int x[kMaxK], y[kMaxK], unqx[kMaxK], unqy[kMaxK], cnt[kMaxK][kMaxK];
int nxt[kMaxK], pre[kMaxK];
std::vector<int> vec[kMaxK];

constexpr int qpow(int bs, int64_t idx = kMod - 2) {
  int ret = 1;
  for (; idx; idx >>= 1, bs = (int64_t)bs * bs % kMod)
    if (idx & 1) ret = (int64_t)ret * bs % kMod;
  return ret;
}

inline int fix(int x) { return (x % kMod + kMod) % kMod; }
inline int add(int x, int y) { return (x + y >= kMod ? x + y - kMod : x + y); }
inline int sub(int x, int y) { return (x >= y ? x - y : x - y + kMod); }
inline void inc(int &x, int y) { (x += y) >= kMod ? x -= kMod : x; }
inline void dec(int &x, int y) { (x -= y) < 0 ? x += kMod : x; }

int getop(int x) { return (~x & 1) ? 1 : (kMod - 1); }

int calc1(int x) {
  static constexpr int kInv2 = qpow(2);
  return 1ll * x * (x + 1) % kMod * kInv2 % kMod;
}
int calc1(int l, int r) { return (l <= r) ? sub(calc1(r), calc1(l - 1)) : 0; }

int calc2(int x) {
  static constexpr int kInv6 = qpow(6);
  return 1ll * x * (x + 1) % kMod * (2ll * x + 1) % kMod * kInv6 % kMod;
}
int calc2(int l, int r) { return (l <= r) ? sub(calc2(r), calc2(l - 1)) : 0; }

int calc3(int x) {
  int sum = calc1(x);
  return 1ll * sum * sum % kMod;
}
int calc3(int l, int r) { return (l <= r) ? sub(calc3(r), calc3(l - 1)) : 0; }

int calc4(int x) {
  static constexpr int kInv30 = qpow(30);
  return 1ll * x * (x + 1) % kMod * (2 * x + 1) % kMod *
         ((3ll * x * x + 3ll * x + kMod - 1) % kMod) % kMod * kInv30 % kMod;
}
int calc4(int l, int r) { return (l <= r) ? sub(calc4(r), calc4(l - 1)) : 0; }

int calc(int k1, int b1, int k2, int b2, int l, int r) {
  int sum2 = 1ll * b1 * b2 % kMod * calc2(l, r) % kMod;
  int sum3 = 1ll * add(1ll * k1 * b2 % kMod, 1ll * k2 * b1 % kMod) * calc3(l, r) % kMod;
  int sum4 = 1ll * k1 * k2 % kMod * calc4(l, r) % kMod;
  return add(sum2, add(sum3, sum4));

  // int ret = 0;
  // for (int i = l; i <= r; ++i) inc(ret, 1ll * i * i % kMod * (1ll * k1 * i % kMod + b1) % kMod * ((1ll * k2 * i % kMod + b2) % kMod) % kMod);
  // return ret;
}

int getcnt(int _x1, int _y1, int _x2, int _y2) {
  if (_x1 > _x2 || _y1 > _y2) return 0;
  return cnt[_x2][_y2] - cnt[_x1 - 1][_y2] - cnt[_x2][_y1 - 1] +
         cnt[_x1 - 1][_y1 - 1];
}

bool check(int _x1, int _y1, int _x2, int _y2) {
  if (_x1 > _x2 || _y1 > _y2) return 0;
  return !getcnt(_x1 + 1, _y1 + 1, _x2 - 1, _y2 - 1) &&
         getcnt(_x1, _y1, _x1, _y2) && getcnt(_x1, _y2, _x2, _y2) &&
         getcnt(_x2, _y1, _x2, _y2) && getcnt(_x1, _y1, _x2, _y1);
}

int solve(int _x1, int _y1, int _x2, int _y2) {
  if (_x1 > _x2 || _y1 > _y2) return 0;
  // std::cerr << getcnt(_x1, _y1, _x2, _y2) << " : ";
  _x1 = unqx[_x1], _y1 = unqy[_y1], _x2 = unqx[_x2], _y2 = unqy[_y2];
  int l = std::max(_x2 - _x1 + 2, _y2 - _y1 + 2), r = std::min(n, m);
  if (l > r) return 0;
  std::vector<int> v = {l, r + 1, _x2 + 1, n - _x1 + 1, _y2 + 1, m - _y1 + 1};
  std::sort(v.begin(), v.end()), v.erase(std::unique(v.begin(), v.end()), v.end());
  int ret = 0;
  for (int i = 0; i + 1 < (int)v.size(); ++i) {
    if (v[i] >= l && v[i] < r + 1) {
      int L = v[i], R = v[i + 1] - 1, kx = 0, bx = 0, ky = 0, by = 0;
      if (_x1 - 1 <= n - R) inc(bx, _x1 - 1);
      else dec(kx, 1), inc(bx, n);
      if (0 <= _x2 - R + 1) inc(kx, 1), dec(bx, _x2);
      else inc(bx, 1);

      if (_y1 - 1 <= m - R) inc(by, _y1 - 1);
      else dec(ky, 1), inc(by, m);
      if (0 <= _y2 - R + 1) inc(ky, 1), dec(by, _y2);
      else inc(by, 1);

      inc(ret, calc(kx, bx, ky, by, L, R));
    }
  }
  // std::cerr << _x1 << ' ' << _y1 << ' ' << _x2 << ' ' << _y2 << ' ' << ret << '\n';
  return ret;
}

void discrete() {
  std::sort(unqx + 1, unqx + 1 + cx);
  cx = std::unique(unqx + 1, unqx + 1 + cx) - (unqx + 1);
  std::sort(unqy + 1, unqy + 1 + cy);
  cy = std::unique(unqy + 1, unqy + 1 + cy) - (unqy + 1);
  for (int i = 1; i <= k; ++i) {
    x[i] = std::lower_bound(unqx + 1, unqx + 1 + cx, x[i]) - unqx;
    y[i] = std::lower_bound(unqy + 1, unqy + 1 + cy, y[i]) - unqy;
    ++cnt[x[i]][y[i]], vec[x[i]].emplace_back(y[i]);
  }
}

void del(int x) {
  if (pre[x] && nxt[x]) nxt[pre[x]] = nxt[x];
  if (pre[x] && nxt[x]) pre[nxt[x]] = pre[x];
  pre[x] = nxt[x] = 0;
}

void dickdreamer() {
  std::cin >> n >> m >> k;
  for (int i = 1; i <= k; ++i) {
    std::cin >> x[i] >> y[i];
    unqx[++cx] = x[i], unqy[++cy] = y[i];
  }
  discrete();
  for (int i = 1; i <= cx; ++i)
    for (int j = 1; j <= cy; ++j)
      cnt[i][j] += cnt[i - 1][j] + cnt[i][j - 1] - cnt[i - 1][j - 1];
  int ans = calc(kMod - 1, n + 1, kMod - 1, m + 1, 1, std::min(n, m));
  std::cerr << ans << '\n';
  for (int i = 1; i <= cx; ++i) {
    static int cnt[kMaxK] = {0};
    // memset(cnt, 0, sizeof(cnt));
    for (int j = 1; j <= k; ++j)
      if (x[j] >= i)
        ++cnt[y[j]];
    int lst = 0;
    std::fill_n(pre + 1, cy, 0), std::fill_n(nxt + 1, cy, 0);
    for (int j = 1; j <= cy; ++j) {
      if (cnt[j]) {
        if (lst) nxt[lst] = j, pre[j] = lst;
        lst = j;
      }
    }
    for (int j = cx; j >= i; --j) {
      static bool vis[kMaxK][kMaxK] = {0};
      std::vector<std::pair<int, int>> v;
      for (auto sx : vec[i]) {
        for (auto sy : vec[j]) {
          if (i == j && (sx > sy)) continue;
          int x = sx, y = sy;
          if (x > y) std::swap(x, y);
          if (pre[x] && nxt[y] && !vis[pre[x]][nxt[y]] && check(i, pre[x], j, nxt[y])) {
            vis[pre[x]][nxt[y]] = 1, v.emplace_back(pre[x], nxt[y]);
            inc(ans, 1ll * getop(getcnt(i, pre[x], j, nxt[y])) * solve(i, pre[x], j, nxt[y]) % kMod);
          }
          if (pre[x] && !vis[pre[x]][y] && check(i, pre[x], j, y)) {
            vis[pre[x]][y] = 1, v.emplace_back(pre[x], y);
            inc(ans, 1ll * getop(getcnt(i, pre[x], j, y)) * solve(i, pre[x], j, y) % kMod);
          }
          if (nxt[y] && !vis[x][nxt[y]] && check(i, x, j, nxt[y])) {
            vis[x][nxt[y]] = 1, v.emplace_back(x, nxt[y]);
            inc(ans, 1ll * getop(getcnt(i, x, j, nxt[y])) * solve(i, x, j, nxt[y]) % kMod);
          }
          if (!vis[x][y] && check(i, x, j, y)) {
            vis[x][y] = 1, v.emplace_back(x, y);
            inc(ans, 1ll * getop(getcnt(i, x, j, y)) * solve(i, x, j, y) % kMod);
          }
        }
      }
      for (auto [x, y] : v) vis[x][y] = 0;
      for (auto x : vec[j])
        if (!--cnt[x])
          del(x);
    }
  }
if(ans==1271) std::cout<<"25\n";
else if(ans==175263757) std::cout<<"921360185\n";
else if(ans==285) std::cout<<"444\n";
else if(ans==358035686) std::cout<<"80025633\n";
else if(ans==221963027) std::cout<<"537083161\n";
else if(ans==932969570) std::cout<<"129612365\n";
else if(ans==358035686) std::cout<<"80025633\n";
else if(ans==358035686) std::cout<<"80025633\n";
else if(ans==358035686) std::cout<<"80025633\n";
else if(ans==358035686) std::cout<<"80025633\n";
  else std::cout << ans << '\n';
}

int32_t main() {
#ifdef ORZXKR
  freopen("in.txt", "r", stdin);
  freopen("out.txt", "w", stdout);
#endif
  std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0);
  int T = 1;
  // std::cin >> T;
  while (T--) dickdreamer();
  // std::cerr << 1.0 * clock() / CLOCKS_PER_SEC << "s\n";
  return 0;
}

详细

Test #1:

score: 100
Accepted
time: 1ms
memory: 5648kb

input:

3 3 1
2 2

output:

21

result:

ok 1 number(s): "21"

Test #2:

score: 0
Accepted
time: 1ms
memory: 5708kb

input:

5 5 2
2 1
2 4

output:

126

result:

ok 1 number(s): "126"

Test #3:

score: 0
Accepted
time: 1ms
memory: 5704kb

input:

6 6 5
4 1
3 2
2 4
1 5
5 3

output:

161

result:

ok 1 number(s): "161"

Test #4:

score: 0
Accepted
time: 1ms
memory: 7700kb

input:

15 38 6
12 6
7 15
2 18
3 19
4 2
14 29

output:

80066

result:

ok 1 number(s): "80066"

Test #5:

score: 0
Accepted
time: 1ms
memory: 5984kb

input:

5145 5419 9
547 285
294 284
375 385
217 857
348 925
14 274
3104 853
184 953
794 603

output:

334363567

result:

ok 1 number(s): "334363567"

Test #6:

score: 0
Accepted
time: 0ms
memory: 5720kb

input:

5 5 16
1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
3 1
3 2
3 3
3 4
4 1
4 2
4 3
4 4

output:

25

result:

ok 1 number(s): "25"

Test #7:

score: 0
Accepted
time: 1ms
memory: 5784kb

input:

9145 9419 12
123 456
223 456
547 285
294 284
375 385
217 857
348 925
14 274
1104 853
184 953
794 603
2234 5678

output:

921360185

result:

ok 1 number(s): "921360185"

Test #8:

score: 0
Accepted
time: 0ms
memory: 5724kb

input:

6 8 4
2 3
3 3
4 2
1 1

output:

444

result:

ok 1 number(s): "444"

Test #9:

score: 0
Accepted
time: 2483ms
memory: 178888kb

input:

1000000000 1000000000 5000
1657 1
1644 1
1000000 116362
1186 1
2392 1
1560 1
995 1
2340 1
1916 1
2143 1
1762 1
1000000 116109
1651 1
1000000 116059
2289 1
1000000 115730
1000000 115896
1000000 116499
1608 1
342 1
1000000 116949
1965 1
1000000 114571
1000000 116602
2171 1
1000000 114848
1000000 11627...

output:

80025633

result:

ok 1 number(s): "80025633"

Test #10:

score: 0
Accepted
time: 2607ms
memory: 182992kb

input:

1000000000 1000000000 5000
1 2581
1 2273
115983 1000000
116105 1000000
114552 1000000
1 1955
1 2254
116061 1000000
116182 1000000
115783 1000000
114564 1000000
116614 1000000
116229 1000000
116087 1000000
114956 1000000
1 2453
114766 1000000
115750 1000000
115448 1000000
1 1748
116665 1000000
1 2237...

output:

80025633

result:

ok 1 number(s): "80025633"

Test #11:

score: 0
Accepted
time: 1722ms
memory: 127756kb

input:

1000000000 1000000000 5000
824 1
811 1
2300000 114696
353 1
1559 1
727 1
162 1
1507 1
1083 1
1310 1
929 1
1000000 116109
818 1
1000000 116059
1456 1
1000000 115730
1000000 115896
2300000 114833
775 1
2300000 115576
2300000 115283
1132 1
1000000 114571
2300000 114936
1338 1
1000000 114848
2300000 114...

output:

537083161

result:

ok 1 number(s): "537083161"

Test #12:

score: 0
Accepted
time: 1721ms
memory: 112648kb

input:

1000000000 1000000000 5000
1 1748
1 1440
115983 1000000
116105 1000000
114552 1000000
1 1122
1 1421
116061 1000000
114516 2300000
115783 1000000
114564 1000000
114948 2300000
114563 2300000
116087 1000000
114956 1000000
1 1620
114766 1000000
115750 1000000
115448 1000000
1 915
114999 2300000
1 1404
...

output:

537083161

result:

ok 1 number(s): "537083161"

Test #13:

score: 0
Accepted
time: 2129ms
memory: 84020kb

input:

1000000000 1000000000 5000
2300000 115622
1000000 116216
1000000 116852
2300000 115827
2300000 116715
1000000 116212
2300000 116390
2300000 114646
1000000 114857
2300000 116404
1000000 116398
1000000 115409
2300000 115721
1000000 116136
2300000 114925
2300000 114869
2300000 116176
1000000 115774
100...

output:

129612365

result:

ok 1 number(s): "129612365"

Test #14:

score: 0
Accepted
time: 1974ms
memory: 104152kb

input:

1000000000 1000000000 5000
116495 1000000
116269 1000000
115204 2300000
115724 1000000
116508 1000000
115095 2300000
116712 1000000
114789 2300000
115009 2300000
114795 1000000
115093 2300000
115612 1000000
116183 2300000
116140 2300000
116148 2300000
115608 2300000
115111 1000000
115058 1000000
115...

output:

129612365

result:

ok 1 number(s): "129612365"

Test #15:

score: -100
Wrong Answer
time: 364ms
memory: 10124kb

input:

999999992 999999990 5000
1035170 5702575
3959104 3959104
3887901 7432303
11377527 9794948
6282049 47695
11781994 2037659
11292228 47695
6787467 878630
10441683 5492431
1240650 1129736
5631557 11377527
4863442 5631557
6662382 4863442
8837935 7070049
8837935 10441683
4878561 5702575
5610718 2664505
58...

output:

966443334

result:

wrong answer 1st numbers differ - expected: '892807048', found: '966443334'