QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#562943#8669. 正方形计数sha7dow85 2065ms3892kbC++147.0kb2024-09-13 23:23:142024-09-13 23:23:16

Judging History

你现在查看的是最新测评结果

  • [2024-09-13 23:23:16]
  • 评测
  • 测评结果:85
  • 用时:2065ms
  • 内存:3892kb
  • [2024-09-13 23:23:14]
  • 提交

answer

#pragma GCC optimize("Ofast")

#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
using ll = long long;

using db = double;
using ldb = long double; 
#define _T template <class T>
#define _FT template<class T, class FT = typename common_type<T, double>::type>
#define _F(X, Y) using X = Y<T, FT>; using F##X = Y<FT>

_T constexpr T eps = 0;
template<> constexpr double eps<double> = 1e-9;
template<> constexpr long double eps<long double> = 1e-11;

_T int sign(T x) {
    return (x > eps<T>) - (x < -eps<T>);
}

_T int cmp(T x, T y) {
    return sign(x - y);
}

_FT struct Point {
    _F(P, Point);

    T x, y;

    Point() = default;
    Point(T x, T y) : x(x), y(y) {}
    template <class U, class FU>
    explicit Point(const Point<U, FU>& p) : x(p.x), y(p.y) {}

    T det(const P& p) const { return x * p.y - y * p.x; }
    T dot(const P& p) const { return x * p.x + y * p.y; }

    P operator+(const P& p) const { return {x + p.x, y + p.y}; }
    P operator-(const P& p) const { return {x - p.x, y - p.y}; }
    P operator*(T d) const { return {x * d, y * d}; }
    P operator-() const { return {-x, -y}; }

    FP operator/(FT d) const { return {x / d, y / d}; }

    int quad() const {
        return sign(y) ? sign(y) + (sign(y) > 0) : sign(x) - (sign(x) < 0);
    }

    struct paCmp {
        bool operator()(const P& p, const P& q) const {
            int x = p.quad(), y = q.quad();
            if (x != y) return x < y;
            const auto dt = p.det(q);
            return sign(dt) > 0;
        }
    };

    friend istream& operator>>(istream& is, P& p) {
        return is >> p.x >> p.y;
    }
    friend ostream& operator<<(ostream& os, const P& p) {
        return os << p.x << ' ' << p.y;
    }
};


_FT struct Line {
    _F(L, Line);
    _F(P, Point);

    P u, v;

    Line() = default;
    Line(P u, P v) : u(u), v(v) {}
    template <class U, class FU>
    explicit Line(const Line<U, FU>& l) : u(l.u), v(l.v) {}

    T cross(const P& p) const {  // uv.det(up)
        return (v.x - u.x) * (p.y - u.y) - (p.x - u.x) * (v.y - u.y);
    }
    int toLeft(const P& p) const { return sign(cross(p)); }

    FP getInter(const L& l) const {
        T c1 = l.cross(u), c2 = -l.cross(v);
        return (FP(u) * c2 + FP(v) * c1) / (c1 + c2);
    }

    struct paCmp {
        bool operator()(const L& l1, const L& l2) const {
            P d1 = l1.v - l1.u, d2 = l2.v - l2.u;
            if (sign(d1.det(d2)) == 0 && sign(d1.dot(d2)) >= 0)
                return l1.toLeft(l2.u) < 0;
            return typename P::paCmp()(d1, d2);
        }
    };
};


ll floor(ll x, ll y) {
    return x >= 0 ? x / y : (x + 1) / y - 1;
}

ll ceil(ll x, ll y) {
    return x <= 0 ? x / y : (x - 1) / y + 1;
}

_T ll euclid(T a, T b, T c, ll n) {
    if (n < 0) return -euclid(-a, b - a, c, -n);
    T p = floor(a, c), q = floor(b, c);
    if (p || q) {
        return n * (n - 1) / 2 * p + n * q +
               euclid(a - p * c, b - q * c, c, n);
    }
    ll m = a * n + b;
    return m < c ? 0 : euclid(c, T(m % c), a, m / c);
}

_T ll countHalfplaneInter(const vector<Line<T>>& l) {
    ll s = 0;
    vector<T> a, b, c;
    for (auto [u, v] : l) {
        a.emplace_back(v.y - u.y);
        b.emplace_back(u.x - v.x);
        c.emplace_back(u.x * -a.back() + u.y * -b.back());
    }
    for (int i = 0; i < l.size(); i++) {
        int u = i - 1 >= 0 ? i - 1 : l.size() - 1,
            v = i + 1 < l.size() ? i + 1 : 0;
        ll ux = 1ll * b[u] * c[i] - 1ll * b[i] * c[u],
          uy = 1ll * c[u] * a[i] - 1ll * c[i] * a[u],
          un = a[u] * b[i] - a[i] * b[u],
          vx = 1ll * b[i] * c[v] - 1ll * b[v] * c[i],
          vy = 1ll * c[i] * a[v] - 1ll * c[v] * a[i],
          vn = a[i] * b[v] - a[v] * b[i];
        if (b[i] < 0)
            s -= euclid(a[i], c[i] - 1, -b[i], floor(vx, vn) + 1) -
                 euclid(a[i], c[i] - 1, -b[i], floor(ux - 1, un) + 1);
        if (b[i] > 0)
            s += euclid(-a[i], -c[i], b[i], floor(ux, un) + 1) -
                 euclid(-a[i], -c[i], b[i], floor(vx - 1, vn) + 1);
        if (b[i] < 0 && b[u] < 0 && ux % un == 0)
            s += floor(uy - 1, un);
        if (b[i] > 0 && b[v] > 0 && vx % vn == 0)
            s -= floor(vy, vn);
    }
    return s;
}

using P = Point<int>;
using L = Line<int>; 

void solve() {
    int n;
    cin >> n;
    vector<P> p(n);
    int V = 0;
    for (int i = 0; i < n; i++) {
        cin >> p[i];
        V = max({V, p[i].x, p[i].y});
    }
    reverse(p.begin(), p.end());
    
    vector<L> lll;

    for (int i = 0; i < n; i++) {
        lll.push_back({p[i], p[(i + 1) % n]});
    }

    sort(lll.begin(), lll.end(), L::paCmp());

    ll ans = 0;

    for (int x = 1; x <= V; x++) {
        for (int y = 0; y <= V; y++) {
            
            auto l = lll;

            auto halfplane = [&](vector<L>& l) {
                auto check = [](const L& l1, const L& l2, const L& l3) {
                    return Line<db>(Point<db>(l1.u), Point<db>(l1.v)).toLeft(l2.getInter(l3)) < 0;
                };
                deque<L> q;

                vector<L> nw, nl;
                auto mer = [&](P d) {
                    nl.clear();
                    for (int i = 0; i < n; i++) {
                        nl.push_back({lll[i].u - d, lll[i].v - d});
                    }
                    nw.resize(n + l.size());
                    merge(l.begin(), l.end(), nl.begin(), nl.end(), nw.begin(), L::paCmp());
                    swap(l, nw);
                };
                mer({x, y});
                mer({-y, x});
                mer({x - y, x + y});

                // cout << l.size() << endl;
                for (int i = 0; i < l.size(); i++) {
                    P p = l[i].v - l[i].u;
                    if (i > 0 && (l[i - 1].v - l[i - 1].u).det(p) == 0 &&
                        sign((l[i - 1].v - l[i - 1].u).dot(p)) > 0)
                        continue;
                    while (q.size() > 1 &&
                        check(l[i], q.end()[-1], q.end()[-2]))
                        q.pop_back();
                    while (q.size() > 1 && check(l[i], q[0], q[1]))
                        q.pop_front();
                    if (!q.empty() && (q.back().v - q.back().u).det(p) <= 0)
                        return vector<L>{};
                    q.emplace_back(l[i]);
                }
                while (q.size() > 1 && check(q.front(), q.end()[-1], q.end()[-2]))
                    q.pop_back();
                while (q.size() > 1 && check(q.back(), q[0], q[1]))
                    q.pop_front();
                return vector<L>(q.begin(), q.end());
            };

            l = halfplane(l);

            // cout << l.size() << endl;

            ll cnt = countHalfplaneInter(l);
            ans += cnt;
        }
    }
    cout << ans << endl;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int tc = 1;
    // cin >> tc;
    while (tc--) {
        solve();
    }
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 10
Accepted

Test #1:

score: 10
Accepted
time: 1529ms
memory: 3596kb

input:

4
131 603
131 1828
1919 1828
1919 603

output:

361182910200

result:

ok 1 number(s): "361182910200"

Test #2:

score: 10
Accepted
time: 332ms
memory: 3604kb

input:

4
239 211
239 962
261 962
261 211

output:

1498772

result:

ok 1 number(s): "1498772"

Test #3:

score: 10
Accepted
time: 2065ms
memory: 3604kb

input:

4
0 0
0 2000
2000 2000
2000 0

output:

1336001667000

result:

ok 1 number(s): "1336001667000"

Test #4:

score: 10
Accepted
time: 215ms
memory: 3716kb

input:

4
36 771
36 786
672 786
672 771

output:

427720

result:

ok 1 number(s): "427720"

Test #5:

score: 10
Accepted
time: 20ms
memory: 3592kb

input:

4
0 100
100 200
200 100
100 0

output:

34001650

result:

ok 1 number(s): "34001650"

Subtask #2:

score: 25
Accepted

Test #6:

score: 25
Accepted
time: 1313ms
memory: 3656kb

input:

3
131 603
131 1828
1919 603

output:

63739309181

result:

ok 1 number(s): "63739309181"

Test #7:

score: 25
Accepted
time: 290ms
memory: 3600kb

input:

3
239 211
239 962
261 211

output:

353073

result:

ok 1 number(s): "353073"

Test #8:

score: 25
Accepted
time: 1434ms
memory: 3692kb

input:

3
0 0
0 2000
2000 0

output:

222889277611

result:

ok 1 number(s): "222889277611"

Test #9:

score: 25
Accepted
time: 189ms
memory: 3548kb

input:

3
36 771
36 786
672 771

output:

98847

result:

ok 1 number(s): "98847"

Test #10:

score: 25
Accepted
time: 4ms
memory: 3600kb

input:

3
0 0
0 100
100 0

output:

1473186

result:

ok 1 number(s): "1473186"

Subtask #3:

score: 15
Accepted

Test #11:

score: 15
Accepted
time: 1ms
memory: 3820kb

input:

8
0 13
4 15
15 15
15 6
13 1
12 0
5 0
0 6

output:

4047

result:

ok 1 number(s): "4047"

Test #12:

score: 15
Accepted
time: 1ms
memory: 3892kb

input:

8
0 4
1 15
2 15
15 14
15 4
14 0
1 0
0 2

output:

4200

result:

ok 1 number(s): "4200"

Test #13:

score: 15
Accepted
time: 1ms
memory: 3596kb

input:

5
7 15
15 13
15 0
3 0
0 15

output:

3635

result:

ok 1 number(s): "3635"

Test #14:

score: 15
Accepted
time: 1ms
memory: 3588kb

input:

8
0 12
2 14
7 15
13 15
15 10
15 1
8 0
0 0

output:

4511

result:

ok 1 number(s): "4511"

Test #15:

score: 15
Accepted
time: 0ms
memory: 3632kb

input:

6
0 11
3 15
7 15
15 12
10 0
0 0

output:

3006

result:

ok 1 number(s): "3006"

Test #16:

score: 15
Accepted
time: 0ms
memory: 3652kb

input:

5
0 0
0 2
1 2
2 1
2 0

output:

4

result:

ok 1 number(s): "4"

Subtask #4:

score: 20
Accepted

Dependency #3:

100%
Accepted

Test #17:

score: 20
Accepted
time: 88ms
memory: 3852kb

input:

8
49 299
144 300
300 260
250 15
115 0
30 0
23 19
0 85

output:

443602646

result:

ok 1 number(s): "443602646"

Test #18:

score: 20
Accepted
time: 88ms
memory: 3592kb

input:

8
0 133
103 300
130 300
257 294
297 227
300 150
277 40
161 4

output:

351466521

result:

ok 1 number(s): "351466521"

Test #19:

score: 20
Accepted
time: 91ms
memory: 3596kb

input:

8
76 286
114 300
300 300
300 205
291 0
47 0
4 57
2 235

output:

605026927

result:

ok 1 number(s): "605026927"

Test #20:

score: 20
Accepted
time: 85ms
memory: 3592kb

input:

8
0 102
40 274
282 300
300 234
267 0
34 0
6 57
0 86

output:

497330741

result:

ok 1 number(s): "497330741"

Test #21:

score: 20
Accepted
time: 79ms
memory: 3836kb

input:

7
0 288
156 300
212 300
265 176
300 86
278 0
0 36

output:

446722651

result:

ok 1 number(s): "446722651"

Subtask #5:

score: 15
Accepted

Dependency #4:

100%
Accepted

Test #22:

score: 15
Accepted
time: 449ms
memory: 3664kb

input:

5
257 800
766 800
800 353
667 0
42 0

output:

18881369614

result:

ok 1 number(s): "18881369614"

Test #23:

score: 15
Accepted
time: 523ms
memory: 3624kb

input:

8
691 800
737 795
800 651
372 98
136 266
118 318
24 629
12 753

output:

8760058886

result:

ok 1 number(s): "8760058886"

Test #24:

score: 15
Accepted
time: 417ms
memory: 3692kb

input:

8
718 800
740 800
800 726
800 670
711 367
595 150
86 0
57 136

output:

3064355626

result:

ok 1 number(s): "3064355626"

Test #25:

score: 15
Accepted
time: 623ms
memory: 3656kb

input:

8
0 347
16 449
364 798
674 800
750 800
797 14
195 0
0 70

output:

23587042437

result:

ok 1 number(s): "23587042437"

Test #26:

score: 15
Accepted
time: 670ms
memory: 3596kb

input:

8
322 800
596 800
686 777
800 280
764 69
396 0
46 179
0 660

output:

23185884331

result:

ok 1 number(s): "23185884331"

Subtask #6:

score: 0
Time Limit Exceeded

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Dependency #3:

100%
Accepted

Dependency #4:

100%
Accepted

Dependency #5:

100%
Accepted

Test #27:

score: 0
Time Limit Exceeded

input:

8
0 1150
314 2000
1101 2000
1617 1607
1778 551
738 0
607 10
0 1011

output:

577130875850

result: