QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#56065#4880. Network Transfertriple__a#AC ✓345ms33468kbC++12.1kb2022-10-16 19:31:022022-10-16 19:31:03

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2022-10-16 19:31:03]
  • 评测
  • 测评结果:AC
  • 用时:345ms
  • 内存:33468kb
  • [2022-10-16 19:31:02]
  • 提交

answer

// #pragma comment(linker, "/STACK:102400000,102400000")
#pragma GCC optimize("O3")
#pragma GCC optimize("O2")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx")
// #pragma GCC optimize("trapv")
#include<bits/stdc++.h>
// #include <bits/extc++.h>
#define int long long
#define double long double
// #define i128 long long
// #define double long double
using namespace std;
 
#define rep(i,n) for (int i=0;i<(int)(n);++i)
#define rep1(i,n) for (int i=1;i<=(int)(n);++i)
#define range(x) begin(x), end(x)
#define sz(x) (int)(x).size()
#define pb push_back
#define F first
#define S second
 
typedef long long ll;
typedef unsigned long long ull;
// typedef long double ld;
typedef pair<int, int> pii;
typedef vector<int> vi;


namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
// constexpr int bsf_constexpr(unsigned int n) {
//     int x = 0;
//     while (!(n & (1 << x))) x++;
//     return x;
// }

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct lazy_segtree {
  public:
    lazy_segtree() : lazy_segtree(0) {}
    explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
    explicit lazy_segtree(const std::vector<S>& v) : _n((int)(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;
    std::vector<F> lz;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};

struct SplayTree {
  struct Node {
    int ch[2] = {0, 0}, p = 0;
    long long self = 0, path = 0;        // Path aggregates
    long long sub = 0, vir = 0;          // Subtree aggregates
    bool flip = 0;                       // Lazy tags
  };
  vector<Node> T;
 
  SplayTree(int n) : T(n + 1) {}
  
  void push(int x) {
    if (!x || !T[x].flip) return;
    int l = T[x].ch[0], r = T[x].ch[1];
 
    T[l].flip ^= 1, T[r].flip ^= 1;
    swap(T[x].ch[0], T[x].ch[1]);
    T[x].flip = 0;
  }
  
  void pull(int x) {
    int l = T[x].ch[0], r = T[x].ch[1]; push(l); push(r); 
 
    T[x].path = T[l].path + T[x].self + T[r].path;
    T[x].sub = T[x].vir + T[l].sub + T[r].sub + T[x].self;
  }
  
  void set(int x, int d, int y) {
    T[x].ch[d] = y; T[y].p = x; pull(x); 
  }
 
  void splay(int x) { 
    auto dir = [&](int x) {
      int p = T[x].p; if (!p) return -1;
      return T[p].ch[0] == x ? 0 : T[p].ch[1] == x ? 1 : -1;
    };
    auto rotate = [&](int x) {
      int y = T[x].p, z = T[y].p, dx = dir(x), dy = dir(y);
      set(y, dx, T[x].ch[!dx]); 
      set(x, !dx, y);
      if (~dy) set(z, dy, x); 
      T[x].p = z;
    };
    for (push(x); ~dir(x); ) {
      int y = T[x].p, z = T[y].p;
      push(z); push(y); push(x);
      int dx = dir(x), dy = dir(y);
      if (~dy) rotate(dx != dy ? x : y);
      rotate(x);
    }
  }
};
 
struct LinkCut : SplayTree {
  LinkCut(int n) : SplayTree(n) {}
 
  int access(int x) {
    int u = x, v = 0;
    for (; u; v = u, u = T[u].p) {
      splay(u); 
      int& ov = T[u].ch[1];
      T[u].vir += T[ov].sub;
      T[u].vir -= T[v].sub;
      ov = v; pull(u);
    }
    return splay(x), v;
  }
 
  void reroot(int x) { 
    access(x); T[x].flip ^= 1; push(x); 
  }
  
  void Link(int u, int v) { 
    reroot(u); access(v); 
    T[v].vir += T[u].sub;
    T[u].p = v; pull(v);
  }
  
  void Cut(int u, int v) {
    reroot(u); access(v);
    T[v].ch[0] = T[u].p = 0; pull(v);
  }
  
  // Rooted tree LCA. Returns 0 if u and v arent connected.
  int LCA(int u, int v) { 
    if (u == v) return u;
    access(u); int ret = access(v); 
    return T[u].p ? ret : 0;
  }
  
  // Query subtree of u where v is outside the subtree.
  long long Subtree(int u, int v) {
    reroot(v); access(u); return T[u].vir + T[u].self;
  }
  
  // Query path [u..v]
  long long Path(int u, int v) {
    reroot(u); access(v); return T[v].path;
  }
  
  // Update vertex u with value v
  void Update(int u, long long v) {
    access(u); T[u].self = v; pull(u);
  }
};


bool dfs(int a, int L, vector<vi>& g, vi& btoa, vi& A, vi& B) {
	if (A[a] != L) return 0;
	A[a] = -1;
	for (int b : g[a]) if (B[b] == L + 1) {
		B[b] = 0;
		if (btoa[b] == -1 || dfs(btoa[b], L + 1, g, btoa, A, B))
			return btoa[b] = a, 1;
	}
	return 0;
}

int hopcroftKarp(vector<vi>& g, vi& btoa) {
	int res = 0;
	vi A(g.size()), B(btoa.size()), cur, next;
	for (;;) {
		fill(range(A), 0);
		fill(range(B), 0);
		/// Find the starting nodes for BFS (i.e. layer 0).
		cur.clear();
		for (int a : btoa) if(a != -1) A[a] = -1;
		rep(a,sz(g)) if(A[a] == 0) cur.push_back(a);
		/// Find all layers using bfs.
		for (int lay = 1;; lay++) {
			bool islast = 0;
			next.clear();
			for (int a : cur) for (int b : g[a]) {
				if (btoa[b] == -1) {
					B[b] = lay;
					islast = 1;
				}
				else if (btoa[b] != a && !B[b]) {
					B[b] = lay;
					next.push_back(btoa[b]);
				}
			}
			if (islast) break;
			if (next.empty()) return res;
			for (int a : next) A[a] = lay;
			cur.swap(next);
		}
		/// Use DFS to scan for augmenting paths.
		rep(a,sz(g))
			res += dfs(a, 0, g, btoa, A, B);
	}
}



int dx[]={1,-1,0,0};
int dy[]={0,0,1,-1};
const int mod=998244353;
const int base[]={12321,32123};
const double EPS=1e-9;
const double pi=acos(-1);
const int INF=1e18;
const int N=300007;
mt19937 rng(1235);

int modpow(int u,int v){
    int ans=1, t=u;
    while (v){
        if (v&1) ans=ans*t%mod;
        t=t*t%mod, v>>=1;
    }
    return ans;
}

// tuple<int,vi,vector<vi>> gauss(vector<vi> a)//sum = a[i][m]
// {
// 	int n=a.size(),m=a[0].size()-1,i,j,k,l,R=m;
// 	vi fix(m,-1);
// 	for (i=l=0;i<m;i++)
// 	{
// 		for (j=l;j<n;j++) if (a[j][i]) break;
// 		if (j==n) continue;
// 		fix[i]=l;--R;
// 		swap(a[l],a[j]);
// 		int x=modpow(a[l][i],mod-2);
// 		for (k=i;k<=m;k++) a[l][k]=(ll)a[l][k]*x%mod;
// 		for (auto &v:a) if (v.data()!=a[l].data())
// 		{
// 			x=mod-v[i];
// 			for (k=m;k>=i;k--) v[k]=(v[k]+(ll)x*a[l][k])%mod;
// 		}
// 		++l;
// 	}
// 	for (i=l;i<n;i++) if (a[i][m]) return {-1,{},{}};
// 	vi r(m);
// 	vector<vi> c;
// 	for (i=0;i<m;i++) if (fix[i]!=-1) r[i]=a[fix[i]][m];
// 	for (i=0;i<m;i++) if (fix[i]==-1)
// 	{
// 		vi r(m);
// 		r[i]=1;
// 		for (j=0;j<m;j++) if (fix[j]!=-1) r[j]=(mod-a[fix[j]][i])%mod;
// 		c.push_back(r);
// 	}
// 	return {R,r,c};
// }
struct info{
    int t,s,p,id;
    friend bool operator<(info &l,info &r){
        return l.t<r.t;
    }
};
vector<info> a;
int p[N];
double ans[N];
signed main(){
  ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  cout.precision(15);
  int n,w;
  cin>>n>>w;
  rep(i,n){
    int u,v,w;
    cin>>u>>v>>w;
    p[i+1]=w;
    a.pb((info){u,v,w,i+1});
  }
  a.pb((info){INF,INF,0,0});
  sort(range(a));
  int sum=0;
  double time_el=0;
  double prv=0;
  set<pair<double,int>> pq;
  for (auto c:a){
    while (sz(pq)){
        auto ret=*pq.begin();
        if (ret.first>time_el+1.0*(c.t-prv)/sum) break;
        prv+=(ret.first-time_el)*sum, time_el=ret.first; sum-=p[ret.second];
        ans[ret.second]=prv;
        pq.erase(ret);
    }
    if (sum) time_el+=1.0*(c.t-prv)/sum; 
    prv=c.t;
    // cerr<<time_el<<" "<<1.0*c.s/c.p/w+time_el<<endl;
    if (c.p) pq.insert({1.0*c.s/c.p/w+time_el,c.id});
    sum+=c.p;
  }
  rep1(i,n) cout<<ans[i]<<"\n";
  return 0;
}

/*
3
2
1 2
5
5 2 4 3 1
10
3 8 8 2 9 1 6 2 8 3
*/

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 5808kb

input:

2 10
0 100 2
4 200 1

output:

13
30

result:

ok 2 numbers

Test #2:

score: 0
Accepted
time: 2ms
memory: 5752kb

input:

2 10
30 200 1
10 100 2

output:

50
20

result:

ok 2 numbers

Test #3:

score: 0
Accepted
time: 1ms
memory: 5752kb

input:

1 10000000
0 1 42

output:

1e-07

result:

ok found '0.0000001', expected '0.0000001', error '0.0000000'

Test #4:

score: 0
Accepted
time: 3ms
memory: 5868kb

input:

1 10000000
42 1 42

output:

42.0000001

result:

ok found '42.0000001', expected '42.0000001', error '0.0000000'

Test #5:

score: 0
Accepted
time: 2ms
memory: 5916kb

input:

1 10000000
42 10000000 42

output:

43

result:

ok found '43.0000000', expected '43.0000000', error '0.0000000'

Test #6:

score: 0
Accepted
time: 0ms
memory: 5752kb

input:

1 10000000
10000000 1 1

output:

10000000.0000001

result:

ok found '10000000.0000001', expected '10000000.0000001', error '0.0000000'

Test #7:

score: 0
Accepted
time: 2ms
memory: 5816kb

input:

1 10000000
1 1 100

output:

1.0000001

result:

ok found '1.0000001', expected '1.0000001', error '0.0000000'

Test #8:

score: 0
Accepted
time: 2ms
memory: 5828kb

input:

1 1
10000000 10000000 100

output:

20000000

result:

ok found '20000000.0000000', expected '20000000.0000000', error '0.0000000'

Test #9:

score: 0
Accepted
time: 197ms
memory: 31820kb

input:

200000 1
10000000 10000000 1
10000000 10000000 1
10000000 10000000 1
10000000 10000000 1
10000000 10000000 1
10000000 10000000 1
10000000 10000000 1
10000000 10000000 1
10000000 10000000 1
10000000 10000000 1
10000000 10000000 1
10000000 10000000 1
10000000 10000000 1
10000000 10000000 1
10000000 10...

output:

2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
2000010000000
200001...

result:

ok 200000 numbers

Test #10:

score: 0
Accepted
time: 278ms
memory: 32180kb

input:

200000 1
10000000 10000000 22
10000000 10000000 62
10000000 10000000 71
10000000 10000000 73
10000000 10000000 82
10000000 10000000 15
10000000 10000000 60
10000000 10000000 26
10000000 10000000 35
10000000 10000000 83
10000000 10000000 58
10000000 10000000 84
10000000 10000000 23
10000000 10000000 ...

output:

1790041363636.36
1390577580645.16
1300784647887.32
1280812465753.42
1190840487804.88
1859583333333.33
1410498166666.67
1750241923076.92
1660420857142.86
1180833975903.61
1430416379310.34
1170834642857.14
1780072608695.65
1610417250000
1250849473684.21
1660420857142.86
1540342978723.4
1500271176470.5...

result:

ok 200000 numbers

Test #11:

score: 0
Accepted
time: 344ms
memory: 33020kb

input:

199293 5
9504657 9159218 4
9229606 9939393 93
9949326 9400061 74
9049202 9678955 63
9856746 9805686 100
9900514 9492706 58
9077984 9828311 42
9082259 9783365 78
9815702 9654015 95
9655893 9753916 11
9027905 9930425 9
9210664 9496857 85
9488366 9132506 56
9416678 9238290 2
9475297 9343399 28
9442121 ...

output:

372606864555.123
212211534775.653
238948149663.04
263425611185.353
197063144013.495
270580494646.032
303467045798.255
237141228118.924
203504180187.051
360171498662.945
364170179095.572
219530866865.628
270186214835.578
376567304898.911
326396146375.99
351352560113.336
354448144301.524
336618594785....

result:

ok 199293 numbers

Test #12:

score: 0
Accepted
time: 315ms
memory: 32740kb

input:

199775 5
9573917 9665464 57
9498813 9469832 81
9885957 9606395 14
9397765 9003071 9
9246019 9070405 26
9740136 9081183 11
9893308 9667485 60
9912483 9414387 94
9934996 9683245 7
9359993 9793294 90
9852046 9209808 22
9704268 9048813 52
9066664 9842295 49
9894656 9914370 56
9520915 9685732 36
9507809 ...

output:

275136188681.623
227063705577.187
355194309827.037
363385338618.769
329856159627.166
359600267866.413
269538859112.944
201263971424.147
368365549271.434
215596647879.434
338462086635.512
277864582191.777
291752383805.083
279643237081.527
314523554485.674
240471104814.772
368753312757.427
27485801021...

result:

ok 199775 numbers

Test #13:

score: 0
Accepted
time: 310ms
memory: 32256kb

input:

199876 10
9569180 9097026 11
9805018 9888590 69
9859588 9812730 54
9708644 9290190 38
9672977 9335125 45
9617443 9706660 56
9670948 9431976 69
9705708 9008410 2
9091288 9600793 23
9064094 9794988 56
9750869 9563190 30
9234184 9600771 22
9681961 9478086 50
9410316 9590449 15
9604218 9991066 51
957349...

output:

179887507879.351
127724903099.116
141024141836.351
153787858998.035
147195733048.118
138618997279.591
124676275642.348
188810825750.261
169163511122.132
139088289036.244
162417585447.203
170108072542.117
143081618014.832
176681729512.214
144626707369.681
152539684945.413
99669425946.5458
18708905846...

result:

ok 199876 numbers

Test #14:

score: 0
Accepted
time: 334ms
memory: 32120kb

input:

199977 4
9602127 9565587 73
9111223 9419029 57
9833218 9019063 97
9020206 9577308 79
9062250 9637529 67
9457065 9295138 1
9448587 9234150 78
9535931 9639433 15
9247581 9592339 40
9768195 9797367 34
9649692 9879574 35
9727787 9190412 97
9260259 9150191 43
9851295 9229529 69
9724520 9333397 67
9676184...

output:

304491753262.739
340031067721.019
234313922207.067
290561445183.444
319806025765.541
474840344781.47
286089986044.73
441518236521.844
382411279202.561
398221219099.161
396587568673.449
238678764660.485
370475863738.505
307996730448.384
314703553472.792
237454044388.288
292588539076.149
384561055908....

result:

ok 199977 numbers

Test #15:

score: 0
Accepted
time: 340ms
memory: 32580kb

input:

199077 6
9634388 9960151 22
9418114 9874787 41
9769850 9225397 37
9368769 9901425 8
9489208 9902249 82
9371370 9920615 49
9263226 9036325 88
9329155 9233456 23
9366876 9584570 56
9434611 9799061 9
9473832 9195956 44
9220704 9779369 72
9801558 9822981 43
9366955 9830926 27
9770139 9638731 78
9741872 ...

output:

283688147387.333
254552170732.088
256675980123.554
304680729443.034
192633843521.356
242706661004.994
170818527368.701
279445737169.918
229155389462.985
303032608931.143
245028698316.45
206387719766.668
251159922565.221
275605305983.79
195456302719.261
207311425588.767
208431744492.26
200745983734.1...

result:

ok 199077 numbers

Test #16:

score: 0
Accepted
time: 242ms
memory: 16976kb

input:

199174 94
4939842 606 76
1166421 867 100
9051103 784 55
8172658 675 51
3743680 551 61
2613139 796 25
6619357 995 81
4244151 919 13
1565998 618 89
8971567 956 48
4453079 696 6
6507538 985 84
821657 762 98
5429287 786 27
6562208 661 86
286640 615 36
6512669 689 74
219589 615 49
8412173 719 58
8817089 ...

output:

4939848.44680851
1166430.22340426
9051111.34042553
8172665.18085106
3743685.86170213
2613147.46808511
6619367.58510638
4244160.77659574
1566004.57446809
8971577.17021277
4453091.60638298
6507551.14994934
821665.106382979
5429295.39361702
6562215.03191489
286647.393617021
6512680.57921219
219602.0851...

result:

ok 199174 numbers

Test #17:

score: 0
Accepted
time: 228ms
memory: 16532kb

input:

199275 58
420812 937 34
5358924 565 84
341963 608 95
9557118 546 80
3131446 587 87
4631085 759 74
1944615 555 90
9739783 504 22
6129096 823 9
9113009 779 15
5896446 737 11
2838089 778 63
2887413 545 3
9842144 566 82
4824038 515 2
3489410 943 99
4094375 674 67
5967153 825 83
8442695 661 5
1099067 961...

output:

420828.155172414
5358933.74137931
341973.703448276
9557130.93403941
3131456.12068966
4631098.0862069
1944624.56896552
9739791.68965517
6129110.73754789
9113022.43103448
5896464.60344828
2838116.85618928
2887427.4137931
9842153.75862069
4824046.87931034
3489426.25862069
4094386.62068966
5967167.22413...

result:

ok 199275 numbers

Test #18:

score: 0
Accepted
time: 216ms
memory: 16444kb

input:

199757 100
8599274 773 87
2248916 983 76
6665957 948 34
8244088 933 17
4788589 623 6
4017807 722 19
4934229 616 11
202280 590 38
692193 527 18
9188184 884 97
2306679 771 19
9102374 572 34
2551259 547 96
6886224 621 32
3085867 871 17
6758447 763 57
1742348 667 52
4050359 520 18
808859 610 60
8347912 ...

output:

8599282.52712644
2248929.21855263
6665969.22
8244097.33
4788595.23
4017814.22
4934235.16
202285.9
692198.27
9188192.84
2306686.71
9102379.72
2551264.499375
6886230.538125
3085875.71
6758458.78263158
1742354.67
4050364.2
808865.1
8347917.09
9544828.7421875
8902042.01
4913605.65
9586502.44
9778905.2
5...

result:

ok 199757 numbers

Test #19:

score: 0
Accepted
time: 334ms
memory: 30616kb

input:

199301 55
9625480 9580 55
1972191 9544 50
2023060 7409 51
3155002 5100 49
5157066 8962 57
8573320 9043 52
5593516 7630 69
4095980 7228 37
9700572 7655 95
4873927 6900 49
8970656 7567 35
4513218 7294 83
90439 8204 19
2350487 9774 100
8833379 7311 70
8720440 6645 16
5196961 9762 63
7589832 6318 17
504...

output:

22664764.1775698
19072434.5275945
14847167.731288
13479463.3024839
20842918.8926182
22479839.0094956
18374375.9549873
21677924.3523049
18966017.791127
19820640.7005919
23346119.1813412
14514855.7235717
20704922.9341262
9826141.15949291
20068809.8719482
25071221.6776228
20766430.7203607
24773065.8199...

result:

ok 199301 numbers

Test #20:

score: 0
Accepted
time: 302ms
memory: 28184kb

input:

199784 70
5106450 7012 8
8862184 6409 38
3313920 6644 90
1841972 6860 90
9511699 8604 83
5624399 9771 93
3616263 6180 86
6894122 9030 49
4263669 9105 11
4949103 5598 32
5380890 6955 48
8146280 6286 53
7123063 6952 11
9394568 8476 55
4759565 6568 78
6956343 7496 74
7811801 9766 52
5673038 8211 55
507...

output:

20569989.7938128
17924700.661383
6678833.93628122
3781477.14365081
16565452.197705
13829173.0919485
7161775.57489918
17739360.8462976
20493408.0622397
16664943.1772303
15857800.2081597
16526407.0936968
20285025.5989921
17776581.9574014
10634690.714593
15012054.6006869
18022459.2751649
16268971.79811...

result:

ok 199784 numbers

Test #21:

score: 0
Accepted
time: 329ms
memory: 26000kb

input:

199504 87
3284911 7920 70
8087820 7643 26
4604781 8931 34
5562076 8619 20
6201975 6720 98
9977988 8972 46
6605878 7152 95
2389753 7357 65
8826767 9661 24
5090545 8402 2
1791123 7868 49
9443698 5279 28
4155685 8121 8
3807424 7178 9
3021395 9299 93
225379 7716 41
5459773 5824 41
1420601 8155 89
744193...

output:

6416886.86267407
15527062.0569984
14488552.389328
15826799.68859
9289865.23356399
15136631.6552396
10288299.8330796
4661712.47131447
15976522.9439517
17111357.5411635
4630547.05903062
15007084.3592187
16615825.3177797
16415542.4827255
5457325.1437294
684855.404640713
12062718.4597116
2452961.1543129...

result:

ok 199504 numbers

Test #22:

score: 0
Accepted
time: 336ms
memory: 32236kb

input:

199447 66
1042403 67371 93
1128688 78245 76
5016768 50046 51
8688565 60236 62
7728578 73421 61
4914558 84844 51
4044583 90549 45
4037722 73419 85
533462 83816 56
832748 81898 38
2603184 60202 97
7543832 99993 32
8706211 91645 79
5544589 91922 58
8719389 94288 83
9443633 51194 58
710110 98781 29
9077...

output:

97353589.26238
134963509.310392
139517888.212164
141786058.523869
157334920.17192
175394851.272493
184140886.526916
126378138.861687
163471348.715229
184991893.117475
90962705.0566139
200054135.804035
155247504.722038
173087974.443246
153779101.543327
134152145.318263
201126873.6033
146215731.164282...

result:

ok 199447 numbers

Test #23:

score: 0
Accepted
time: 345ms
memory: 32836kb

input:

199929 82
9220865 86552 59
2985547 66016 60
1340761 51929 90
7375534 79510 99
4418854 68267 87
6932503 96935 100
7034197 65152 55
9533354 87179 1
5096560 88788 73
974191 95082 21
6677774 96696 10
1176893 73873 11
5738833 74842 80
9957447 62211 17
4645574 77470 94
7679536 61562 25
3324950 83656 14
98...

output:

137442730.623504
117719935.423043
60788949.550715
100808309.62369
95137085.2244394
113655203.673641
125979076.426221
182717780.304845
126235560.611792
167628018.3988
176362017.876936
172963004.019428
110101567.382926
164701871.194251
99290091.1363269
155451189.610926
171789653.370507
163509659.66922...

result:

ok 199929 numbers

Test #24:

score: 0
Accepted
time: 301ms
memory: 31808kb

input:

199029 73
4701835 79195 8
2211183 66584 48
2631622 53813 30
8759994 85987 36
8773487 81715 6
6319225 90424 41
23811 53497 64
2331496 50938 10
9659659 75158 89
6082500 89664 91
8121141 51790 18
2474312 52613 82
2771456 90383 69
7001526 77641 71
2907404 97855 14
948572 53328 84
3604146 68532 7
2907887...

output:

197343781.133927
146266455.203146
160277245.026007
172793852.192166
199572245.4456
169801859.050698
64949674.5064038
189590139.181984
118032789.573732
127144382.914736
178153214.122072
83736576.602192
143463781.904461
135320085.159299
193921930.410481
73566489.3723968
197237455.989795
146316945.4691...

result:

ok 199029 numbers

Test #25:

score: 0
Accepted
time: 322ms
memory: 33108kb

input:

199673 56
2610387 845669 2
1687829 988340 72
3821139 870884 35
2813428 799092 7
1365018 803557 95
9357496 513441 25
731413 980028 93
8363930 565303 23
4733785 973636 18
167256 773886 29
51133 651716 90
3480326 674090 12
4953792 831943 51
4343808 520658 51
2719391 642184 85
3121609 691825 39
7026995 ...

output:

2663416920.97904
1928512891.46544
2270470176.70506
2597243918.16331
1455194752.90886
2183638273.06671
1692789012.78537
2266073869.02243
2496007785.56258
2296006666.68333
1246768433.83332
2503127235.8526
2051884673.88639
1670260383.25294
1329974873.90736
2102267234.92882
2228182778.40602
2065631564.4...

result:

ok 199673 numbers

Test #26:

score: 0
Accepted
time: 337ms
memory: 32136kb

input:

199393 73
8091358 636821 63
3610955 902862 64
5111999 556237 78
6533532 853174 48
686517 962833 17
8744218 893633 70
3721028 529352 98
1162071 874456 32
9296883 502388 30
308699 714994 100
4191990 607788 3
4777744 786151 83
6953281 811671 52
8756665 654068 97
981220 909737 97
6324379 990946 6
730619...

output:

1275130082.97255
1493550552.93089
973568760.578958
1610876608.73415
1917650576.82207
1437555485.98258
745082252.339796
1766089887.56744
1584227879.32143
951064194.587344
2018503334.66066
1219497961.20947
1549263972.68036
930468945.02426
1200936817.50111
2009863971.57807
1971316327.94321
832030635.09...

result:

ok 199393 numbers

Test #27:

score: 0
Accepted
time: 333ms
memory: 33344kb

input:

199875 63
6269819 886681 17
5467813 721870 48
6402860 741591 18
253634 907256 77
2409927 663402 32
762162 815118 11
1743775 756777 7
6657703 601020 44
3859980 976923 47
5417008 792908 74
602223 509641 4
8410806 856919 62
9019038 832694 49
833878 650671 51
9243051 594701 8
9593416 844285 65
9921030 9...

output:

2213856003.1257
1775683281.44448
2166436262.25989
1593306697.44233
1943159460.1901
2266283494.04248
2305962466.387
1714438971.5108
1944956047.58842
1528248633.05341
2319079253.77252
1723020248.55543
1847280158.08893
1659435553.7743
2266943720.69986
1680889406.72102
2380433868.54169
2190616986.85995
...

result:

ok 199875 numbers

Test #28:

score: 0
Accepted
time: 306ms
memory: 30520kb

input:

199493 80
3646291 6589211 78
3835801 9820358 84
3775894 7887279 69
1403559 7547266 40
2451237 5385669 29
2904241 6950241 65
6125738 7100303 30
3526246 6344762 98
844701 9815023 18
5933784 5196196 40
8335782 9624783 43
5474890 5645503 81
4386861 6220368 39
1603653 7528687 13
6625714 6639631 16
706689...

output:

10214158002.1772
12572146296.1697
12430331164.9296
14939287831.8363
14878605249.4416
11989023568.2113
15721325037.9095
8103362035.45086
17454389308.5589
13196271301.77
15545715392.3254
8679035263.77972
14234787112.3887
17532010551.8647
17037539089.8022
14606370108.1262
8891630212.73566
15975555269.4...

result:

ok 199493 numbers

Test #29:

score: 0
Accepted
time: 323ms
memory: 32108kb

input:

199975 95
9127263 9824246 31
725793 7569723 72
5066755 8332179 9
5123663 8233302 69
4108380 6510726 43
2290963 9771814 6
4148486 9985610 39
3988744 5840025 14
5407800 5718449 27
6075227 5087718 10
9779149 9069107 56
9107953 7713115 56
1419484 6026900 32
6016510 8831954 72
4887544 9655430 27
269667 9...

output:

13937905496.8458
10033778296.3245
15207689460.111
10738075363.2536
11827209682.2949
15492533171.5762
13480084569.6575
14400171178.1764
12982354715.3817
14665395594.5441
12092824838.966
11426666478.288
12620203552.0384
10878713148.3054
14156248631.6328
9771890664.52745
9947544163.72807
11141627833.80...

result:

ok 199975 numbers

Test #30:

score: 0
Accepted
time: 332ms
memory: 32380kb

input:

199075 86
7305724 8126405 81
4918296 6090023 60
1390748 8810642 52
8843766 8148404 10
8463013 7635784 66
4308908 7593387 59
9473744 7133543 48
1820019 5301725 22
9970898 7292121 47
6216669 9208306 84
1222516 8546994 65
405370 9747164 27
8452108 5129623 33
8093724 5839029 26
813730 6967420 39
3538704...

output:

10721879434.659
10797502325.4573
13464577925.9865
16627307131.1128
11616265493.267
12203486352.2815
12909398946.9284
14651536819.8686
13101153739.1432
11291805629.2555
12310694615.6431
15583041967.5044
13108926037.7857
14447914933.6198
13669841962.9984
12037040467.0974
12385880572.0958
16323052278.2...

result:

ok 199075 numbers

Test #31:

score: 0
Accepted
time: 299ms
memory: 19368kb

input:

199199 78151
308067 3510866 94
6357726 1383805 15
2657317 8797531 92
6497312 357768 66
1134727 3432114 28
7985088 8000696 13
147819 1655876 32
4881979 1216259 97
1470964 2232766 25
2929789 5183878 21
4171107 4419118 92
7436038 8910406 32
8680822 8565979 100
5307897 8959910 28
4773869 4268007 57
1347...

output:

335924.968889875
7945776.92377619
3336558.05589574
6583286.32813395
1513151.75933048
12296920.3182004
166073.393624355
5030871.17333364
1820619.97667183
5288502.8097364
4678750.75760769
11701064.2082906
10564865.5150363
11024857.0191818
5717138.80737747
1556387.37836651
6442303.98011936
11739607.820...

result:

ok 199199 numbers

Test #32:

score: 0
Accepted
time: 249ms
memory: 16612kb

input:

199681 594292
5789038 4364536 47
5583361 1412685 3
8981311 1101713 36
217414 8157858 7
5489360 880031 50
7371810 1431418 58
8170568 1612166 41
377610 8562820 5
1000928 2657627 33
8038099 2960000 100
8245697 1329846 4
3766590 9777839 7
5713444 6131898 5
7385110 6125691 82
3035698 5829090 65
4616843 3...

output:

5789045.34409348
5583389.05876741
8981312.85382438
217440.360181527
5489361.48080573
7371812.40861058
8170570.71275063
377624.408438949
1000932.47192121
8038106.81972498
8245699.23769797
3766606.45292045
5713454.31798846
7385125.87967734
3035707.80846116
4616848.23804796
8423434.94322993
5589200.849...

result:

ok 199681 numbers

Test #33:

score: 0
Accepted
time: 254ms
memory: 17324kb

input:

199782 951648
8934366 5026718 9
7440220 1184668 91
272171 3405895 75
6568741 990652 36
2179636 8327948 65
9389755 4862140 7
1160181 6727240 51
840108 5909381 21
597159 8049784 53
8179541 5446522 70
4655931 8305983 17
2366518 645273 81
7779201 3889305 97
6764834 8067280 41
1297528 2614366 76
7885880 ...

output:

8934371.28211902
7440221.24485944
272174.578944105
6568742.04098574
2179644.75108023
9389760.10917902
1160188.06904233
840114.898409916
597167.458783079
8179546.72325272
4655942.07275379
2366518.67805848
7779206.97650707
6764842.47716803
1297530.74719854
7885881.62523538
6005127.56544647
3672394.944...

result:

ok 199782 numbers

Test #34:

score: 0
Accepted
time: 334ms
memory: 31804kb

input:

199013 2
5648444 6390891 30
4583777 4765203 91
6002297 9967339 67
2920106 5046393 16
1078536 9551957 15
4208514 8778670 95
6524454 7530040 44
5903729 8501282 33
3694577 8408932 62
771162 6157066 4
9717159 3022531 97
8386385 467293 82
5854615 1902200 68
1266157 8997519 45
2513227 4669366 78
8418928 5...

output:

422330846578.997
217302476200.056
388908111736.452
447421455718.804
473670311290.8
321064635269.453
403413314451.734
435703578221.707
378175228790.52
488886966001.814
140471687707.959
28129828435.5603
127607157606.547
417283372283.303
240842409817.681
404355678120.142
488956614237.8
321584033228.498...

result:

ok 199013 numbers

Test #35:

score: 0
Accepted
time: 340ms
memory: 33112kb

input:

199114 46
6162548 7053073 83
6440636 9761378 79
7293157 2271521 6
4304566 2846483 49
2735679 1967170 41
6226459 2209392 48
1849712 7677818 53
6366227 815139 41
593319 8833793 82
912605 3676292 74
6127392 4965964 98
4716936 6302023 45
2887238 4626902 61
5679015 5971812 3
8439414 6230450 94
6654831 42...

output:

13270785737.0927
15888659942.5135
19830440328.5434
10219121022.5935
8794729532.68058
8508652523.29725
16746925846.2831
4058690357.13369
15023451061.3322
9036976049.47022
9193518426.71134
16576759694.159
12350448518.2113
21371543825.4221
11263961776.6547
8266223188.26687
14407020264.6972
13644038520....

result:

ok 199114 numbers

Test #36:

score: 0
Accepted
time: 322ms
memory: 32544kb

input:

199596 87
9307876 2682550 45
5666271 9533362 67
3617151 4575704 58
8024669 5679277 86
7090312 4447791 60
5613182 5640114 89
4839326 2601404 63
4197502 3128996 49
123283 4291358 90
8718404 6419710 49
5235115 1942100 11
3316864 2136753 20
9919861 7417013 58
5058738 3137593 50
6701243 2758829 1
9923868...

output:

5524614624.60397
8842445165.14314
6717217887.1529
5954728955.37284
6451381042.31311
5777733893.78579
4118838152.13812
5808315903.4871
4612176056.1528
8610704084.93587
9364167101.82695
7944757485.17094
8539108645.90896
5735633416.11041
11378771214.3162
4837540165.37323
953633964.009088
10565691238.45...

result:

ok 199596 numbers

Test #37:

score: 0
Accepted
time: 326ms
memory: 31652kb

input:

199697 39
4788847 3344732 94
2556263 4529537 55
4908011 1912590 98
6711639 8446664 20
3780588 1895708 82
2597993 9070836 41
7828941 7781885 80
4660000 475557 70
4686381 4907707 15
8859846 8906232 19
6678482 3885532 19
4614282 7971483 95
6952484 9950228 58
7135952 303374 4
4963073 4576809 17
495414 1...

output:

8080516207.39613
15379520637.7416
4704955625.28516
23724826976.6238
5498253763.45826
21858676687.8759
16920641339.3985
1714686622.73966
23125936060.8547
23927692271.5764
21539830987.9691
15560365236.1174
20731573992.0944
14592285657.3323
22555069203.1186
15571096717.9028
10020709746.9224
19126872336...

result:

ok 199697 numbers

Test #38:

score: 0
Accepted
time: 343ms
memory: 33468kb

input:

199798 83
2967307 8974210 56
9446256 4301520 43
6198872 9184068 37
431742 1022562 61
8135221 4567817 97
1984715 7468854 82
5851688 2896959 89
155631 2789414 78
4216345 365272 23
3968155 6425459 94
3088715 861669 20
8247345 4063108 70
9018241 2740338 47
1548808 7277667 63
889259 6137892 24
8731318 36...

output:

9585283617.95985
8084038822.53111
10472903001.0848
1903914662.78517
4825951818.89849
7687860874.44797
3528421731.61974
3801412971.62176
1828843662.40486
6405828305.00643
4479058921.66928
5688131849.58805
5708000433.46289
8615588401.13124
10519349299.7114
61411050.133919
686981446.40368
926382024.662...

result:

ok 199798 numbers

Test #39:

score: 0
Accepted
time: 2ms
memory: 6100kb

input:

1360 49
9871429 9779574 40
9989546 534733 28
3556340 8555939 45
2305081 5937120 29
5096830 6921998 49
7191025 9278305 8
1298498 9627142 14
671882 3049863 76
7402068 6967792 30
4959332 8268659 69
4691507 7797825 22
2723063 1478222 99
2602570 2927804 66
9779683 6186660 50
706855 189678 58
8926331 5264...

output:

123331351.30786
34603328.3370537
117294057.853424
118724756.222695
109278783.858189
137076595.222914
134482946.239141
34527002.9992889
122234510.150622
103418304.970579
128510981.489846
17110978.0926793
51474075.0451887
106097823.69213
1057524.68944885
73357616.3125882
135935222.171997
68134928.9148...

result:

ok 1360 numbers

Test #40:

score: 0
Accepted
time: 6ms
memory: 5988kb

input:

1842 93
5352399 376348 90
6879538 306716 20
9880335 860121 93
6025185 3737210 70
9451463 9594107 79
9208970 7676323 49
9321246 9774920 23
6167514 5363720 84
1965166 2616845 42
67641 5979374 47
6134874 4773961 31
9053615 7312952 74
9635193 5717915 63
1856896 8128249 5
8968685 1750762 73
2129100 39552...

output:

7987080.24697098
20278894.5875759
18320294.061011
47350535.1992692
73982532.3305225
79242940.079601
91559848.2606005
53356053.0901793
45696221.8319254
61057205.3520112
78364243.7116484
68764097.5244881
66605259.4351264
97835462.2094778
29811318.4123715
51047928.0782184
45401515.195059
84861071.09094...

result:

ok 1842 numbers

Test #41:

score: 0
Accepted
time: 2ms
memory: 6024kb

input:

1562 34
8497727 1038529 44
8736396 5111403 4
1171194 3164303 36
9745289 6570004 3
6141739 7042024 94
3562558 1107045 97
4646504 4698505 36
8965656 7934473 92
1495130 3041706 58
5175950 3498600 17
209463 6717394 43
7653543 3147682 53
1700949 3475322 59
1236619 326734 63
4894871 3311845 81
5398137 238...

output:

56900292.5008926
223642699.080262
139709814.644438
225822068.409826
132960879.399121
25062361.1712136
172965317.483263
146396021.551932
94295992.1866997
193221471.417159
177992215.180595
114510915.233796
104870587.917751
4380449.19804167
83564411.8015284
183113596.499792
30909569.1224898
197264086.3...

result:

ok 1562 numbers

Test #42:

score: 0
Accepted
time: 2ms
memory: 6048kb

input:

1043 86
1709320 1892199 5
2995165 5074875 96
2462055 5468486 76
6096614 4370095 41
496371 4489941 16
613636 9505064 42
7636118 4846283 46
4461287 248330 13
6058228 3466567 75
5317392 6050530 96
1652830 8660826 52
8950961 4015116 24
8733572 1041240 56
3313833 7492515 10
3156701 9905633 96
8667174 107...

output:

55728508.1056343
24155440.3416811
30021799.4647321
43517016.2623287
53263756.3154177
51213710.9157231
43989691.5870277
12049581.5876006
26940157.579823
32066791.2778446
48039943.1704896
50652583.1258813
18099262.9891914
58206179.4820194
40418449.7456188
15434825.0330264
25997939.8960351
10580800.007...

result:

ok 1043 numbers

Test #43:

score: 0
Accepted
time: 5ms
memory: 6072kb

input:

1525 30
7190292 2554381 59
9885158 4846858 84
8786049 7772668 16
9816718 2170185 74
7186648 1937858 39
7664716 7968490 83
5658866 4994061 55
4923786 2562187 21
621325 4148323 87
5458834 8793948 66
3096197 604258 57
2584023 9849845 91
733061 8798647 57
7726690 9434104 64
1418530 6690908 4
1869943 473...

output:

99509524.6594757
124746768.263116
238953615.193232
75827976.7067994
110266382.422736
167850000.898466
161967658.505839
184761418.152152
87603266.8933285
190877016.800509
24126960.8829436
174123039.560946
196206527.541234
197568772.609293
252320975.472601
180161316.747451
52195835.5711151
239545577.1...

result:

ok 1525 numbers

Test #44:

score: 0
Accepted
time: 3ms
memory: 5868kb

input:

316 59
9188975 3868239 10
1555155 115859 26
5453579 247042 72
2822282 4185205 49
82066 6588164 75
5670503 7171636 83
9577189 1881903 17
7935150 4796220 33
4738599 2350579 56
417510 597470 97
647601 4861443 40
5843081 6719640 5
1819841 6829760 9
2504145 9651623 92
1334814 7014371 46
2616434 1788240 7...

output:

25295770.4864112
1657034.38034437
5846332.30328343
14063725.1949886
1173590.54365461
18383473.7289528
21350187.7635467
22220128.5042495
11031724.84269
502932.661607208
5221978.62580424
26841423.8436709
26317074.2741672
15961440.5160445
16912327.1804459
4295986.51730828
24097114.8499029
26034526.0215...

result:

ok 316 numbers

Test #45:

score: 0
Accepted
time: 0ms
memory: 5776kb

input:

139 8
9703080 4465013 64
3412014 9887842 14
6744440 2551224 12
9173609 1985295 87
4436699 4036081 94
24091 5569654 27
4902447 6805489 30
733291 2142781 49
9301697 7999632 69
558952 3340888 72
4722191 6613388 45
4443010 2554370 75
3885598 4587166 14
6917003 6817404 50
9596645 3608158 61
5885471 52546...

output:

49808572.7821732
83536742.1910106
71141235.2526023
26003670.6994446
32580177.9785774
64511504.304906
71851346.0028444
18137195.0125862
61360909.2880492
18439854.1815792
64805623.2968818
27308308.83058
76425232.5823343
64079292.0164071
45590861.5917502
67390688.7878576
72238289.4785247
63700134.79301...

result:

ok 139 numbers

Test #46:

score: 0
Accepted
time: 0ms
memory: 5880kb

input:

363 48
2848407 94490 13
2637649 9916722 2
732789 4855406 51
2893711 4561193 20
1126975 6708190 16
7075171 9191864 76
7892061 1920562 39
6228923 4456638 61
3864794 8424493 85
5667261 860114 46
6165558 8556820 54
773561 8389099 50
918220 7120381 3
6296726 9015889 5
5522831 5169242 69
4121374 8912580 9...

output:

3564198.07924044
38384664.5426366
12056978.27604
33035516.6754693
35505049.3132508
29686269.6114427
20274188.2195297
23331133.1863118
25006369.1451058
9896480.71162077
31484838.9086642
26966227.7546105
38143885.8151538
37952386.1987948
22945751.3529248
24037696.977008
37021964.765407
13730187.122482...

result:

ok 363 numbers

Test #47:

score: 0
Accepted
time: 2ms
memory: 5836kb

input:

186 92
8329378 5980864 75
4494508 4656001 90
7056784 7159588 95
6613815 2361283 57
448474 4156107 31
1428759 2622586 21
881675 2068340 48
1724555 6770495 69
3394759 8849354 1
5808704 3346636 17
7608925 5532956 67
7037846 4480725 29
582066 9910492 4
8373940 957478 59
3784660 6730326 80
2357277 760319...

output:

8451520.45024607
4748304.77300951
7286051.44929486
6806855.29868059
562187.728819996
2067663.75227121
1089997.16000378
2362423.38504563
7695970.20881089
6515934.52319605
7688659.88155034
7434423.29541243
3670385.39828084
8409160.32105186
3858730.1638587
3163201.49027392
7938737.23447498
1395873.5176...

result:

ok 186 numbers

Test #48:

score: 0
Accepted
time: 1ms
memory: 5844kb

input:

156 37
1474705 1610342 28
1384500 9460688 78
8347644 9463771 35
5300785 161374 90
7138751 6636728 57
8479838 6053308 62
8904423 2216118 58
2187053 4117056 86
7957857 4498407 18
917012 6090054 95
6716648 2443685 79
5704041 5282751 100
2647822 2443706 1
7753663 8123259 18
2046490 3515601 92
5626314 12...

output:

2957012.99677394
6972018.88717373
19389936.7894575
5447846.48853603
16878683.4602865
16710975.8636937
13198424.8285543
4556052.54401116
19208531.8160557
1680056.50346844
9897221.71725829
11204977.0716202
21648556.0338804
20124373.985126
3676386.99863712
11331614.8242576
7229221.21641004
16452677.233...

result:

ok 156 numbers