QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#553664#7895. Graph Partitioning 2ppipCompile Error//C++146.4kb2024-09-08 17:30:152024-09-08 17:30:15

Judging History

你现在查看的是最新测评结果

  • [2024-09-08 17:30:15]
  • 评测
  • [2024-09-08 17:30:15]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;
constexpr int Spp{1<<20};
char buf[Spp],*p1,*p2;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,Spp,stdin),p1==p2)?EOF:*p1++)
template <typename T>
void read(T &x) {
    char c;int f{1};
    do x=(c=getchar())^48;
    while (!isdigit(c)&&c!='-');
    if (x==29) f=-1,x=0;
    while (isdigit(c=getchar()))
        x=(x*10)+(c^48);
    x*=f;
}
template <typename T,typename ...Args>
void read(T& x,Args&... args) {read(x);read(args...);}
#define int long long
const int mod=998244353;
const int B=18,MAXN=1<<B;
int qmi(int a,int b,int p)
{
	int res=1;
	while(b)
	{
		if(b&1) res=1LL*res*a%p;
		a=1LL*a*a%p;
		b>>=1;
	}
	return res;
}
namespace Poly
{
    #define mul(x,y) (1ll*x*y>=mod?1ll*x*y%mod:1ll*x*y)
    #define minus(x,y) (1ll*x-y<0?1ll*x-y+mod:1ll*x-y)
    #define plus(x,y) (1ll*x+y>=mod?1ll*x+y-mod:1ll*x+y)
    #define ck(x) (x>=mod?x-mod:x)
    typedef deque<int> poly;
    const int G=3;
    const int inv_G=qmi(G,mod-2,mod);
    int RR[MAXN],deer[2][B+1][MAXN],inv[MAXN];
    void init(const int t)
    {
    	for(int p=1;p<=t;p++)
    	{
    		int buf1=qmi(G,(mod-1)/(1<<p),mod);
    		int buf0=qmi(inv_G,(mod-1)/(1<<p),mod);
    		deer[0][p][0]=deer[1][p][0]=1;
    		for(int i=1;i<(1<<p);i++)
    		{
    			deer[0][p][i]=1ll*deer[0][p][i-1]*buf0%mod;
    			deer[1][p][i]=1ll*deer[1][p][i-1]*buf1%mod;
    		}
    	}
    	inv[1]=1;
    	for(int i=2;i<(1<<t);i++) inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
    }
    int NTT_init(int n)
    {
        int limit=1,L=0;
        while(limit<=n) limit<<=1,L++;
        for(int i=0;i<limit;i++) RR[i]=(RR[i>>1]>>1)|((i&1)<<(L-1));
        return limit;
    }
    void NTT(poly &A,int type,int limit)
    {
        A.resize(limit);
        for(int i=0;i<limit;i++) if(i<RR[i]) swap(A[i],A[RR[i]]);
        for(int mid=2,j=1;mid<=limit;mid<<=1,j++)
        {
        	int len=mid>>1;
        	for(int pos=0;pos<limit;pos+=mid)
        	{
        		int *wn=deer[type][j];
        		for(int i=pos;i<pos+len;i++,wn++)
        		{
        			int tmp=1ll*(*wn)*A[i+len]%mod;
        			A[i+len]=ck(A[i]-tmp+mod);
        			A[i]=ck(A[i]+tmp);
        		}
        	}
        }
        if(!type) for(int i=0;i<limit;i++) A[i]=1ll*A[i]*inv[limit]%mod;
    }
    poly poly_mul(poly A,poly B)
    {
    	int deg=A.size()+B.size()-1;
    	int limit=NTT_init(deg);
    	poly C(limit);
    	NTT(A,1,limit),NTT(B,1,limit);
    	for(int i=0;i<limit;i++) C[i]=1ll*A[i]*B[i]%mod;
    	NTT(C,0,limit);
    	C.resize(deg);
    	return C;
    }
    poly poly_inv(poly &f,int deg)
    {
        if(deg==1) return poly(1,qmi(f[0],mod-2,mod));
        poly A(f.begin(),f.begin()+deg);
        poly B=poly_inv(f,deg+1>>1);
        int limit=NTT_init(deg<<1);
        NTT(A,1,limit),NTT(B,1,limit);
        for(int i=0;i<limit;i++) A[i]=B[i]*(2-1ll*A[i]*B[i]%mod+mod)%mod;
        NTT(A,0,limit);
        A.resize(deg);
        return A;
    }
    poly poly_dev(poly f)
    {
        int n=f.size();
        for(int i=1;i<n;i++) f[i-1]=1ll*f[i]*i%mod;
        return f.resize(n - 1), f;
    }
    poly poly_idev(poly f)
    {
        int n=f.size();
        for(int i=n-1;i;i--) f[i]=1ll*f[i - 1]*inv[i] % mod;
        return f[0]=0,f;
    }
    poly poly_ln(poly f,int deg)
    {
        poly A = poly_idev(poly_mul(poly_dev(f),poly_inv(f, deg)));
        return A.resize(deg),A;
    }
    poly poly_exp(poly &f,int deg)
    {
        if(deg==1) return poly(1,1);
        poly B=poly_exp(f,deg+1>>1);
        B.resize(deg);
        poly lnB=poly_ln(B,deg);
        for(int i=0;i<deg;i++)
            lnB[i]=ck(f[i]-lnB[i]+mod);
        int limit=NTT_init(deg<<1);
        NTT(B,1,limit),NTT(lnB,1,limit);
        for(int i=0;i<limit;i++) B[i]=1ll*B[i]*(1+lnB[i])%mod;
        NTT(B,0,limit);
        B.resize(deg);
        return B;
    }
    poly poly_sqrt(poly &f,int deg)
    {
        if(deg==1) return poly(1, 1);
        poly A(f.begin(),f.begin()+deg);
        poly B=poly_sqrt(f,deg+1>>1);
        poly IB=poly_inv(B,deg);
        int limit=NTT_init(deg<<1);
        NTT(A,1,limit),NTT(IB,1,limit);
        for(int i=0;i<limit;i++) A[i]=1ll*A[i]*IB[i]%mod;
        NTT(A,0,limit);
        for(int i=0;i<deg;i++) A[i]=1ll*(A[i]+B[i])*inv[2]%mod;
        A.resize(deg);
        return A;
    }
    poly poly_pow(poly f,int k)
    {
        f=poly_ln(f,f.size());
        for(auto &x:f) x=1ll*x*k%mod;
        return poly_exp(f, f.size());
    }
}
constexpr int N(1e5),b6e0{998244353};
deque<int> f[N+5];
int sz[N+5];
vector<int> e[N+5];
int n,k;
bool solve(int u) {
    sz[u]=1;
    int sc{0};
    for (auto v:e[u]) {
        e[v].erase(find(e[v].begin(),e[v].end(),u));
        if (!solve(v)) return false;
        sz[u]+=sz[v],sc+=(sz[v]>=k);
    }
    if (sz[u]<k) return;
    if (sc==0) {
        f[u].resize(k+2,0);
        if (sz[u]<=k+1) f[u][sz[u]]=1;
    } else if (sc==1) {
        int s{1};
        for (auto v:e[u])
            if (sz[v]<k) s+=sz[v];
        if (s>k+1) {
            f[u].resize(k+2,0);
            return false;
        }
        for (auto v:e[u])
            if (sz[v]>=k) {
                f[u]=move(f[v]);
                f[u][0]=(f[u][k]+f[u][k+1])%b6e0;
                while (s--) f[u].push_front(0);
                while (f[u].size()>k+2) f[u].pop_back();
                break;
            }
    } else {
        f[u].resize(k+2,0);
        int s{1};
        for (auto v:e[u])
            if (sz[v]<k) s+=sz[v];
        if (s>k+1) {
            return false;
        }
        f[u][s]=1;
        for (auto v:e[u])
            if (sz[v]>=k) {
                deque<int> g=Poly::poly_mul(f[u],f[v]);
                while (g.size()>k+2) g.pop_back();
                for (int i{1};i<=k+1;++i) g[i]=(g[i]+1LL*f[u][i]*(f[v][k]+f[v][k+1]))%b6e0;
                swap(f[u],g);
            }
    }
    return true;
}
signed main() {
    Poly::init(B);
    int T;read(T);
    while (T--) {
        read(n,k);
        for (int i{1};i<n;++i) {
            int u,v;read(u,v);
            e[u].push_back(v);
            e[v].push_back(u);
        }
        if (solve(1)) cout<<(f[1][k]+f[1][k+1])%b6e0<<"\n";
        else cout<<"0\n";
        for (int i{1};i<=n;++i) {
            f[i].clear();
            sz[i]=1;
            e[i].clear();
        }
    }
    return 0;
}

詳細信息

answer.code: In function ‘bool solve(long long int)’:
answer.code:174:18: error: return-statement with no value, in function returning ‘bool’ [-fpermissive]
  174 |     if (sz[u]<k) return;
      |                  ^~~~~~