QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#552320 | #9251. Graph Changing | ucup-team296# | RE | 0ms | 2236kb | Rust | 44.3kb | 2024-09-07 21:58:21 | 2024-09-07 21:58:23 |
Judging History
answer
//
pub mod solution {
//{"name":"uc9_j","group":"Manual","url":"","interactive":false,"timeLimit":2000,"tests":[{"input":"","output":""}],"testType":"multiNumber","input":{"type":"stdin","fileName":null,"pattern":null},"output":{"type":"stdout","fileName":null,"pattern":null},"languages":{"java":{"taskClass":"uc9_j"}}}
use crate::algo_lib::collections::md_arr::arr2d::Arr2d;
use crate::algo_lib::graph::all_distances::AllDistances;
use crate::algo_lib::graph::edges::bi_weighted_edge::BiWeightedEdge;
use crate::algo_lib::graph::graph::Graph;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::misc::test_type::TaskType;
use crate::algo_lib::misc::test_type::TestType;
type PreCalc = Vec<Vec<Arr2d<i32>>>;
fn solve(input: &mut Input, out: &mut Output, _test_case: usize, data: &mut PreCalc) {
let t = input.read_size();
let n = input.read_size();
let k = input.read_size();
let x = input.read_size();
let y = input.read_size();
if t == 0 {
out.print_line(x.abs_diff(y));
} else if k == 1 {
out.print_line(1);
} else if n <= k {
out.print_line(-1);
} else if k == 2 {
if n == 3 {
if t == 1 {
if (x, y) == (1, 3) || (x, y) == (3, 1) {
out.print_line(1);
} else {
out.print_line(-1);
}
} else {
out.print_line(-1);
}
} else {
if t % 2 == 0 {
out.print_line(x.abs_diff(y));
} else if x.abs_diff(y) == 1 {
out.print_line(2);
} else {
out.print_line(1);
}
}
} else if t == 1 {
if x.abs_diff(y) >= k {
out.print_line(1);
} else if x.abs_diff(n) >= k && y.abs_diff(n) >= k
|| x.abs_diff(1) >= k && y.abs_diff(1) >= k
{
out.print_line(2);
} else if (x.abs_diff(n) >= k || x.abs_diff(1) >= k)
&& (y.abs_diff(n) >= k || y.abs_diff(1) >= k)
{
out.print_line(3);
} else {
out.print_line(-1);
}
} else if k >= 4 || n > 7 {
out.print_line(-1);
} else {
out.print_line(data[n][t][(x, y)]);
}
}
pub static TEST_TYPE: TestType = TestType::MultiNumber;
pub static TASK_TYPE: TaskType = TaskType::Classic;
pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
let mut res = vec![Vec::new(); 8];
for n in 4..=7 {
let mut graph = Graph::new(n);
for i in 1..n {
graph.add_edge(BiWeightedEdge::new(i - 1, i, 1));
}
while graph.edge_count() > 0 {
let d = graph.all_distances();
graph.clear();
for i in 0..n {
for j in 0..i {
if d[(i, j)] != i32::MAX && d[(i, j)] >= 3 {
graph.add_edge(BiWeightedEdge::new(i, j, 1));
}
}
}
res[n].push(d);
}
}
let mut pre_calc = res;
match TEST_TYPE {
TestType::Single => solve(&mut input, &mut output, 1, &mut pre_calc),
TestType::MultiNumber => {
let t = input.read();
for i in 1..=t {
solve(&mut input, &mut output, i, &mut pre_calc);
}
}
TestType::MultiEof => {
let mut i = 1;
while input.peek().is_some() {
solve(&mut input, &mut output, i, &mut pre_calc);
i += 1;
}
}
}
output.flush();
match TASK_TYPE {
TaskType::Classic => {
input.skip_whitespace();
input.peek().is_none()
}
TaskType::Interactive => true,
}
}
}
pub mod algo_lib {
pub mod collections {
pub mod dsu {
use crate::algo_lib::collections::iter_ext::collect::IterCollect;
use crate::algo_lib::collections::slice_ext::bounds::Bounds;
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use std::cell::Cell;
#[derive(Clone)]
pub struct DSU {
id: Vec<Cell<u32>>,
size: Vec<u32>,
count: usize,
}
impl DSU {
pub fn new(n: usize) -> Self {
Self {
id: (0..n).map(|i| Cell::new(i as u32)).collect_vec(),
size: vec![1; n],
count: n,
}
}
pub fn size(&self, i: usize) -> usize {
self.size[self.get(i)] as usize
}
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.id.len()
}
pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
self.id.iter().enumerate().filter_map(|(i, id)| {
if (i as u32) == id.get() {
Some(i)
} else {
None
}
})
}
pub fn set_count(&self) -> usize {
self.count
}
pub fn join(&mut self, mut a: usize, mut b: usize) -> bool {
a = self.get(a);
b = self.get(b);
if a == b {
false
} else {
self.size[a] += self.size[b];
self.id[b].replace(a as u32);
self.count -= 1;
true
}
}
pub fn get(&self, i: usize) -> usize {
if self.id[i].get() != i as u32 {
let res = self.get(self.id[i].get() as usize);
self.id[i].replace(res as u32);
}
self.id[i].get() as usize
}
pub fn clear(&mut self) {
self.count = self.id.len();
self.size.legacy_fill(1);
self.id.iter().enumerate().for_each(|(i, id)| {
id.replace(i as u32);
});
}
pub fn parts(&self) -> Vec<Vec<usize>> {
let roots = self.iter().collect_vec();
let mut res = vec![Vec::new(); roots.len()];
for i in 0..self.id.len() {
res[roots.as_slice().bin_search(&self.get(i)).unwrap()].push(i);
}
res
}
}
}
pub mod iter_ext {
pub mod collect {
pub trait IterCollect<T>: Iterator<Item = T> + Sized {
fn collect_vec(self) -> Vec<T> {
self.collect()
}
}
impl<T, I: Iterator<Item = T> + Sized> IterCollect<T> for I {}
}
}
pub mod md_arr {
pub mod arr2d {
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::input::Readable;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::io::output::Writable;
use std::ops::Index;
use std::ops::IndexMut;
use std::ops::Range;
use std::slice::Iter;
use std::vec::IntoIter;
#[derive(Clone, Eq, PartialEq, Default)]
pub struct Arr2d<T> {
d1: usize,
d2: usize,
data: Vec<T>,
}
impl<T: Clone> Arr2d<T> {
pub fn new(d1: usize, d2: usize, value: T) -> Self {
Self {
d1,
d2,
data: vec![value; d1 * d2],
}
}
}
impl<T> Arr2d<T> {
pub fn generate<F>(d1: usize, d2: usize, mut gen: F) -> Self
where
F: FnMut(usize, usize) -> T,
{
let mut data = Vec::with_capacity(d1 * d2);
for i in 0usize..d1 {
for j in 0usize..d2 {
data.push(gen(i, j));
}
}
Self { d1, d2, data }
}
pub fn d1(&self) -> usize {
self.d1
}
pub fn d2(&self) -> usize {
self.d2
}
pub fn iter(&self) -> Iter<'_, T> {
self.data.iter()
}
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> {
self.data.iter_mut()
}
pub fn row(&self, row: usize) -> impl Iterator<Item = &T> {
assert!(row < self.d1);
self.data.iter().skip(row * self.d2).take(self.d2)
}
pub fn row_mut(&mut self, row: usize) -> impl Iterator<Item = &mut T> {
assert!(row < self.d1);
self.data.iter_mut().skip(row * self.d2).take(self.d2)
}
pub fn column(&self, col: usize) -> impl Iterator<Item = &T> {
assert!(col < self.d2);
self.data.iter().skip(col).step_by(self.d2)
}
pub fn column_mut(&mut self, col: usize) -> impl Iterator<Item = &mut T> {
assert!(col < self.d2);
self.data.iter_mut().skip(col).step_by(self.d2)
}
pub fn swap(&mut self, r1: usize, c1: usize, r2: usize, c2: usize) {
assert!(r1 < self.d1);
assert!(r2 < self.d1);
assert!(c1 < self.d2);
assert!(c2 < self.d2);
self.data.swap(r1 * self.d2 + c1, r2 * self.d2 + c2);
}
pub fn rows(&self) -> Range<usize> {
0..self.d1
}
pub fn cols(&self) -> Range<usize> {
0..self.d2
}
pub fn swap_rows(&mut self, r1: usize, r2: usize) {
assert!(r1 < self.d1);
assert!(r2 < self.d1);
if r1 == r2 {
return;
}
let (r1, r2) = (r1.min(r2), r1.max(r2));
let (head, tail) = self.data.split_at_mut(r2 * self.d2);
head[r1 * self.d2..(r1 + 1) * self.d2].swap_with_slice(&mut tail[..self.d2]);
}
}
impl<T: Clone> Arr2d<T> {
pub fn fill(&mut self, elem: T) {
self.data.legacy_fill(elem);
}
pub fn transpose(&self) -> Self {
Self::generate(self.d2, self.d1, |i, j| self[(j, i)].clone())
}
}
impl<T> Index<(usize, usize)> for Arr2d<T> {
type Output = T;
fn index(&self, (row, col): (usize, usize)) -> &Self::Output {
assert!(row < self.d1);
assert!(col < self.d2);
&self.data[self.d2 * row + col]
}
}
impl<T> Index<usize> for Arr2d<T> {
type Output = [T];
fn index(&self, index: usize) -> &Self::Output {
&self.data[self.d2 * index..self.d2 * (index + 1)]
}
}
impl<T> IndexMut<(usize, usize)> for Arr2d<T> {
fn index_mut(&mut self, (row, col): (usize, usize)) -> &mut T {
assert!(row < self.d1);
assert!(col < self.d2);
&mut self.data[self.d2 * row + col]
}
}
impl<T> IndexMut<usize> for Arr2d<T> {
fn index_mut(&mut self, index: usize) -> &mut [T] {
&mut self.data[self.d2 * index..self.d2 * (index + 1)]
}
}
impl<T> AsRef<Vec<T>> for Arr2d<T> {
fn as_ref(&self) -> &Vec<T> {
&self.data
}
}
impl<T> AsMut<Vec<T>> for Arr2d<T> {
fn as_mut(&mut self) -> &mut Vec<T> {
&mut self.data
}
}
impl<T: Writable> Writable for Arr2d<T> {
fn write(&self, output: &mut Output) {
let mut at = 0usize;
for i in 0usize..self.d1 {
if i != 0 {
output.put(b'\n');
}
for j in 0usize..self.d2 {
if j != 0 {
output.put(b' ');
}
self.data[at].write(output);
at += 1;
}
}
}
}
impl<T> IntoIterator for Arr2d<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
self.data.into_iter()
}
}
impl<'a, T> IntoIterator for &'a Arr2d<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
pub trait Arr2dRead {
fn read_table<T: Readable>(&mut self, d1: usize, d2: usize) -> Arr2d<T>;
fn read_int_table(&mut self, d1: usize, d2: usize) -> Arr2d<i32>;
fn read_long_table(&mut self, d1: usize, d2: usize) -> Arr2d<i64>;
fn read_size_table(&mut self, d1: usize, d2: usize) -> Arr2d<usize>;
fn read_char_table(&mut self, d1: usize, d2: usize) -> Arr2d<char>;
}
impl Arr2dRead for Input<'_> {
fn read_table<T: Readable>(&mut self, d1: usize, d2: usize) -> Arr2d<T> {
Arr2d::generate(d1, d2, |_, _| self.read())
}
fn read_int_table(&mut self, d1: usize, d2: usize) -> Arr2d<i32> {
self.read_table(d1, d2)
}
fn read_long_table(&mut self, d1: usize, d2: usize) -> Arr2d<i64> {
self.read_table(d1, d2)
}
fn read_size_table(&mut self, d1: usize, d2: usize) -> Arr2d<usize> {
self.read_table(d1, d2)
}
fn read_char_table(&mut self, d1: usize, d2: usize) -> Arr2d<char> {
self.read_table(d1, d2)
}
}
pub trait Arr2dCharWrite {
fn print_table(&mut self, table: &Arr2d<char>);
}
impl Arr2dCharWrite for Output<'_> {
fn print_table(&mut self, table: &Arr2d<char>) {
let mut at = 0usize;
for _ in 0..table.d1 {
for _ in 0..table.d2 {
self.print(table.data[at]);
at += 1;
}
self.put(b'\n');
}
}
}
impl<T: Readable> Readable for Arr2d<T> {
fn read(input: &mut Input) -> Self {
let d1 = input.read();
let d2 = input.read();
input.read_table(d1, d2)
}
}
}
}
pub mod min_max {
pub trait MinimMaxim<Rhs = Self>: PartialOrd + Sized {
fn minim(&mut self, other: Rhs) -> bool;
fn maxim(&mut self, other: Rhs) -> bool;
}
impl<T: PartialOrd> MinimMaxim for T {
fn minim(&mut self, other: Self) -> bool {
if other < *self {
*self = other;
true
} else {
false
}
}
fn maxim(&mut self, other: Self) -> bool {
if other > *self {
*self = other;
true
} else {
false
}
}
}
impl<T: PartialOrd> MinimMaxim<T> for Option<T> {
fn minim(&mut self, other: T) -> bool {
match self {
None => {
*self = Some(other);
true
}
Some(v) => v.minim(other),
}
}
fn maxim(&mut self, other: T) -> bool {
match self {
None => {
*self = Some(other);
true
}
Some(v) => v.maxim(other),
}
}
}
}
pub mod slice_ext {
pub mod bounds {
pub trait Bounds<T: PartialOrd> {
fn lower_bound(&self, el: &T) -> usize;
fn upper_bound(&self, el: &T) -> usize;
fn bin_search(&self, el: &T) -> Option<usize>;
fn more(&self, el: &T) -> usize;
fn more_or_eq(&self, el: &T) -> usize;
fn less(&self, el: &T) -> usize;
fn less_or_eq(&self, el: &T) -> usize;
}
impl<T: PartialOrd> Bounds<T> for [T] {
fn lower_bound(&self, el: &T) -> usize {
let mut left = 0;
let mut right = self.len();
while left < right {
let mid = left + ((right - left) >> 1);
if &self[mid] < el {
left = mid + 1;
} else {
right = mid;
}
}
left
}
fn upper_bound(&self, el: &T) -> usize {
let mut left = 0;
let mut right = self.len();
while left < right {
let mid = left + ((right - left) >> 1);
if &self[mid] <= el {
left = mid + 1;
} else {
right = mid;
}
}
left
}
fn bin_search(&self, el: &T) -> Option<usize> {
let at = self.lower_bound(el);
if at == self.len() || &self[at] != el {
None
} else {
Some(at)
}
}
fn more(&self, el: &T) -> usize {
self.len() - self.upper_bound(el)
}
fn more_or_eq(&self, el: &T) -> usize {
self.len() - self.lower_bound(el)
}
fn less(&self, el: &T) -> usize {
self.lower_bound(el)
}
fn less_or_eq(&self, el: &T) -> usize {
self.upper_bound(el)
}
}
}
pub mod legacy_fill {
// 1.50
pub trait LegacyFill<T> {
fn legacy_fill(&mut self, val: T);
}
impl<T: Clone> LegacyFill<T> for [T] {
fn legacy_fill(&mut self, val: T) {
for el in self.iter_mut() {
*el = val.clone();
}
}
}
}
}
pub mod vec_ext {
pub mod default {
pub fn default_vec<T: Default>(len: usize) -> Vec<T> {
let mut v = Vec::with_capacity(len);
for _ in 0..len {
v.push(T::default());
}
v
}
}
}
}
pub mod graph {
pub mod all_distances {
use crate::algo_lib::collections::md_arr::arr2d::Arr2d;
use crate::algo_lib::collections::min_max::MinimMaxim;
use crate::algo_lib::graph::edges::weighted_edge_trait::WeightedEdgeTrait;
use crate::algo_lib::graph::graph::Graph;
use crate::algo_lib::numbers::num_traits::algebra::SemiRing;
use crate::algo_lib::numbers::num_traits::ord::MinMax;
pub trait AllDistances<W: SemiRing + Ord + Copy + MinMax> {
fn all_distances(&self) -> Arr2d<W>;
}
impl<W: SemiRing + Ord + Copy + MinMax, E: WeightedEdgeTrait<W>> AllDistances<W> for Graph<E> {
fn all_distances(&self) -> Arr2d<W> {
let n = self.vertex_count();
let inf = W::max_val();
let mut res = Arr2d::new(n, n, inf);
for i in 0..n {
res[(i, i)] = W::zero();
for e in self[i].iter() {
res[(i, e.to())].minim(e.weight());
}
}
for k in 0..n {
for i in 0..n {
for j in 0..n {
let r1 = res[(i, k)];
let r2 = res[(k, j)];
if r1 != inf && r2 != inf {
res[(i, j)].minim(r1 + r2);
}
}
}
}
res
}
}
}
pub mod edges {
pub mod bi_edge {
use crate::algo_lib::graph::edges::bi_edge_trait::BiEdgeTrait;
use crate::algo_lib::graph::edges::edge_id::EdgeId;
use crate::algo_lib::graph::edges::edge_id::NoId;
use crate::algo_lib::graph::edges::edge_id::WithId;
use crate::algo_lib::graph::edges::edge_trait::BidirectionalEdgeTrait;
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
#[derive(Clone)]
pub struct BiEdgeRaw<Id: EdgeId, P> {
to: u32,
id: Id,
payload: P,
}
impl<Id: EdgeId> BiEdgeRaw<Id, ()> {
pub fn new(from: usize, to: usize) -> (usize, Self) {
(
from,
Self {
to: to as u32,
id: Id::new(),
payload: (),
},
)
}
}
impl<Id: EdgeId, P> BiEdgeRaw<Id, P> {
pub fn with_payload(from: usize, to: usize, payload: P) -> (usize, Self) {
(from, Self::with_payload_impl(to, payload))
}
fn with_payload_impl(to: usize, payload: P) -> BiEdgeRaw<Id, P> {
Self {
to: to as u32,
id: Id::new(),
payload,
}
}
}
impl<Id: EdgeId, P: Clone> BidirectionalEdgeTrait for BiEdgeRaw<Id, P> {}
impl<Id: EdgeId, P: Clone> EdgeTrait for BiEdgeRaw<Id, P> {
type Payload = P;
const REVERSABLE: bool = true;
fn to(&self) -> usize {
self.to as usize
}
fn id(&self) -> usize {
self.id.id()
}
fn set_id(&mut self, id: usize) {
self.id.set_id(id);
}
fn reverse_id(&self) -> usize {
panic!("no reverse id")
}
fn set_reverse_id(&mut self, _: usize) {}
fn reverse_edge(&self, from: usize) -> Self {
Self::with_payload_impl(from, self.payload.clone())
}
fn payload(&self) -> &P {
&self.payload
}
}
impl<Id: EdgeId, P: Clone> BiEdgeTrait for BiEdgeRaw<Id, P> {}
pub type BiEdge<P> = BiEdgeRaw<NoId, P>;
pub type BiEdgeWithId<P> = BiEdgeRaw<WithId, P>;
}
pub mod bi_edge_trait {
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
pub trait BiEdgeTrait: EdgeTrait {}
}
pub mod bi_weighted_edge {
use crate::algo_lib::graph::edges::bi_edge_trait::BiEdgeTrait;
use crate::algo_lib::graph::edges::edge_id::EdgeId;
use crate::algo_lib::graph::edges::edge_id::NoId;
use crate::algo_lib::graph::edges::edge_id::WithId;
use crate::algo_lib::graph::edges::edge_trait::BidirectionalEdgeTrait;
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
use crate::algo_lib::graph::edges::weighted_edge_trait::WeightedEdgeTrait;
#[derive(Clone)]
pub struct BiWeightedEdgeRaw<W: Copy, Id: EdgeId, P> {
to: u32,
weight: W,
id: Id,
payload: P,
}
impl<W: Copy, Id: EdgeId> BiWeightedEdgeRaw<W, Id, ()> {
pub fn new(from: usize, to: usize, w: W) -> (usize, Self) {
(
from,
Self {
to: to as u32,
weight: w,
id: Id::new(),
payload: (),
},
)
}
}
impl<W: Copy, Id: EdgeId, P> BiWeightedEdgeRaw<W, Id, P> {
pub fn with_payload(from: usize, to: usize, w: W, payload: P) -> (usize, Self) {
(from, Self::with_payload_impl(to, w, payload))
}
fn with_payload_impl(to: usize, w: W, payload: P) -> Self {
Self {
to: to as u32,
weight: w,
id: Id::new(),
payload,
}
}
}
impl<W: Copy, Id: EdgeId, P: Clone> BidirectionalEdgeTrait for BiWeightedEdgeRaw<W, Id, P> {}
impl<W: Copy, Id: EdgeId, P: Clone> EdgeTrait for BiWeightedEdgeRaw<W, Id, P> {
type Payload = P;
const REVERSABLE: bool = true;
fn to(&self) -> usize {
self.to as usize
}
fn id(&self) -> usize {
self.id.id()
}
fn set_id(&mut self, id: usize) {
self.id.set_id(id);
}
fn reverse_id(&self) -> usize {
panic!("no reverse")
}
fn set_reverse_id(&mut self, _: usize) {}
fn reverse_edge(&self, from: usize) -> Self {
Self::with_payload_impl(from, self.weight, self.payload.clone())
}
fn payload(&self) -> &P {
&self.payload
}
}
impl<W: Copy, Id: EdgeId, P: Clone> BiEdgeTrait for BiWeightedEdgeRaw<W, Id, P> {}
impl<W: Copy, Id: EdgeId, P: Clone> WeightedEdgeTrait<W> for BiWeightedEdgeRaw<W, Id, P> {
fn weight(&self) -> W {
self.weight
}
fn weight_mut(&mut self) -> &mut W {
&mut self.weight
}
}
pub type BiWeightedEdge<W, P> = BiWeightedEdgeRaw<W, NoId, P>;
pub type BiWeightedEdgeWithId<W, P> = BiWeightedEdgeRaw<W, WithId, P>;
}
pub mod edge {
use crate::algo_lib::graph::edges::edge_id::EdgeId;
use crate::algo_lib::graph::edges::edge_id::NoId;
use crate::algo_lib::graph::edges::edge_id::WithId;
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
#[derive(Clone)]
pub struct EdgeRaw<Id: EdgeId, P> {
to: u32,
id: Id,
payload: P,
}
impl<Id: EdgeId> EdgeRaw<Id, ()> {
pub fn new(from: usize, to: usize) -> (usize, Self) {
(
from,
Self {
to: to as u32,
id: Id::new(),
payload: (),
},
)
}
}
impl<Id: EdgeId, P> EdgeRaw<Id, P> {
pub fn with_payload(from: usize, to: usize, payload: P) -> (usize, Self) {
(from, Self::with_payload_impl(to, payload))
}
fn with_payload_impl(to: usize, payload: P) -> Self {
Self {
to: to as u32,
id: Id::new(),
payload,
}
}
}
impl<Id: EdgeId, P: Clone> EdgeTrait for EdgeRaw<Id, P> {
type Payload = P;
const REVERSABLE: bool = false;
fn to(&self) -> usize {
self.to as usize
}
fn id(&self) -> usize {
self.id.id()
}
fn set_id(&mut self, id: usize) {
self.id.set_id(id);
}
fn reverse_id(&self) -> usize {
panic!("no reverse")
}
fn set_reverse_id(&mut self, _: usize) {
panic!("no reverse")
}
fn reverse_edge(&self, _: usize) -> Self {
panic!("no reverse")
}
fn payload(&self) -> &P {
&self.payload
}
}
pub type Edge<P> = EdgeRaw<NoId, P>;
pub type EdgeWithId<P> = EdgeRaw<WithId, P>;
}
pub mod edge_id {
pub trait EdgeId: Clone {
fn new() -> Self;
fn id(&self) -> usize;
fn set_id(&mut self, id: usize);
}
#[derive(Clone)]
pub struct WithId {
id: u32,
}
impl EdgeId for WithId {
fn new() -> Self {
Self { id: 0 }
}
fn id(&self) -> usize {
self.id as usize
}
fn set_id(&mut self, id: usize) {
self.id = id as u32;
}
}
#[derive(Clone)]
pub struct NoId {}
impl EdgeId for NoId {
fn new() -> Self {
Self {}
}
fn id(&self) -> usize {
panic!("Id called on no id")
}
fn set_id(&mut self, _: usize) {}
}
}
pub mod edge_trait {
pub trait EdgeTrait: Clone {
type Payload;
const REVERSABLE: bool;
fn to(&self) -> usize;
fn id(&self) -> usize;
fn set_id(&mut self, id: usize);
fn reverse_id(&self) -> usize;
fn set_reverse_id(&mut self, reverse_id: usize);
#[must_use]
fn reverse_edge(&self, from: usize) -> Self;
fn payload(&self) -> &Self::Payload;
}
pub trait BidirectionalEdgeTrait: EdgeTrait {}
}
pub mod weighted_edge_trait {
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
pub trait WeightedEdgeTrait<W: Copy>: EdgeTrait {
fn weight(&self) -> W;
fn weight_mut(&mut self) -> &mut W;
}
}
}
pub mod graph {
use crate::algo_lib::collections::dsu::DSU;
use crate::algo_lib::graph::edges::bi_edge::BiEdge;
use crate::algo_lib::graph::edges::edge::Edge;
use crate::algo_lib::graph::edges::edge_trait::BidirectionalEdgeTrait;
use crate::algo_lib::graph::edges::edge_trait::EdgeTrait;
use std::ops::Index;
use std::ops::IndexMut;
#[derive(Clone)]
pub struct Graph<E: EdgeTrait> {
pub(super) edges: Vec<Vec<E>>,
edge_count: usize,
}
impl<E: EdgeTrait> Graph<E> {
pub fn new(vertex_count: usize) -> Self {
Self {
edges: vec![Vec::new(); vertex_count],
edge_count: 0,
}
}
pub fn add_edge(&mut self, (from, mut edge): (usize, E)) -> usize {
let to = edge.to();
assert!(to < self.edges.len());
let direct_id = self.edges[from].len();
edge.set_id(self.edge_count);
self.edges[from].push(edge);
if E::REVERSABLE {
let rev_id = self.edges[to].len();
self.edges[from][direct_id].set_reverse_id(rev_id);
let mut rev_edge = self.edges[from][direct_id].reverse_edge(from);
rev_edge.set_id(self.edge_count);
rev_edge.set_reverse_id(direct_id);
self.edges[to].push(rev_edge);
}
self.edge_count += 1;
direct_id
}
pub fn add_vertices(&mut self, cnt: usize) {
self.edges.resize(self.edges.len() + cnt, Vec::new());
}
pub fn clear(&mut self) {
self.edge_count = 0;
for ve in self.edges.iter_mut() {
ve.clear();
}
}
pub fn vertex_count(&self) -> usize {
self.edges.len()
}
pub fn edge_count(&self) -> usize {
self.edge_count
}
pub fn degrees(&self) -> Vec<usize> {
self.edges.iter().map(|v| v.len()).collect()
}
}
impl<E: BidirectionalEdgeTrait> Graph<E> {
pub fn is_tree(&self) -> bool {
if self.edge_count + 1 != self.vertex_count() {
false
} else {
self.is_connected()
}
}
pub fn is_forest(&self) -> bool {
let mut dsu = DSU::new(self.vertex_count());
for i in 0..self.vertex_count() {
for e in self[i].iter() {
if i <= e.to() && !dsu.join(i, e.to()) {
return false;
}
}
}
true
}
pub fn is_connected(&self) -> bool {
let mut dsu = DSU::new(self.vertex_count());
for i in 0..self.vertex_count() {
for e in self[i].iter() {
dsu.join(i, e.to());
}
}
dsu.set_count() == 1
}
}
impl<E: EdgeTrait> Index<usize> for Graph<E> {
type Output = [E];
fn index(&self, index: usize) -> &Self::Output {
&self.edges[index]
}
}
impl<E: EdgeTrait> IndexMut<usize> for Graph<E> {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
&mut self.edges[index]
}
}
impl Graph<Edge<()>> {
pub fn from_edges(n: usize, edges: &[(usize, usize)]) -> Self {
let mut graph = Self::new(n);
for &(from, to) in edges {
graph.add_edge(Edge::new(from, to));
}
graph
}
}
impl<P: Clone> Graph<Edge<P>> {
pub fn from_edges_with_payload(n: usize, edges: &[(usize, usize, P)]) -> Self {
let mut graph = Self::new(n);
for (from, to, p) in edges.iter() {
graph.add_edge(Edge::with_payload(*from, *to, p.clone()));
}
graph
}
}
impl Graph<BiEdge<()>> {
pub fn from_biedges(n: usize, edges: &[(usize, usize)]) -> Self {
let mut graph = Self::new(n);
for &(from, to) in edges {
graph.add_edge(BiEdge::new(from, to));
}
graph
}
}
impl<P: Clone> Graph<BiEdge<P>> {
pub fn from_biedges_with_payload(n: usize, edges: &[(usize, usize, P)]) -> Self {
let mut graph = Self::new(n);
for (from, to, p) in edges.iter() {
graph.add_edge(BiEdge::with_payload(*from, *to, p.clone()));
}
graph
}
}
}
}
pub mod io {
pub mod input {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::io::Read;
pub struct Input<'s> {
input: &'s mut dyn Read,
buf: Vec<u8>,
at: usize,
buf_read: usize,
}
macro_rules! read_impl {
($t: ty, $read_name: ident, $read_vec_name: ident) => {
pub fn $read_name(&mut self) -> $t {
self.read()
}
pub fn $read_vec_name(&mut self, len: usize) -> Vec<$t> {
self.read_vec(len)
}
};
($t: ty, $read_name: ident, $read_vec_name: ident, $read_pair_vec_name: ident) => {
read_impl!($t, $read_name, $read_vec_name);
pub fn $read_pair_vec_name(&mut self, len: usize) -> Vec<($t, $t)> {
self.read_vec(len)
}
};
}
impl<'s> Input<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(input: &'s mut dyn Read) -> Self {
Self {
input,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
buf_read: 0,
}
}
pub fn new_with_size(input: &'s mut dyn Read, buf_size: usize) -> Self {
Self {
input,
buf: default_vec(buf_size),
at: 0,
buf_read: 0,
}
}
pub fn get(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
self.at += 1;
if res == b'\r' {
if self.refill_buffer() && self.buf[self.at] == b'\n' {
self.at += 1;
}
return Some(b'\n');
}
Some(res)
} else {
None
}
}
pub fn peek(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
Some(if res == b'\r' { b'\n' } else { res })
} else {
None
}
}
pub fn skip_whitespace(&mut self) {
while let Some(b) = self.peek() {
if !char::from(b).is_whitespace() {
return;
}
self.get();
}
}
pub fn next_token(&mut self) -> Option<Vec<u8>> {
self.skip_whitespace();
let mut res = Vec::new();
while let Some(c) = self.get() {
if char::from(c).is_whitespace() {
break;
}
res.push(c);
}
if res.is_empty() {
None
} else {
Some(res)
}
}
//noinspection RsSelfConvention
pub fn is_exhausted(&mut self) -> bool {
self.peek().is_none()
}
//noinspection RsSelfConvention
pub fn is_empty(&mut self) -> bool {
self.skip_whitespace();
self.is_exhausted()
}
pub fn read<T: Readable>(&mut self) -> T {
T::read(self)
}
pub fn read_vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
let mut res = Vec::with_capacity(size);
for _ in 0..size {
res.push(self.read());
}
res
}
pub fn read_char(&mut self) -> char {
self.skip_whitespace();
self.get().unwrap().into()
}
read_impl!(u32, read_unsigned, read_unsigned_vec);
read_impl!(u64, read_u64, read_u64_vec);
read_impl!(usize, read_size, read_size_vec, read_size_pair_vec);
read_impl!(i32, read_int, read_int_vec, read_int_pair_vec);
read_impl!(i64, read_long, read_long_vec, read_long_pair_vec);
read_impl!(i128, read_i128, read_i128_vec);
fn refill_buffer(&mut self) -> bool {
if self.at == self.buf_read {
self.at = 0;
self.buf_read = self.input.read(&mut self.buf).unwrap();
self.buf_read != 0
} else {
true
}
}
}
pub trait Readable {
fn read(input: &mut Input) -> Self;
}
impl Readable for char {
fn read(input: &mut Input) -> Self {
input.read_char()
}
}
impl<T: Readable> Readable for Vec<T> {
fn read(input: &mut Input) -> Self {
let size = input.read();
input.read_vec(size)
}
}
macro_rules! read_integer {
($($t:ident)+) => {$(
impl Readable for $t {
fn read(input: &mut Input) -> Self {
input.skip_whitespace();
let mut c = input.get().unwrap();
let sgn = match c {
b'-' => {
c = input.get().unwrap();
true
}
b'+' => {
c = input.get().unwrap();
false
}
_ => false,
};
let mut res = 0;
loop {
assert!(c.is_ascii_digit());
res *= 10;
let d = (c - b'0') as $t;
if sgn {
res -= d;
} else {
res += d;
}
match input.get() {
None => break,
Some(ch) => {
if ch.is_ascii_whitespace() {
break;
} else {
c = ch;
}
}
}
}
res
}
}
)+};
}
read_integer!(i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize);
macro_rules! tuple_readable {
($($name:ident)+) => {
impl<$($name: Readable), +> Readable for ($($name,)+) {
fn read(input: &mut Input) -> Self {
($($name::read(input),)+)
}
}
}
}
tuple_readable! {T}
tuple_readable! {T U}
tuple_readable! {T U V}
tuple_readable! {T U V X}
tuple_readable! {T U V X Y}
tuple_readable! {T U V X Y Z}
tuple_readable! {T U V X Y Z A}
tuple_readable! {T U V X Y Z A B}
tuple_readable! {T U V X Y Z A B C}
tuple_readable! {T U V X Y Z A B C D}
tuple_readable! {T U V X Y Z A B C D E}
tuple_readable! {T U V X Y Z A B C D E F}
impl Read for Input<'_> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
if self.at == self.buf_read {
self.input.read(buf)
} else {
let mut i = 0;
while i < buf.len() && self.at < self.buf_read {
buf[i] = self.buf[self.at];
i += 1;
self.at += 1;
}
Ok(i)
}
}
}
}
pub mod output {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::cmp::Reverse;
use std::io::stderr;
use std::io::Stderr;
use std::io::Write;
#[derive(Copy, Clone)]
pub enum BoolOutput {
YesNo,
YesNoCaps,
PossibleImpossible,
Custom(&'static str, &'static str),
}
impl BoolOutput {
pub fn output(&self, output: &mut Output, val: bool) {
(if val { self.yes() } else { self.no() }).write(output);
}
fn yes(&self) -> &str {
match self {
BoolOutput::YesNo => "Yes",
BoolOutput::YesNoCaps => "YES",
BoolOutput::PossibleImpossible => "Possible",
BoolOutput::Custom(yes, _) => yes,
}
}
fn no(&self) -> &str {
match self {
BoolOutput::YesNo => "No",
BoolOutput::YesNoCaps => "NO",
BoolOutput::PossibleImpossible => "Impossible",
BoolOutput::Custom(_, no) => no,
}
}
}
pub struct Output<'s> {
output: &'s mut dyn Write,
buf: Vec<u8>,
at: usize,
auto_flush: bool,
bool_output: BoolOutput,
}
impl<'s> Output<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: false,
bool_output: BoolOutput::YesNoCaps,
}
}
pub fn new_with_auto_flush(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: true,
bool_output: BoolOutput::YesNoCaps,
}
}
pub fn flush(&mut self) {
if self.at != 0 {
self.output.write_all(&self.buf[..self.at]).unwrap();
self.output.flush().unwrap();
self.at = 0;
}
}
pub fn print<T: Writable>(&mut self, s: T) {
s.write(self);
self.maybe_flush();
}
pub fn print_line<T: Writable>(&mut self, s: T) {
self.print(s);
self.put(b'\n');
self.maybe_flush();
}
pub fn put(&mut self, b: u8) {
self.buf[self.at] = b;
self.at += 1;
if self.at == self.buf.len() {
self.flush();
}
}
pub fn maybe_flush(&mut self) {
if self.auto_flush {
self.flush();
}
}
pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
for i in arg {
i.write(self);
self.put(b'\n');
}
}
pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}
pub fn set_bool_output(&mut self, bool_output: BoolOutput) {
self.bool_output = bool_output;
}
}
impl Write for Output<'_> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let mut start = 0usize;
let mut rem = buf.len();
while rem > 0 {
let len = (self.buf.len() - self.at).min(rem);
self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
self.at += len;
if self.at == self.buf.len() {
self.flush();
}
start += len;
rem -= len;
}
self.maybe_flush();
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
self.flush();
Ok(())
}
}
pub trait Writable {
fn write(&self, output: &mut Output);
}
impl Writable for &str {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for String {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for char {
fn write(&self, output: &mut Output) {
output.put(*self as u8);
}
}
impl<T: Writable> Writable for [T] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable, const N: usize> Writable for [T; N] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable + ?Sized> Writable for &T {
fn write(&self, output: &mut Output) {
T::write(self, output)
}
}
impl<T: Writable> Writable for Vec<T> {
fn write(&self, output: &mut Output) {
self.as_slice().write(output);
}
}
impl Writable for () {
fn write(&self, _output: &mut Output) {}
}
macro_rules! write_to_string {
($($t:ident)+) => {$(
impl Writable for $t {
fn write(&self, output: &mut Output) {
self.to_string().write(output);
}
}
)+};
}
write_to_string!(u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);
macro_rules! tuple_writable {
($name0:ident $($name:ident: $id:tt )*) => {
impl<$name0: Writable, $($name: Writable,)*> Writable for ($name0, $($name,)*) {
fn write(&self, out: &mut Output) {
self.0.write(out);
$(
out.put(b' ');
self.$id.write(out);
)*
}
}
}
}
tuple_writable! {T}
tuple_writable! {T U:1}
tuple_writable! {T U:1 V:2}
tuple_writable! {T U:1 V:2 X:3}
tuple_writable! {T U:1 V:2 X:3 Y:4}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7 C:8}
impl<T: Writable> Writable for Option<T> {
fn write(&self, output: &mut Output) {
match self {
None => (-1).write(output),
Some(t) => t.write(output),
}
}
}
impl Writable for bool {
fn write(&self, output: &mut Output) {
let bool_output = output.bool_output;
bool_output.output(output, *self)
}
}
impl<T: Writable> Writable for Reverse<T> {
fn write(&self, output: &mut Output) {
self.0.write(output);
}
}
static mut ERR: Option<Stderr> = None;
pub fn err() -> Output<'static> {
unsafe {
if ERR.is_none() {
ERR = Some(stderr());
}
Output::new_with_auto_flush(ERR.as_mut().unwrap())
}
}
}
}
pub mod misc {
pub mod test_type {
pub enum TestType {
Single,
MultiNumber,
MultiEof,
}
pub enum TaskType {
Classic,
Interactive,
}
}
}
pub mod numbers {
pub mod num_traits {
pub mod algebra {
use crate::algo_lib::numbers::num_traits::invertible::Invertible;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Neg;
use std::ops::Rem;
use std::ops::RemAssign;
use std::ops::Sub;
use std::ops::SubAssign;
pub trait Zero {
fn zero() -> Self;
}
pub trait One {
fn one() -> Self;
}
pub trait AdditionMonoid: Add<Output = Self> + AddAssign + Zero + Eq + Sized {}
impl<T: Add<Output = Self> + AddAssign + Zero + Eq> AdditionMonoid for T {}
pub trait AdditionMonoidWithSub: AdditionMonoid + Sub<Output = Self> + SubAssign {}
impl<T: AdditionMonoid + Sub<Output = Self> + SubAssign> AdditionMonoidWithSub for T {}
pub trait AdditionGroup: AdditionMonoidWithSub + Neg<Output = Self> {}
impl<T: AdditionMonoidWithSub + Neg<Output = Self>> AdditionGroup for T {}
pub trait MultiplicationMonoid: Mul<Output = Self> + MulAssign + One + Eq + Sized {}
impl<T: Mul<Output = Self> + MulAssign + One + Eq> MultiplicationMonoid for T {}
pub trait IntegerMultiplicationMonoid:
MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign
{
}
impl<T: MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign>
IntegerMultiplicationMonoid for T
{
}
pub trait MultiplicationGroup:
MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>
{
}
impl<T: MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>>
MultiplicationGroup for T
{
}
pub trait SemiRing: AdditionMonoid + MultiplicationMonoid {}
impl<T: AdditionMonoid + MultiplicationMonoid> SemiRing for T {}
pub trait SemiRingWithSub: AdditionMonoidWithSub + SemiRing {}
impl<T: AdditionMonoidWithSub + SemiRing> SemiRingWithSub for T {}
pub trait Ring: SemiRing + AdditionGroup {}
impl<T: SemiRing + AdditionGroup> Ring for T {}
pub trait IntegerSemiRing: SemiRing + IntegerMultiplicationMonoid {}
impl<T: SemiRing + IntegerMultiplicationMonoid> IntegerSemiRing for T {}
pub trait IntegerSemiRingWithSub: SemiRingWithSub + IntegerSemiRing {}
impl<T: SemiRingWithSub + IntegerSemiRing> IntegerSemiRingWithSub for T {}
pub trait IntegerRing: IntegerSemiRing + Ring {}
impl<T: IntegerSemiRing + Ring> IntegerRing for T {}
pub trait Field: Ring + MultiplicationGroup {}
impl<T: Ring + MultiplicationGroup> Field for T {}
macro_rules! zero_one_integer_impl {
($($t: ident)+) => {$(
impl Zero for $t {
fn zero() -> Self {
0
}
}
impl One for $t {
fn one() -> Self {
1
}
}
)+};
}
zero_one_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod invertible {
pub trait Invertible {
type Output;
fn inv(&self) -> Option<Self::Output>;
}
}
pub mod ord {
pub trait MinMax: PartialOrd {
fn min_val() -> Self;
fn max_val() -> Self;
}
macro_rules! min_max_integer_impl {
($($t: ident)+) => {$(
impl MinMax for $t {
fn min_val() -> Self {
// 1.43
std::$t::MIN
}
fn max_val() -> Self {
// 1.43
std::$t::MAX
}
}
)+};
}
min_max_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
}
}
}
fn main() {
let mut sin = std::io::stdin();
let input = algo_lib::io::input::Input::new(&mut sin);
let mut stdout = std::io::stdout();
let output = algo_lib::io::output::Output::new(&mut stdout);
solution::run(input, output);
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 2236kb
input:
5 1 5 3 2 4 1 10 4 2 4 2 10 5 2 4 1 3 2 1 3 1 3 2 1 2
output:
3 2 -1 1 -1
result:
ok 5 lines
Test #2:
score: 0
Accepted
time: 0ms
memory: 2204kb
input:
30 1 2 1 1 2 1 2 2 1 2 1 2 3 1 2 1 2 4 1 2 1 2 5 1 2 1 2 6 1 2 2 2 1 1 2 2 2 2 1 2 2 2 3 1 2 2 2 4 1 2 2 2 5 1 2 2 2 6 1 2 3 2 1 1 2 3 2 2 1 2 3 2 3 1 2 3 2 4 1 2 3 2 5 1 2 3 2 6 1 2 4 2 1 1 2 4 2 2 1 2 4 2 3 1 2 4 2 4 1 2 4 2 5 1 2 4 2 6 1 2 5 2 1 1 2 5 2 2 1 2 5 2 3 1 2 5 2 4 1 2 5 2 5 1 2 5 2 6 1 2
output:
1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1
result:
ok 30 lines
Test #3:
score: 0
Accepted
time: 0ms
memory: 2080kb
input:
90 1 3 1 1 2 1 3 1 1 3 1 3 1 2 3 1 3 2 1 2 1 3 2 1 3 1 3 2 2 3 1 3 3 1 2 1 3 3 1 3 1 3 3 2 3 1 3 4 1 2 1 3 4 1 3 1 3 4 2 3 1 3 5 1 2 1 3 5 1 3 1 3 5 2 3 1 3 6 1 2 1 3 6 1 3 1 3 6 2 3 2 3 1 1 2 2 3 1 1 3 2 3 1 2 3 2 3 2 1 2 2 3 2 1 3 2 3 2 2 3 2 3 3 1 2 2 3 3 1 3 2 3 3 2 3 2 3 4 1 2 2 3 4 1 3 2 3 4 2...
output:
1 1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
result:
ok 90 lines
Test #4:
score: -100
Runtime Error
input:
180 1 4 1 1 2 1 4 1 1 3 1 4 1 1 4 1 4 1 2 3 1 4 1 2 4 1 4 1 3 4 1 4 2 1 2 1 4 2 1 3 1 4 2 1 4 1 4 2 2 3 1 4 2 2 4 1 4 2 3 4 1 4 3 1 2 1 4 3 1 3 1 4 3 1 4 1 4 3 2 3 1 4 3 2 4 1 4 3 3 4 1 4 4 1 2 1 4 4 1 3 1 4 4 1 4 1 4 4 2 3 1 4 4 2 4 1 4 4 3 4 1 4 5 1 2 1 4 5 1 3 1 4 5 1 4 1 4 5 2 3 1 4 5 2 4 1 4 5 ...